
1

Parallel and Distributed Structured SVM Training
Jiantong Jiang∗†, Zeyi Wen∗1, Zeke Wang†, Bingsheng He‡ and Jian Chen§

†Zhejiang University, ∗The University of Western Australia,
‡National University of Singapore, §South China University of Technology

jiantong.jiang@research.uwa.edu.au, zeyi.wen@uwa.edu.au, wangzeke@zju.edu.cn,
hebs@comp.nus.edu.sg, ellachen@scut.edu.cn

Abstract—Structured Support Vector Machines (structured SVMs) are a fundamental machine learning algorithm, and have solid
theoretical foundation and high effectiveness in applications such as natural language parsing and computer vision. However, training
structured SVMs is very time-consuming, due to the large number of constraints and inferior convergence rates, especially for large
training data sets. The high cost of training structured SVMs has hindered its adoption to new applications. In this paper, we aim to
improve the efficiency of structured SVMs by proposing a parallel and distributed solution (namely FastSSVM) for training structured
SVMs building on top of MPI and OpenMP. FastSSVM exploits a series of optimizations (e.g., optimizations on data storage and
synchronization) to efficiently use the resources of the nodes in a cluster and the cores of the nodes. Moreover, FastSSVM tackles the
large constraint set problem by batch processing and addresses the slow convergence challenge by adapting stop conditions based on
the improvement of each iteration. We theoretically prove that our solution is guaranteed to converge to a global optimum. A
comprehensive experimental study shows that FastSSVM can achieve at least four times speedup over the existing solutions, and in
some cases can achieve two to three orders of magnitude speedup.

Index Terms—Parallel and Distributed Training, Structured Machine Learning, Support Vector Machines.

F

1 INTRODUCTION

A Lthough deep learning, particularly Deep Neural Net-
work (DNN) based techniques, has been offering state-

of-the-art solutions for many problems [1], [2], [3], [4], DNN
based techniques have apparent deficiencies including the
need of huge amount of data and hyper-parameters. Even
worse, theoretical analysis of DNN based techniques is
difficult due to too many factors with almost infinite number
of hyper-parameter configuration combinations. In compar-
ison, structured Support Vector Machines (structured SVMs)
have excellent theoretical foundation [5], and they are much
simpler to use due to much fewer hyper-parameters to be
tuned. Structured SVMs have been providing an important
approach to deal with complex multi-dimensional struc-
tured prediction problems, which have shown high effec-
tiveness in structured prediction problems [6], [7]. In fact,
research work has been using structured SVMs to solve their
problems from natural language parsing [8], [9], computer
vision [10], [11], [12], [13] and biomedical engineering [14],
[15], [16]. These problems cannot be solved by ordinary
SVMs which do not support structured outputs.

However, a key barrier that hinders the wider usage of
structured SVMs is its long training time especially for large
and complex problems. We have conducted experiments on
publicly available data sets with the existing implementa-
tions SVM-Struct from SVMlight [6]. The experimental results
shown in Figure 1 indicate that the training of SVM-Struct
is indeed time-consuming (e.g., 10 hours of training on the
pendigits data set). By using our proposed techniques in this
work, the training time can be dramatically reduced (e.g.,
the training only needs 4 minutes in pendigits).

1 Zeyi Wen is the corresponding author.

0

500

1000

1500

2000

2500

letter MNIST pendigits protein acoustic seismic

Tr
ai

n
in

g
ti

m
e

(s
) SVM-struct Our FastSSVM

33841

Fig. 1: Training time of SVM-Struct and FastSSVM for multi-
class classification tasks on publicly available data sets.

While much research has been conducted on the ac-
celeration of ordinary SVMs (e.g., ThunderSVM [17]), few
research work has been dedicated to accelerating structured
SVMs. This work aims to fill the gap by exploiting parallel
and distributed processing to accelerate the training proce-
dure of structured SVMs. Nevertheless, training structured
SVMs efficiently is challenging due to the following reasons.
First, the training procedure is inherently sequential due
to dependencies between optimization steps, hence paral-
lelization is not trivial. Second, compared with ordinary
SVMs, structured SVMs bear a great burden of communica-
tion due to the relatively large size of constraint information
to be transferred. Third, structured SVM training procