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Parallel and Distributed Bayesian Network
Structure Learning

Jian Yang ", Jiantong Jiang

Abstract—Bayesian networks (BNs) are graphical models rep-
resenting uncertainty in causal discovery, and have been widely
used in medical diagnosis and gene analysis due to their effective-
ness and good interpretability. However, mainstream BN structure
learning methods are computationally expensive, as they must
perform numerous conditional independence (CI) tests to decide
the existence of edges. Some researchers attempt to accelerate
the learning process by parallelism, but face issues including load
unbalancing, costly dominant parallelism overhead. We propose
a multi-thread method, namely Fast-BNS version 1 (Fast-BNS-v1
for short), on multi-core CPUs to enhance the efficiency of the BN
structure learning. Fast-BNS-v1 incorporates a series of efficiency
optimizations, including a dynamic work pool for better scheduling,
grouping CI tests to avoid unnecessary operations, a cache-friendly
data storage to improve memory efficiency, and on-the-fly condi-
tioning sets generation to avoid extra memory consumption. To
further boost learning performance, we develop a two-level parallel
method Fast-BNS-v2 by integrating edge-level parallelism with
multi-processes and Cl-level parallelism with multi-threads. Fast-
BNS-v2 is equipped with careful optimizations including dynamic
work stealing for load balancing, SIMD edge list deletion for list up-
dating, and effective communication policies for synchronization.
Comprehensive experiments show that our Fast-BNS achieves 9 to
235 times speedup over the state-of-the-art multi-threaded method
on a single machine. When running on multi-machines, it further
reduces the execution time of the single-machine implementation
by 80%.

Index Terms—Bayesian networks, distributed machine learning
systems, parallelism.

1. INTRODUCTION

AYESIAN networks (BNs) [1] are probabilistic graphi-
B cal models that employ directed acyclic graphs (DAGs)
to compactly represent a set of random variables and their
conditional dependencies. The graphical nature of BNs makes
them well-suited for representing knowledge with uncertainty
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Fig. 1. Example of a BN and its observed dataset: (a) the underlying BN
structure and (b) the observed dataset.

and effective reasoning. With the recent growing demand for
interpretable machine learning models, BNs have attracted much
research attention since they are inherently interpretable mod-
els [2], [3].

One crucial task of training BNs is structure learning, which
aims to learn DAGs that are well-matched to the observed data.
Fig. 1 illustrates an example of a BN about traffic prediction
with the dataset it is based on. Each column in the dataset
represents a variable and opposites a node in the BN, while
each row is a sample that records the observed values of these
variables. Intuitively, given that in most cases, if Cloudy or Windy
is yes, Rainy is also yes, we infer that Cloudy and Windy are
highly likely reasons for Rainy. Therefore, during BN structure
learning, we tend to discover two directed edges connecting
“Cloudy” to “Rainy” and “Windy” to “Rainy”. A similar idea
can be used to conjecture edges between other variables.

However, the BN structure learned by this intuitive idea is
too rough to be applied in real-world applications. Two com-
mon approaches for more precise BN structure learning include
score-based approaches and constraint-based approaches. The
score-based approaches use a scoring function to measure the
fitness of DAGs to the data and find the highest score out of all
the possible DAGs, which makes the number of possible DAGs
super-exponential to the number of dimensions (i.e., variables)
of the learning problems [4]. On the other hand, the constraint-
based approaches perform many conditional independence (CI)
tests to identify the conditional independence relations among
the random variables and use these relations as constraints
to construct BNs. This category of methods often runs in a
polynomial time and has been commonly used in real-world
applications [5].

A fundamental constraint-based algorithm is the PC (named
after its authors Peter and Clark) algorithm [6] which starts
from a complete undirected graph and removes edges in con-
secutive depths based on CI tests. PC-stable [7] solves the
order-dependent issue in the original PC algorithm and reduces
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error than the original PC algorithm. The PC-stable algorithm
has been widely used in various applications [5], [8] and is
implemented in different mainstream BN packages such as
bnlearn [9], pcalg [10] and tetrad [11]. Furthermore, most
constraint-based methods are improved versions of the PC-
stable algorithm or proceed along similar lines to the PC-stable
algorithm.

However, the PC-stable algorithm suffers from long execution
time when performing a large number of CI tests, especially for
high-dimensional problems. Since algorithmic improvements
for PC-stable are non-trivial [12], several research efforts have
been devoted to the acceleration of the PC-stable algorithm on
multi-core CPUs [13], [14], [15]. The most common way is to
parallelize the processing of different network edges inside each
depth, which is intuitive due to the order-independent property of
the PC-stable algorithm. However, direct edge-level parallelism
is load unbalanced because the workloads of CI tests for different
edges are highly different. To overcome these problems, we
propose Fast-BNS version 1 (Fast-BNS-v1 for short), a Cl-level
multi-thread parallel PC-stable implementation equipped with
a dynamic work pool to contain the edges to be processed and
their processing progresses about the CI tests. Fast-BNS-vl
exploits CI tests batch processing, cache-friendly storage, and
on-the-fly data generation to accelerate PC-stable and save
memory consumption. The related content has been published
in a conference paper [16].

To further enhance the efficiency of BN structure learning,
we extend Fast-BNS-v1 to multi-process and distributed set-
tings, which results in Fast-BNS-v2. Since each process has
independent memory to avoid racing conditions, multi-process
parallelism tends to achieve higher CPU utilization [17], and
meanwhile reduces time consumption by unleashing the com-
puting power of multiple machines. Moreover, Fast-BNS-v2
exploits two-level parallelism which combines benefits from
multi-thread and multi-process parallelism to enhance device
utilization and boost algorithm performance. At different lev-
els, we apply different parallel policies and granularity. More
specifically, to reduce communication overhead and balance
workload, higher levels of Fast-BNS-v2 adopt coarser subtask
separation and lower levels use finer subtask separation. In
Fast-BNS-v2, CI-level parallelism is achieved in the thread level,
and edge-level parallelism is performed in the process level.
It is worth pointing out that Cl-level workload balancing is
implemented by a dynamic work pool similar to Fast-BNS-v1,
while edge-level workload scheduling exploits dynamic work
stealing [18].

To summarize, this paper is an extension to our conference
paper [16] with the following additional contributions.

e We extend our previous algorithm Fast-BNS-v1 and pro-
pose Fast-BNS-v2 to support multi-machines. Fast-BNS-
v2 exploits two-level parallelism and leads to better re-
source utilization in multi-core and multi-machines, due
to the independent memory space among processes. In
Fast-BNS-v2, edge-level parallelism is implanted in multi-
process parallelism while Cl-level is applied in multi-
thread parallelism.

e To further improve the efficiency of Fast-BNS-v2, we de-
velop a series of novel techniques including load balancing

by dynamic work stealing to boost CPU utilization, SIMD
edge list deletion to maintain the active edges, and brief
communication protocol to decrease data transfer cost.

® We conduct experiments to study the effectiveness of our
proposed methods. Experimental results on a single ma-
chine show that the sequential versions of Fast-BNS-v1
and Fast-BNS-v2 outperform the existing work bnlearn [9]
and tetrad [11] by up to 50 times. Compared with the
multi-threaded implementation in bnlearn [13], Fast-BNS-
vl is 9 to 24 times faster, while Fast-BNS-v2 is 9 to
235 times faster. Finally, we show that Fast-BNS-v2 has
good scalability to distributed environments, which further
reduces the 80% execution time of the single-machine
implementation.

II. PRELIMINARIES

In this section, we provide the key terminologies and defini-
tions related to Bayesian network structure learning, and then
review the PC-stable algorithm.

A. Bayesian Networks

Bayesian networks (BNs) are a class of graphical models that
represent a joint distribution P over a set of random variables
V ={Vo,V1,...,V,,_1} via a DAG. Typically, one variable
corresponds to one feature in machine learning problems. We
use G = (V, &) to denote the DAG. Fig. 1(a) shows an example
DAG denoted by G, where each node in V' is associated with one
variable and each edge in £ represents conditional dependencies
among the two variables. V; is called a parent of V; if there exists
adirected edge from V; to V; in G, and we use Pa(V;) to denote
the set of parent variables of V.

In a BN, each variable has its local probability distribution
that describes the probabilities of possible values of this variable
given its possible parent configurations. The joint probability of
variables 1/ in a BN can be decomposed into the product of the
local probability distributions of each variable, and each local
probability distribution depends only on a single variable V; and
its parents:

n—1

V1) = [ PVilPa(vh)),
1=0

P(Vy,Vi,...

where n is the number of variables, P(Vp, Vi,...,V,_1) is the
joint probability and P(V;|Pa(V;)) is the conditional probability
of variable V.

B. Conditional Independence Tests

Consider some random variables V;, V; and Vj, in a BN, a
CI test assertion of the form I(V;, V;|{V4}) means V; and V;
are independent given V. Let D = {co, ¢1, ..., ¢m—1} denote
a Dataset of m complete samples, a CI test I(V;, V;|{Vi}) de-
termines whether the corresponding hypothesis 1(V;, V;|{Vi})
holds or not, based on statistics of D. For discrete variables, the
most common statistic for testing I(V;, V;|{Vy}) is the G test
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statistic [6] defined as

Gr=2 Z Nyy-log

z,Y,z

Nzyz
)
Exyz

where N, . is the number of samples in D that satisfies V; = x,
V; =y and Vi, = z. The value of N;,. can be obtained from
the contingency table that shows the frequencies for all config-
urations of values. G2 follows an asymptotic x? distribution
with (|V;] —1)(]V;| — 1), where | - | denotes the number of
possible values of the variable. The p value of x? distribution
can be calculated according to the G2 statistic and the final
decision is made by comparing p value with the significance
level a. If p value is greater than «, the independent hypothesis
I(V;, V;[{Vi}) is accepted; otherwise, the hypothesis is rejected.
E,,. is the expected frequency which is defined as
Ewyz = NOL‘-‘!-ZN-"-Z/Z’
N. ++z

where N:z:+z = Zy Nm’yZ9 N+yz = EI Nzyzs and N++z =
ny Ny, which represent the marginal frequencies.

C. The PC-Stable Algorithm

The PC-stable algorithm is a constraint-based method for BN
structure learning from data. PC-stable consists of three steps.
The first step is to determine the skeleton of the graph. The term
skeleton means the underlying undirected graph of the learned
network. This step is done by performing a large number of
CI tests. The second step is to identify the v-structures in the
skeleton. A v-structure is a triple (V;, Vj;, V) that can be denoted
by Vi = Vi <= V;. In other words, nodes V; and V; have an
outgoing edge to node V}, and are not connected by any edge in
the graph. V-structure is a key component to distinguish different
network structures. By identifying the v-structures in this step,
some edges in the skeleton become directed edges. The third step
is to set directions for as many of the remaining undirected edges
as possible by applying a set of rules called Meek rules [19]. For
example, we set the direction of the undirected edge V; — Vj,
into V; — V}, whenever there is a directed edge V; — V; such
that V; and V}, are not adjacent; otherwise a new v-structure is
created. In the three steps of the PC-stable algorithm, the first
step is much more time-consuming [20], taking over 90% of
the total execution time in many problems. In Section III, we
elaborate the details of our proposed techniques to accelerating
the first step.

The pseudo-code of the first step of the PC-stable algorithm
is given in Algorithm 1. The general idea is to initialize G to
a complete undirected graph over the node set V' (Line 3), and
remove some of the edges by performing a number of CI tests in
consecutive depths (Lines 6 to 16). Specifically, at each depth d,
the algorithm iteratively records the current adjacency sets of all
the nodes, where adj(G, V;) denotes the adjacent nodes of V; in
G(Lines 5). This operation is used for choosing the conditioning
set S later. Next, for every edge (V;, V;) in the graph G, a number
of CI tests I(V;, V;|S) are performed for different conditioning
sets. The elements in the conditioning sets are chosen from
a(V;)\{V;}, and the size of each conditioning set | S| is equal to

Generate Cl-test

on-the-fly Dynamic Fetch Task

Local Update

Process 1

Process 2

Generate Cl-test
on-the-fly

Local Update

Fig. 2. The framework of Fast-BNS-v2 in 2 processes, including two large
progresses: one-side dynamic work fetching and global update.

Algorithm 1: The 1st Step of PC-Stable Algorithm.
1 Input: Node set V'

2 Qutput: Graph G, SepSet
3 Graph G < FormCompletedGraph(V) =V x V'
4 Depthd <+ 0
5 Leta(V;) represent adjacency nodes of V;
6 repeat
7  for any edge (V;,V;) in G do
8 repeat
9 Choose anew S C a(V;)\{V;} with |S| =d
10 Perform CI test I(V;, V;|S)
11 if hypothesis I(V;, V;|S) holds then
12 Remove (V;, V;) from G
13 Store S in SepSet(V;, V)
14 until (V;,V;) is removed or all S are considered

15 d+d+1
16 until all pairs of (V;, V;) in G satisfy |a(V;)\{V;}| < d

the current depth d (Lines 7 to 10). If there exists a conditioning
set S where V; is independent of V; given S, the edge (V;, V)
is removed from G, and S is stored in SepSet(V;,V;) (Lines
11 to 13). SepSet(V;, V;) denotes the separating set of V; and
V;, which is used in the second step of the PC-stable algorithm
to identify the v-structures. Since the second step is fast and is
not the focus of our work, we omit the details of separating set.
Once all edges are considered, d is incremented (Line 15) and
the above procedure is repeated for the next depth. Depth d is
used to control the size of the conditioning sets from small to
large. This process continues until all pairs of adjacent nodes
(V;,V;) in G satisfy |a(V;)\{V;}| < d as shown in Line 16.

III. OUR PROPOSED FAST-BNS

This section presents the technical details of our proposed
Fast-BNS, a parallel method for BN structure learning. The de-
tails of both versions of our proposed method (i.e., Fast-BNS-v1
and Fast-BNS-v2) are elaborated in the following.
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A. Design Overview

Here, we provide the overview of our proposed Fast-BNS,
an efficient parallel and distributed method for learning BN
structure in parallel and distributed environment. Fig. 2 depicts
the design of Fast-BNS at each depth d on two distributed
processes. In the distributed multi-process level, a global edge
list is maintained in the root process and the edges inside it
are distributed to all the processes via a dynamic work-stealing
strategy (cf. Section III-C). In the parallel multi-thread level, a
dynamic work pool is maintained in each process to monitor the
processing progresses of the distributed edges with regard to the
CI tests (cf. Section III-B). The CI tests are then dynamically
fetched and solved by the parallel threads. According to the
results of the CI tests, the local edge list of each process is
updated and merged to the global edge list.

Traditional parallelism can be divided into two types: data-
level parallelism and task-level parallelism. Data-level parallel
programming allocates different data blocks to workers execut-
ing the same operations, while task-level parallel programming
mapping subtasks with different instructions to workers. In
the PC-stable algorithm, each step depends on results from
its previous step, which is unsuitable for conducting task-level
parallelism. Most BN structure learning parallel methods utilize
data-level parallelism to accelerate algorithm execution because
the data is divisible.

From the implementation perspective, parallel techniques
contain multi-thread and multi-process parallelism. In this work,
we first develop Fast-BNS-v1 with multi-thread parallelism by
evaluating many CI tests simultaneously. Although multi-thread
parallelism is simple to implement, it only utilizes one process,
which limits the total resources held by the learning process
and limits the parallelism among threads. On the other hand,
multi-process parallelism avoids race condition and increases
overall computation ability, because each process occupies its
own memory space and computing resources. To improve the
efficiency of Fast-BNS-v1, we propose Fast-BNS-v2, which
employs multi-processes and exploits edge-level parallelism
with load balancing policies.

Moreover, Fast-BNS is equipped with a series of novel op-
timizations including i) grouping the CI tests to reduce unnec-
essary CI tests, ii) employing a cache-friendly data storage to
improve the memory efficiency, iii) generating the conditioning
sets of the CI tests on-the-fly and in parallel to avoid extra
memory consumption, and iv) utilizing SIMD edge list dele-
tion to reduce computational complexity. To better understand
Fast-BNS, we provide theoretical analysis of its performance.
In the following, we elaborate the technical details of Fast-BNS
and derive theoretical results.

B. Multi-Thread Parallelism

In this subsection, we introduce the proposed method: Fast-
BNS-v1, employing multi-thread parallelism. In each depth,
threads perform CI tests from different edges in parallel. To
achieve multi-thread parallelism, our key idea is to employ a
dynamic work pool in shared memory for each depth imple-
mented by a stack. The work pool contains the edges required

to be processed and their processing progresses with respect to
the CI tests. Therefore, each time a thread can fetch CI tests
belonging to multiple edges from the work pool, find the next
groups of Cl tests of the edges through their processing progress,
and execute them in parallel.

Creating and deleting threads usually takes less time, making
it easy to maintain a batch of threads economically. Our method
also can be recognized as a fork-join model [21]. At the be-
ginning of each level, the main process forks some threads that
read and write the same memory space to conduct CI tests in
parallel. Then forked threads are joined into the main process
and followed by the data merging operator. Fork-join model
is commonly used in multi-thread parallelism because of the
relatively low overhead for fork and join operation.

In particular, at the beginning of each depth, all the edges in
the current graph G are pushed into the work pool with zero
processing progress. Then, each time ¢ edges are popped from
the work pool and enumerate the CI tests from these edges. Each
thread would then be responsible for processing a group of CI
tests, where the number of CI tests is introduced as gs (gs > 1).
When the gs CI tests are finished, decisions are made on whether
the edge is required to be removed and whether the edge is
required to be pushed into the work pool. Two decisions are
made, including whether to accept the independence hypothesis
of the group of CI tests and whether the edge is required to
be pushed into the work pool. Specifically, the independence
hypothesis of the group is accepted if any one of the CI tests
in the group accepts its independence hypothesis; otherwise,
the hypothesis is rejected. If the independence hypothesis of
the group is accepted, or the edge has finished all its CI tests
after processing this group, this means that the processing of the
edge is complete, and thus the edge does not need to be pushed
back to the work pool; otherwise, the edge would be pushed
back to the work pool with its processing progress recorded
as the last processed CI test. After that, ¢ edges are popped
from the work pool, and the next gs CI tests (according to the
processing progress) of each edge are processed by t parallel
threads again. This process is performed iteratively until the
work pool is empty.

Intuitively, one can think of this process as multiple threads
processing multiple CI tests on different edges in parallel, but a
thread is not bounded to a fixed edge. When the processing of
an edge is finished, the thread turns to process the CI tests of
other edges immediately without waiting for other edges to be
finished. This is due to the design of a dynamic work pool that
monitors the processing progress of each edge. With the edge
monitoring technique, the completed edges are terminated in
time to reduce unnecessary CI tests. Moreover, we can better
schedule the workloads among threads with the help of the
design of the dynamic work pool. All the threads always process
the CI tests that are required to be processed, and hence all the
threads are active in the parallel region. As shown in Fig. 3,
the CI tests in yellow are scheduled to thread 0 and the ones in
blue are scheduled to thread 1. The CI tests of one edge are not
necessarily processed by one thread.

The gs is a trade-off between the number of CI tests and
memory accesses. In the parallel region, each thread processes
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TABLE I

COMPARISON BETWEEN EDGE-LEVEL, SAMPLE-LEVEL, CI-LEVEL, AND

TWO-LEVEL(CI-LEVEL + EDGE-LEVEL) PARALLELISMS

Granularit Load Reasonable | Distributed
Y| balance | workloads setting
Edge-level X v v
Cl-level v v X
Two-level v v v

521

4 A\
Edge E,EE EdgeE, EE EdgeE, € E EdgeE; € E
(endpoints Vi, V; € V) (endpoints V,, V3 € V) || (endpoints V,, Vs € V) (endpoints Vg, V; € V)

1 (Vo Vi | 5¢°) 1(Vy, V5 | 5,°) 1(Va, Vs | 5,°) | 1V, V7 | 55°)

1(V, V1 | 55') (V5 V3 | 51 (Ve Vs | 5,1) 1V, V7 | 551)
1(Vo, Vy | 5¢2) 1(Vy Vs | 5,7) 1 (Ve Vy | S5?)

1 (Ve V1 | 5°) 1(Vy, Vs | 57°) 1 (Ve V5 | 55°)

1(Vo, V1 | 55°) 1(Vy, Vs | 5%
1 (Vo Vi | 5¢°) 1(V5 Vs | 51°)
Vo Vs [ 59 \:| Cl-level: thread 0
1 (Vo Vs | 507) l:l Cl-level: thread 1
Fig. 3. Two different granularities of parallelism: edge-level parallelism and

Cl-level parallelism.

gs Cl tests of the same edge V; — V; each time and makes the
decision according to the results. Hence, the CI tests in a group
share the same form of I(V;, V;|S,), 0 < n < gs. Since V; and
V; are common for the whole group, we propose to reuse them
to reduce the memory accesses when traversing the Dataset.
The reduced memory accesses increase as the increase of gs.
However, more redundant CI tests are introduced at the same
time, because all the CI tests in a group are required to be
performed before making the final decision on whether the edge
is required to be processed again. In a special case of gs = 1,
no redundant CI tests are introduced. We carefully examine the
effect of gs and observe that some small gs like 6 or 8 are good
choices in practice.

It is worth noting that multi-thread parallelism is used when
the depth d > 1. In depth d = 0, the conditioning set S = ()
as the size of conditioning sets is equal to d (cf. Algorithm 1,
Line 11). Specifically, for each edge (V;,V;) in G, only one
CI test is required, which is I(V;, V;|0) or simply a marginal
independence test I(V;, V;). In other words, we know in advance
how many CI tests are required in depth zero, which is equal to
n(n — 1)/2, representing the number of edges in the complete
undirected graph G over the node set V', where n represents the
number of nodes. Consequently, the required computations for
depth zero can be simplified. Therefore, the direct edge-level
parallelism is applied to depth zero without the efficiency issue
of load unbalancing.

C. Multi-Process Parallelism

In this subsection, we illustrate the proposed multi-process
parallelism method Fast-BNS-v2, which distributes edge-level
subtasks to processes and performs these subtasks in parallel.
Generally, multi-thread parallelism is more suitable for finer
subtasks, while multi-process parallelism is more suitable for
coarser subtasks. Multi-process parallelism avoids race condi-
tions and increases overall performance, because each process
occupies its memory space and computing resources. To achieve
multi-process parallelism, we must design inter-process commu-
nication techniques due to independent memory spaces. How to
synchronize and exchange data and signals rapidly and precisely
are critical steps in multi-process parallelism. Intuitively, we can

allocate coarse subtasks to processes. Then we divide coarse sub-
tasks into fine subtasks and assign threads to conduct these fine
subtasks. To take advantages of processes and threads, we de-
velop a two-level parallel PC-stable algorithm, applying CI test
level parallelism with multi-threads and edge-level parallelism
with multi-processes. For better utilization of multi-processes,
we design two techniques to further boost the efficiency of
Fast-BNS-v2: i) load balancing mechanism by dynamic work
stealing to reduce CPU idle time, ii) one-side and collective
communication policies to reduce data transfer overhead.

1) Edge-Level Parallelism and CI-Level Parallelism: The
most natural scheme to parallelize the PC-stable algorithm is to
parallelize the processing of different edges inside each depth,
which is a coarse-grained parallelism. The order-independent
property of PC-stable makes it suitable for parallelizing at each
depth. In other words, an edge deletion does not affect the pro-
cessing of other edges at the same depth, and thus the processing
of different edges can be done in parallel. In each depth d, it
parallelizes the CI tests for each edge (i.e., the for-loop in Line
7 of Algorithm 1), dedicating |g—td‘ edges to each thread, where ¢
represents the number of threads or processes and | 4| represents
the number of edges to be processed in depth d. Fig. 3 illustrate
the execution progress of Cl-level parallelism and edge-level
parallelism. The example in the figure contains four edges, and
thus in the case of using two processes, each process has two
threads. Each process is responsible for processing two edges.
Specifically, process 0 is dedicated to edges Fy and Fq, while
FEs and Ej5 are assigned to process 1.

Edge-level can allocate reasonable workloads to processes
and run in multi-machines due to its small communication
overhead. However, different edges have different numbers of CI
tests, which needs to be carefully handled with load balancing
policies. In comparison, CI-level parallelism is load balanced
among threads in shared memory, but allocating a huge number
of Cl tests to multi-machines leads to huge communication over-
head. In Fast-BNS-v2, we combine these two levels, applying
edge-level parallel in multi-process and CI-level in multi-thread,
to generate benefits from these two levels. Table I summarizes
three parallelisms: edge-level, Cl-level, and two-level (combi-
nation of edge-level and Cl-level).

In a natural implementation of Cl-level parallelism, we need
to enumerate all the possible CI tests, totalling to () CI tests.
Then, the coordinator thread needs to distribute these CI tests to
worker threads for evaluation. It requires a mere lift of the finger
to appoint threads to conduct CI tests in shared memory space.
Nevertheless, assigning these CI tests to processes produces
notable communication overhead, because the volume of CI
tests is huge. Inter-process communication, which is designed
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Algorithm 2: Fast-BNS-v2.
1 Input: Node set V
2 Output: Skeleton Graph G
3 Graph G + FormCompletedGraph(V) =V x V
4 Depthd <+ 0
5 Need-remove tag L;; < False for each edge (V;, V)
6
7
8

Let a(V;) represent adjacency nodes of V;
repeat
/l multi-process parallelism
9 parallel for ecach process r do
10 Edge sublist 7 < FetchEdge(G)
11 if 7 € () then

12 break

13 repeat

14 Sublist 77 < FetchCurrEdge(T)/T' € T
15 ClI test pool C <+GenerateCltest(7")

16 //multi-thread parallelism

17 parallel C; = I(V;,V;|S) in C do

18 /I'S is speration set

19 if 1(V;, V;|S) holds then

20 Li; < True

21 Skip CI tests from (V;, V)

22 until 7 is empty

23 allreduce L by bool or operator

24 SIMD-delete (V;,V;) from G if £;; = True

25 Letd=d+1

26 until all edges (V;, V) in G satisfy |a(V;)\{V;}| < d

to exchange data between distributed memory in multi-process
parallelism, is powerless to CI-level data exchange. Therefore,
multi-process parallelism is not suitable at the CI-level.

For multi-process parallelism, edge-level with larger granu-
larity is more suitable in BN structure learning. Algorithm 2
shows the pipeline of our proposed Fast-BNS-v2. Similar to
Algorithm 1, we form a completed graph and set the depth to
0 at first (Line 3 to 4). Here, we create a Boolean tag array
to record edges that need to be removed (Line 5). We check
edges depth by depth until we cannot find enough variables for
separation sets (Line 7 to 26). For each process, it continually
fetches new edge sublists until there are no more new sublists
left (Line 9 to 22). After fetching edge sublist 7, we get a
sublist 77 from 7 and decompose these edges to CI tests (Line
14 to 15). Then we use multi-thread parallelism and Cl-level
parallelism to conduct CI tests, the same as the implementation
in Fast-BNS-v1 (Line 17 to 21). If one CI test holds, we tag
the edge by a need-remove label (Line 20) and skip CI tests
from the same edge (Line 21). After finishing all CI tests at this
depth, we apply a collective communication operation: allre-
duce, to synchronize the need-remove tag between processes
(Line 23) and delete these edges by SIMD edge list deletion
(Line 24).

2) Load Balancing Policies Among Processes: Before judg-
ing an edge, we cannot count how many CI tests should be
done to recognize the existence of the edge. The number of each
edge’s CI tests varies: one in the best case and exponential to
the number of neighbors in the worst case. Therefore, one-time

allocation of work leads to load imbalancing, because the time
needed by a process to test an edge is unpredictable. Our goal
is to schedule processes to obtain approaching execution time
and avoid idle time, improving the utilization of the machine. At
first, we try choosing a proxy function to estimate the number
of CI tests for each edge. Following the worst case O(("')) for
one edge, we allocate these edges to processes that have the
same amount of total combinations. However, this one-time load
balancing policy is inefficient, because of the inaccurate proxy.
Inspired by the dynamic load balancing method—work stealing,
we divide the edge list into 7wy sublists, wy is the size of the
sublists in depth d. Every process owns one sublist at the begin-
ning. Once a process finishes checking a sublist, the unblocking
scheduler provides the process with a new sublist until there are
no more new sublists using one-side communication (mentioned
in Section ITI-C2), while other processes are not interrupted by
the scheduler from the execution. A naive way is to set each
sublist to the same length. According to flow control theory,
we can reduce communication overhead by setting head sublists
longer than bottom sublists, because all the processes have the
same starting time and run the tasks synchronously at the start.
Thus, we reduce synchronization frequency here to decrease
communication costs. When all the processes approach to the
end, shorter sublists can occupy small process time intervals.
However, there is also a lower bound for the length of sublists
to avoid over-communication. To balance the communication
overhead and computation overhead, we need to set the length
of the sublists to a reasonable size. After finishing all sublists in
this depth, we apply allreduce to collect results from different
processes.

3) Process Communication Optimization: The communica-
tion cost for multi-process parallelism has significant impact on
the overall efficiency. Therefore, we propose three techniques
to reduce communication cost. First, after finishing PC-stable
step 1, we take different policies to perform step 2 and step 3.
We select only one process to execute in one machine under
the multi-process setting. In the multi-machine setting, each
machine executes these two steps and obtains results simultane-
ously to avoid communication for results transfer. Second, to
shorten the time consumed by communication in one depth,
we only maintain one integer variable—the start position of
the unchecked edge list. Once a process completes its current
subtask, it fetches the start position and updates the variable by
adding the new sublist’s length. This strategy is implemented by
one-side communication [22] that is an unblocking communica-
tion, decoupling data exchange and task execution. We create a
shared memory window in the main process, which is accessed
for other processes to fetch and update. Fetching new sublists
does not disturb the task running in the main process by one-side
communication. A lock guarantees that only one process can
access the window simultaneously to avoid racing problems.
Third, after conducting CI tests in one depth, we synchronize
results in different processes by the allreduce operation. Each
process maintains a Boolean array to represent the existence
of each edge and apply and operation with arrays from other
processes to merge results of CI tests. To complete this step,
naive implementation collects these arrays from processes first,
then calculates results, and finally sends the result array to
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each process. Allreduce efficiently combines communication
and computation together and has strong scalability that is easy
to extend to multiple machines. There are some fast allreduce
implementations, such as ring-allreduce for small datasets and
tree-allreduce for large datasets. Here we adopt tree-allreduce
that is suitable for the large number of CI tests in our method.

D. Further Enhancing Fast-BNS

We find four issues in existing implementations: [13], [14],
[15]. First, it is inefficient to distribute the CI tests of the edges
with the same endpoints to different threads, as it may cause
unnecessary CI tests. Second, the memory access pattern is
irregular, because the required values of one CI test are not
necessarily stored sequentially. Third, the number of CI tests
is large, which requires much memory to store the indices of the
conditioning sets for all the CI tests. Fourth, updating elements
in the edge list following one-by-one single-point deletions has
low-efficiency, because removing one element from the array
costs linear time, leading to squared complexity in total. These
issues degrade performance in the naive composition of our
proposed method above. Our method requires careful design
optimizations to enhance its efficiency. Here, we aim to tackle
these four issues to further improve the overall efficiency of
Fast-BNS.

1) Grouping CI Tests of Edges With the Same Endpoints: We
view the edges with the same endpoints, such as edges V; — V}
and V; —V;, as the same edge in Fast-BNS-v1, instead of
separating them as in the original PC-stable algorithm, because
it is inefficient to separate the CI tests of two such edges. For
instance, given the edge between V; and V;;, we need to perform
the CI tests conditioning on the variables in adj(G, V;)\{V;}
and adj (G, V;)\{Vi}. However, if we first perform the CI tests
conditioning on the variables in adj(G, V;)\{V;} and the edge
between V; and V; is removed, then the CI tests conditioning on
variables in adj(G,V;)\{V;} are unnecessary. Therefore, we
solve this dependency by grouping the CI tests of the edges
with the same endpoints together to reduce the number of CI
tests to be performed, and thus improve the efficiency. If the
CI tests between V; and V; accept the independence hypothe-
sis when conditioning on S € adj(G, V;)\{V;}, Fast-BNS-v1
does not perform the CI tests conditioning on the variables in
adj(G, V,)\{Vi}.

2) Using a Cache-Friendly Data Storage: A key step of the
algorithm is to compute the contingency table. For example, to
test I(X,Y|{Z1, Z2}), we need to traverse the whole Dataset
and obtain the values of X, Y, Z; and Z, for all the samples.
For a naive two-dimensional Dataset storage where each row
represents one sample and each column represents one feature
(i.e., one variable in BNs), we need to traverse all the rows and
find four values for each row. Since X, Y, Z; and Z5 are not
necessarily stored next to each other, there are many random
memory accesses and hence every memory access can be a cache
miss. Therefore, we instead propose to transpose the data matrix,
i.e., using each row to represent a feature and each column to
represent a sample, which is cache-friendly data storage. For
the previous example, after the first four memory accesses of

the first column, the upcoming iterations access addresses that
are right next to the previously fetched values in the cache. As a
result, Fast-BNS-v1 only has four cache misses at the beginning
and the rest can be served from four cache lines.

3) Generating Conditioning Sets On-the-Fly: In the PC-
stable algorithm, processing an edge may require many CI
tests, depending on the current depth d and the number of
adjacent nodes of its endpoints. In a naive implementation, we
must generate all the CI tests of an edge before processing the
edge. This approach is inefficient because additional memory is
required to store the indices of the conditioning sets of all the CI
tests. Given an edge V; — V}, the selection of its conditioning
sets S = {Sy, S, - - .,8(2,)_1} can be viewed as a combina-

tion problem of choosing ¢ elements from p = |a(V;)\{V;}|
elements at a time (cf. Algorithm 1, Line 11). Fast-BNS-v1
implements a combination function to generate S in lexico-
graphical order [23]. Given p, ¢ and 7, the combination function
of Fast-BNS-v2 is able to directly compute the vector S, without
computing the whole set S. With the help of the combination
function, all the indices of conditioning sets of the CI tests can
be computed on-the-fly and also in parallel. Therefore, the work
pool of Fast-BNS-v1 only contains the edges to be processed
and their processing progress (i.e., 7). No additional memory is
required for storing the indices of the conditioning sets of the
edges.

4) Edge List Deletion With SIMD: In our previous imple-
mentation, Fast-BNS-v1 [16], it deletes elements one by one.
The deletion of one element on the edge list requires linear
complexity. Thus, updating the whole edge list has a O(n?) time
complexity, which is time consuming for the overall algorithm.
The edge list updating at the end of each level is a Boolean mask
operation, which selects elements from the old edge list to build
a new one, referring to a Boolean array with the same length as
the old edge list. Based on this observation, Fast-BNS-v2 creates
anew edge list and then copies the required elements to it. With
the memory allocation in O(n) and copy operation in O(n), the
overall complexity is reduced to O(n), tremendously boosting
the edge list deletion efficiency. Experimental results show that
the execution time of the operation approaches O(1).

E. Performance Analysis

Here, we analyze the theoretical speedups provided by our
optimizations discussed earlier in this Section. The optimiza-
tions to be analyzed include: i) using CI-level parallelism with
the design of the dynamic work pool; ii) grouping the CI tests
of the edges with the same endpoints; iii) using a cache-friendly
data storage. We also discuss the communication overhead in
this section.

1) CI-Level Parallelism and Edge-Level Parallelism: In the
depth d of the graph G, there are || edges to be processed.
Each edge E;, with two endpoints ep; and ep?, has a number
of CI tests. The number of adjacent nodes of the two endpoints,
denoted by a} = |adj(G, ep})| and a? = |adj(G, ep?)|, as well
as the depth d and the results of the CI tests, determines the
number of the CI tests. Specifically, each edge leads to at most
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(aj ) + (a;) CI tests, while if one CI test accepts the indepen-
dence assumption during the processing of one edge, the process
of the edge is terminated in advance (i.e., the remaining CI tests
become unnecessary).

For the case of ¢ threads running in parallel, the edge-level
parallelism assigns @ edges to each thread. Ideally, the @
edges assigned to each of the threads have the same number
of CI tests to be processed. However, in practice, there is load

€4l

unbalanced issue in most cases. For example, 5 out of the ||

al a2 .
edges process all the (%) + (%) Cl tests required for each edge

FE;, while the other % edges only process one CI test as
they accept the independence assumption when handling their
first CI test. In the worst case, the ‘i—dl edges that process all the
required CI tests are assigned to the same thread p. In that case,
the performance of the edge-level parallelism can be severely
affected by this unbalanced workload, since all the threads must
wait for the completion of the slowest thread p. Suppose that
the time for each CI test is Ty, then the required time for the
edge-level parallelism under ¢ threads is

€4l

(@) o

However, the proposed Cl-level parallelism evenly distributes
all the CI tests to each thread with the help of the dynamic work
pool, and hence the required time is

€4l
_Tey

t ;<(C§)+<i>)+w e

Therefore, the speedup provided by the CI-level parallelism with
the design of the dynamic work pool is S¢; = %

In our Fast-BNS-v2, we develop a two-level parallelism
(multi-thread and multi-process levels). In the edge-level, we
equip Fast-BNS-v2 with dynamic work stealing mechanism to
balance the workload among processes, which is similar to the
effect of dynamic work pool as in the multi-thread parallelism.

Hence, the required time is

15

[€al

e (3 (806 ()
o ((8)+ (D)

The largest time lag among processes is the edge with the longest
execution time and this edge is at the last position of the queue.

2) Grouping CI Tests of Edges With the Same Endpoints:
This optimization provides speedup by reducing unnecessary
CI tests. Consider the case of depth d that has || edges to be
processed, for the edge between V; and V;, since edges V; — V;
and V; — V; are viewed separately in the original PC-stable
algorithm, we need to perform the CI tests considering two
sets, i.e., adj(G, V;)\{V;} and adj(G, V;)\{V;}. Therefore, we
need to consider 2|&,]| sets in total for the || edges in depth d.
However, by grouping the CI tests of the edges V; — V; and

V; —V;, if the CI tests accept the independence hypothesis
when considering the set adj(G, V;)\{V;}, Fast-BNS-v2 does
not consider the set adj(G, V;)\{V;}. Suppose pq is the ratio of
edge deletion for depth d. Then, this optimization reduces the
Cl tests by pq|Eq| unnecessary sets. That is, only 2|E4| — palEal
sets need to be considered. Therefore, if we ignore the difference
in the number of CI tests for different sets, the speedup brought
by grouping CI tests is

g 2|&4] 2
IO 2| E| = pal€al 2= pa’

3) Using a Cache-Friendly Data Storage: This optimization
provides speedup by reducing the ratio of cache misses. The
memory accesses of PC-stable mainly come from the accesses
to the Dataset when computing the contingency table. For the
Cltest I(X,Y[{Zi,...,Z4}) in depth d, we need to access the
valuesof X, Y, Z1,..., Z; of the m samples in the Dataset, where
each value is 4 bytes in memory. Suppose that the cache line
size is B bytes. First we consider the access to the % samples.
Regarding the cache-unfriendly data storage, since X, Y, Z,...,
Zq are not necessarily stored next to each other, every memory
access can be a cache miss. Therefore, the required time of
accessing the values of % samples for the cache-unfriendly data
storage is

B
Za

where Tpran represents the access time of main memory
(caused by the cache misses). However, for the cache-friendly
data storage, it only has (d + 2) cache misses for the access of
the first sample, and the rest accesses of the (% — 1) samples
can be served from the (d + 2) cache lines since they access
addresses that are next to the previously fetched values in the
cache. Therefore, the required time of accessing the values of %
samples for the cache-friendly data storage is

Ty =Tpram(d+2)

B
T5 = TDRAM(d + 2) + Tcache(d + 2) (4 - 1) )

where T,.,.1. 1s the cache access time. Since m is often much
greater than B, the access time to the whole Dataset is a multiple
of the access time to the % samples. Therefore, the speedup
provided by the cache-friendly data storage is Scqche = %

4) Overall Speedup: To conclude, the performance improve-
ment of Fast-BNS can be computed as S = Scr - Sgrouping -
Scache- For example, let us consider the case where the number
of threads ¢t = 4 and the depth d = 2. Suppose that there are
|€4] = 1200 edges at the beginning of depth 2 and 480 edges at
the end, and hence, the edge deletion ratio pg = 0.6. Suppose
each edge has the same number of adjacent nodes, which is
the mean degree of the graph (we assume the mean degree is
10). Hence, every a! and a? in (1) and (2) can be replaced
by the mean degree 10. Moreover, the cache line size B is
often 64 bytes. The cache access time Ti,.p. 1S typically less
than the access time of main memory Tprans by a factor
of 5 to 10, and we assume % = 8. Therefore, we can
calculate the ideal speedup provided by Fast-BNS under these
circumstances: Scr = 3.87, Sgrouping = 1.43, Scache = 5.57,
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and hence the speedup S = 30.8. However, this theoretical anal-
ysis only provides a general speedup of Fast-BNS, the situation
in the experiments is often more complicated than the ideal case.
For example, the values of |€4], p4, a} and a? all depend on the
specific problem to be solved, and they are usually unknown
beforehand.

5) Communication Analysis: In this part, we discuss the
communication overhead of the Fast-BNS. At the beginning of
each depth, each process fetches its sublists by one-sided com-
munication. The total number of sublists is 7w, so this one-sided
communication costs rwy bytes. After all the processes finish the
Cl tests within each depth, allreduce is performed to synchronize
the results of CI tests from different processes. The size of edges
indepth dis ||, so our method transfers (r + 1)|E4| bytes in this
depth. Then we conclude that the total communication amount
is >4 (r+1)|Eq] + rwq bytes.

F. Generalization of Our Method

Our proposed method can easily be extended to other machine
learning models. For example, in Convolutional Neural Network
(CNN), we can apply multi-process parallelism between batches
and multi-thread parallelism between samples in one batch. In
addition, load balancing techniques with communication opti-
mization are suitable for multi-process paradigms, such as multi-
GPU training. Grouping samples or improving cache efficiency
benefit tasks which have huge datasets. Generating medium
results on-the-fly helps reduce memory overhead in other tasks.
SIMD array modification can accelerate tensor operations in
deep learning methods.

IV. EXPERIMENTS

We conduct extensive experiments to demonstrate the perfor-
mance of our method and compare the results to state-of-the-art
methods.

A. Experiment Setting

We implemented our Bayesian network structure learning
methods in C++ with OpenMPI and OpenMP libraries and
compared their performance to existing methods. All the single-
machine experiments were conducted on a Linux machine with
two 28-core 2.6 GHz Intel Xeon Gold 6348 CPUs and 768 GB
main memory. For the multi-machine setting, we employ 8 ma-
chines with above environment. Specifically, we compared the
sequential implementations of Fast-BNS-v2 and Fast-BNS-v1
with three different open-source packages including bnlearn [9],
pcalg [10] and tetrad [11]. We also compared Fast-BNS-v2
with the recent multi-threaded implementations in bnlearn [13]
and parallel-PC [15]. Bnlearn, pcalg and parallel-PC are all
R packages, while tetrad is implemented in Java. Experiments
were also conducted to compare Fast-BNS-v1 and Fast-BNS-v2
to show the enhancement in this work, in comparison with
our previous work [16]. There are other parallel works for
PC-stable, such as the work [14], however, that algorithm is
not open-source. Moreover, their experimental results show
that its parallel implementation achieves lower speedup over

TABLE II
BNS FROM WHICH DATASETS USED ARE GENERATED

| Dataset || #nodes | #edges | #samples | max depth |
Alarm [24] 37 46 15000 4
Insurance [25] 27 52 15000 7
Hepar2 [26] 70 123 15000 9
Muninl [27] 186 273 5000 6
Diabetes [28] 413 602 5000 5
Link [29] 724 1125 5000 12
Munin2 [27] 1003 1244 5000 6
Munin3 [27] 1041 1306 5000 6

its sequential implementation compared with the speedup of
the parallel implementation of Fast-BNS-v2 over its sequential
counterpart. Therefore, we did not compare Fast-BNS-v2 with
1t.

Datasets used in our experiments were obtained from eight
benchmark BNs of different sizes listed in Table II, where the
last four Datasets are large-scale BNs. These networks represent
problems from different fields and have been widely used for
comparative purposes in the literature of BN structure learning.
We obtained 5,000 samples of data with no missing values from
each network. Besides, more Datasets were obtained for the first
four networks with 10,000 and 15,000 samples to test the impact
of different sample sizes. We used G? test statistic to perform
the CI tests while setting the significance level « to 0.05 in all
experiments. The accuracy of Fast-BNS-v2 and Fast-BNS-v1 is
exactly the same as the other PC-stable algorithm implementa-
tions because the two methods are accelerated implementations
of the same PC-stable algorithm. Hence, we omit reporting the
results on accuracy comparison.

B. Overall Comparison

In the overall evaluation of Fast-BNS-v2, we compared the
execution time of both sequential and parallel implementations
of Fast-BNS-v2 with the existing implementations on the eight
Datasets with 5000 samples. Specifically, we compared the se-
quential version of Fast-BNS-v2 with the PC-stable implementa-
tions in bnlearn [9], pcalg [10] and tetrad [11] packages; we also
compared the parallel version of Fast-BNS-v2 with the multi-
threaded implementation in bnlearn [13] and parallel-PC [15].
The gs of Fast-BNS-v2 was set to 1 for all the experiments
here. For comparing the parallel implementations, we varied the
number of MPI processes ¢ from 1 to 32 and chose the one with
the shortest execution time. We terminated the experiment if the
execution time exceeded 48 hours with no results obtained.

The experimental results are summarized in Table III. As
seen from the “Speedup” columns of the table, the sequential
implementation of our proposed Fast-BNS-v2 often achieves
two to three orders of magnitude speedup over tetrad and pcalg,
and can be 1.07 to 82 times faster than the sequential version
of bnlearn. The speedups of Fast-BNS-v2 are mainly due to
the careful optimizations, including SIMD edge list deletion,
grouping CI tests of the edges with the same endpoints, using
cache-friendly data storage and generating conditioning sets
on-the-fly. These general optimizations can be applied to both
sequential and parallel implementations.
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TABLE IIT
EXECUTION TIME COMPARISON OF FAST-BNS-V2 WITH OTHER IMPLEMENTATIONS UNDER BOTH SEQUENTIAL AND PARALLEL SETTING
Sequential implementation Parallel implementation
Dataset Execution time (sec) [ Speedup Execution time (sec) Speedup
bnlearn [ tetrad [ pcalg | ours | bnlearn | tetrad [ pcalg || bnlearn | parallel-PC [ ours [ bnlearn [ parallel-PC
Alarm 0.42 5.38 53.8 0.231 1.8 23 230 0.42 154 0.019 24.5 890
Insurance 0.38 13 71.9 0.350 1.07 37 203 0.34 254 0.038 9.2 687
Hepar2 4.03 37.7 209 1.75 2.29 21 76 2.82 158 0.19 15.2 852
Munin1 111 770 2160 18.7 6.0 414 116 16.5 162 1.21 13.6 134
Diabetes 113k > 2 days 14.6k 7.7 >74 7640 54k 743 10.0 72.7
Link > 2 days 30.1k > 27 49.4k > 2 days 862 58.7 > 199
Munin2 27.9k > 2 days 340 82 > 507 2734 > 2 days 9.66 283 > 17800
Munin3 38.7k > 2 days 1027 37.7 > 168 3621 > 2 days 154 235 > 11200
Speedup of Fast-BNS-v2 over each compared method is also reported. ”Ours” represents “Fast-BNS-v2”.
TABLE IV 5 [ — Floefe
COMPARISON OF FAST-BNS-V2 AND FAST-BNS-V1 & \ 8 o N & 00 e e
é“ ®— thread gzuu . —e é 600
3 X T o thread
Seq. version Par. version 3 \ process Fha . ::;eczis 3 00 process
Dataset Exec time (s) Exec time (s) [ speedu g2 T &M gw
FBNGvI | FBNSvZ || FBNGSvI | FBNGv2 | °PecctP e I S — Mool e
Alarm 0.233 0.231 0.017 0.019 1.0 # of threads or processes # of threads or processes # of threads or processes
Insurance 0.353 0.350 0.037 0.038 1.0 (a) Muninl (b) Munin2 (c) Munin3
Hepar2 1.759 1.745 0.19 0.19 1.0
Muninl 18. 18.7 1.7 1.21 1.47 . . . . .
Digggzes 1 4?79k 1 4?6k 120% 743 1.62 Fig. 4. Comparlson of multi-thread parallel%sm (Fast-BNS-v1) and multi-
Link 30.2k 30.1k 4349 862 5.04 process parallelism (Fast-BNS-v2) (Strong scaling).
Munin2 386.9 340.2 293 9.66 30.3
Munin3 1197 1027 751 15.42 48.7

When comparing the parallel implementations, Fast-BNS-v2
is often much faster than parallel-PC, and can run 9.2 to 283
times faster than the parallel bnlearn. It is worth noting that
for some small Datasets, such as Alarm and Insurance, bnlearn
failed to get improvements by the multi-threaded techniques, and
thus the same results were obtained for its sequential and paral-
lel implementations. Another observation is that Fast-BNS-v2
always achieves its shortest execution time when ¢ = 32. More-
over, the execution time of the sequential version of Fast-BNS-
v2 can be reduced by more than 85% using multi-processes. The
experiment on the Link Dataset is the task taking the longest time
to complete. This task ran more than 2 days using the existing
sequential implementations bnlearn, tetrad, pcalg and the par-
allel implementation parallel-PC, while the execution time is
significantly reduced to about 14 minutes in Fast-BNS-v2.

C. Fast-BNS -V2 vs Fast-BNS-V1

To get a better understanding of the improvement of Fast-
BNS-v2, we compare it with Fast-BNS-v1. Table IV shows
the results. In the sequential version comparison, Fast-BNS-v2
brings up to 16% improvement, because of its SIMD edge list
deletion. We observed that Fast-BNS-v1 took about 170 seconds
to modify the edge list array, while Fast-BNS-v2 spent only
0.02 s on this part with the SIMD edge list deletion. In the
parallel version, the boost of Fast-BNS-v2 is insignificant in
tiny Datasets due to the overhead of multi-process initialization.
When the size of Datasets increases, such as Diabetes, Link,
Munin2, and Munin3, Fast-BNS-v2 shortens the execution time
by 5 to 48 times over Fast-BNS-v1, because of our multi-process
parallelism and enhancing techniques including SIMD edge list
deletion, load balancing methods, and communication policies.

To further discover how Fast-BNS-v2 runs faster than Fast-
BNS-v1, we contrast multi-thread parallelism and multi-process
parallelism. In the multi-process version, we set each process to
have only one thread, and ran it on single machine. Fig. 4 shows
Fast-BNS-v2 with multi-process parallelism reducing the exe-
cution time (Strong scaling), which is more noticeable in larger
Datasets. Two versions show similar execution times in Muninl,
while the multi-process version is significantly faster than the
multi-thread version in Munin2 and Munin3. Another observa-
tion from Fig. 4 is that increasing the number of threads is useful
when the number is less than 8, while 32 threads’ performance is
similar to 16 threads’. The reason is that multi-thread maintains a
dynamic thread pool in one process, which contains threads that
share the process’s resources. In comparison, each process holds
its resources and no need to disturb other processes. Therefore,
multi-process parallelism can reduce training time ideally due to
the isolated running environments. For example, the 4 processes’
execution time is about half of the 2 processes’.

To further investigate why Fast-BNS-v2 is faster, we used
perf Linux profiler to obtain the detailed measurements for
Fast-BNS-v1l and Fast-BNS-v2. The results on Munin2 and
Munin3 are shown in Table V. We can observe that both the
parallel and sequential versions of Fast-BNS-v2 increase CPU
utilization and FLOPS more than Fast-BNS-v1. This is because
multi-process parallelism enhances resource utilization, while
multi-thread parallelism in one process has an upper bound for
CPU utilization posed by the OS.

We also measure the elapsed time under different numbers of
samples in Fig. 5 (Weak scaling) in three datasets. In Munin1, the
elapsed time grows linearly, while the growth of time between
15000 and 10000 is large than that between 10000 and 5000 in
Munin2 and Munin3. Larger datasets lead to more elapsed time
for loading data and counting terms for CI tests, which is not
significant in smaller datasets.
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TABLE V

DETAILED COMPARISON OF THE PARALLEL AND SEQUENTIAL VERSIONS OF FAST-BNS-V2 AND FAST-BNS-V1
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Munin2 L1-cache accesses | Ll-cache misses (rate) | LL-cache accesses | LL-cache misses (rate) FLOPS CPU utilization
Fast-BNS-v2-par 1.9 x 1012 9.5 x 100 (5.02%) 4.3 x 107 8.0 x 10% (19.0%) 9.9 x 10° 29.252
Fast-BNS-v1-par 9.9 x 1011 1.9 x 100 (19.1%) 1.1 x 1010 1.8 x 10° (16.4%) 4.1 x 108 11.1
Fast-BNS-v2-seq 9.9 x 1011 1.9 x 1010 (19.1%) 5.8 x 109 2.3 x 108 (4.01%) 5.2 x 107 1
Fast-BNS-v1-seq 9.9 x 10! 1.9 x 1010 (19.1%) 6.8 x 10° 3.4 x 108 (5.11%) 5.1 x 107 1
Munin3 L1-cache accesses | Ll-cache misses (rate) | LL-cache accesses | LL-cache misses (rate) FLOPS CPU utilization
Fast-BNS-v2-par 3.5 x 1012 1.3 x 1011 (3.71%) 8.7 x 109 1.2 x 107 (13.8%) 1.6 x 107 29.6
Fast-BNS-v1-par 2.6 x 1012 5.8 x 1019 (2.22%) 2.9 x 1010 1.4 x 1019 (24.1%) 7.2 x 108 13.2
Fast-BNS-v2-seq 2.3 x 1012 4.1 x 1010 (1.78%) 1.5 x 1010 6.0 x 108 (3.97%) 7.0 x 107 1
Fast-BNS-v1-seq 2.6 x 1012 5.8 x 1019 (2.22%) 2.8 x 100 7.0 x 109 (25.4%) 6.5 x 107 1

“-Seq” and “-par” represent sequential and parallel implementation, respectively.
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D. Load Balancing and Communication of Processes

In this set of experiments, we study the effectiveness of our
proposed load balancing policies, where we allocated equal edge
amounts to each process and used Munin3 as an example. The
results of Fig. 6(a) and (b) show the depth-1 and depth-2 execu-
tion time in the Munin3 Dataset, where depth-1 and depth-2 have
one and two variables for each separation set, respectively. As
we can see from the results, Fast-BNS-v2 without load balancing
optimizations leads to load unbalancing. In depth-1, the fastest
process takes 60 seconds while the slowest costs 180 seconds,
due to the different workload of each edge. Processes need to
synchronize at the end of each level, leading to idle problems.
The execution time of processes converges to about 125 seconds,
after being equipped with the load balancing policies (discussed
in Section III-C). In depth-2, our method reduces 30% execution
time of the slowest process and improves the utilization. Fig. 6(c)
shows the time distribution for the balanced method and the
unbalanced method in different depths. Depth-1 and depth-2
occupy the most elapsed time in the two methods, while the
time of other depths is negligible.

Our load balancing policies have a hyperparameter [ which is
the number of sublists in dynamic work stealing. As the number
of sublists may affect the overall efficiency, here we varied [
to better understand its effect. Fig. 7 illustrate the execution
time with different /. For the Muninl Dataset, 4 or 8 sublists
are enough, while 16 or 32 are more suitable for Munin2 and
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Fig. 9. Communication cost in distributed systems.

Munin3. As we can see from the figure, when [ increases to 128,
higher communication costs decreases the execution efficiency.

Our proposed multi-process parallelism can naturally run on
adistributed environment. Here, we study the scalability of Fast-
BNS-v2, and analyze its communication cost. We measured the
communication costin one-machine and multi-machine settings.
In the one-machine setting, we observe that the communication
cost is shorter than 15 milliseconds as shown in Fig. 8, which
shows the time in Muini2 and Munini3. The results illustrate
that the task is computation intensive and communication costs
a small amount of time in total execution progress. In the multi-
machine settings, we ran Fast-BNS-v2 in 2 to 9 machines, where
each machine has only one process, and inter-process com-
munications are inter-machine communication. Fig. 9 shows
the results. The execution time is reduced as the number of
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machines increases while the communication cost remains low.
We observe that the speedup does not improve linearly with the
growth of processes. This is mainly because: imperfect balanced
workload among the nine machines (even though the imbalance
is not larger than one edge), the overhead of setting up the
computation environment for each process, and not all the steps
being parallelized in our solution.

V. RELATED WORK

Bayesian networks (BNs) are powerful models for repre-
sentation learning and reasoning under uncertainty in artificial
intelligence. BNs have recently attracted much attention within
the research and industry communities. A crucial aspect is
to learn the dependency graph of a BN from data, which is
called structure learning. In this paper, we categorize the related
work on BN structure learning into two groups: score-based
approaches and constraint-based approaches.

Score-based approaches [30], [31], [32], [33] seek the best
DAG according to scoring functions that measure the fitness
of BN structures to the observed data. Widely adopted scores
include BDeu, BIC, and MDL. However, the number of possi-
ble DAGs is super-exponential to the number of variables [4].
Hence, many score-based approaches employ heuristics, like
greedy search or simulated annealing, in an attempt to reduce
the search space. Such approaches can easily get trapped in local
optima [12]. The optimization techniques in this paper focus on
the constraint-based approaches which tend to scale better to
high-dimensional data.

Constraint-based approaches [6], [7], [34] perform structure
learning using a series of statistical tests, such as Chi-square
test, G2 test and mutual information test, to learn the condi-
tional independence relationships among the variables in the
model. The DAG is then built according to these relations as
constraints. In this work, we focus on accelerating PC-stable
algorithm for learning BN structures. Indeed, many common
constraint-based algorithms are similar to or variants of the PC
or PC-stable algorithm [6], [7], such as GES [35] combining PC
and greedy search, MMHC [36] adopting benefits from PC and
GES, IAMB [36] search Markov Blanket from local to global by
Cl tests, and Hiton-PC [37] with heuristic search for fast training.
Unlike score-based approaches, it is generally non-trivial to per-
form algorithmic improvements for constraint-based approaches
using general-purpose optimization theory.

There are some well-known open-source BN libraries which
contain the implementation of the PC-stable algorithm, such
as bnlearn [9], pcalg [10] and tetrad [11]. Meanwhile, since
the recent parallel computing platforms, such as multi-core
CPUs and GPUs, have emerged to efficiently address various
computational machine learning problems [38], [39], [40], there
are several research works that focus on the acceleration of the
PC-stable algorithm using parallel techniques on CPUs [13],
[14], [15]. The key idea is to parallelize the processing of
different edges inside each depth, which is an intuitive idea due
to the order-independent property of the PC-stable algorithm.
However, the edge-level parallelism is load unbalanced, because
the workload of the conditional independence tests for different
edges is highly skewed. This paper improves the efficiency of
the PC-stable algorithm using Cl-level parallelism to boost the

TABLE VI
COMPARISON BETWEEN CPU AND GPU PARALLELISM FOR BN LEARNING

. Branch o Many Parallel
Device prediction Flexibility threads | granularity
CPU v/ v X Two-level
GPU X X 4 Cl-level

applications of the BN structure learning. Parallel techniques
are also applied to Markov Blanket methods [41]. Nowadays,
GPU parallel techniques show a large potential for BN learning
acceleration. gpuPC [42] and cuPC [20] propose GPU-based PC
and PC-stable accelerations. However, GPU struggles to handle
divergence, such as an if-statement, which is an essential part of
CI tests. In addition, GPU is hard to arrange irregular subtask
sizes in GPU and balance the workload among processes or
threads, leading to difficulties for BN learning implementation.

We compare CPU and GPU features for BN learning in
Table VI. CPUs equipped with Branch prediction can better
handle the computation of CI tests. CPUs also have better
flexibility and universality, accommodating sequential, multi-
thread, multi-process, and multi-machine executions. In com-
parison, GPUs exhibit certain limitations in multi-process or
multi-machine execution due to their weaker support for pro-
cess isolation and the inherent complexity of data transfer and
coordination mechanisms between multiple GPUs. Meanwhile,
the number of threads or processors in GPUs is more than that in
CPUs, which is suitable for simpler instructions applied to differ-
ent data. Consequently, CPU parallelism demonstrates distinct
advantages for complex parallel computing scenarios like hybrid
edge-level and CI-level parallelism, while GPU parallelism only
supports Cl-level or finer-grained level parallelism.

VI. CONCLUSION

Bayesian network structure learning has been a popular topic
for causal discovery and reliable machine learning. This paper
proposes a novel parallel and distributed method (named Fast-
BNS) to accelerate the PC-stable algorithm, one of the most
commonly used constraint-based structure learning algorithms.
Past methods only focus on multi-thread parallelism, while Fast-
BNS exploits multi-process and multi-thread parallelism, sup-
porting multi-machines. In the data aspect, CI-level is overfine
for multi-process parallelism, but edge-level parallelism suffers
from the work-unbalanced issues. In Fast-BNS, we developed
load balancing policies to overcome the work-unbalanced prob-
lem, while making use of CI-level parallelism with multi-threads
to further enhance the performance. Our experimental results
have shown that Fast-BNS can be 9 to 235 times faster than
the state-of-the-art implementations. When running in multiple
machines, it saves 80% time of the one-machine implementation
with a moderately low communication overhead.
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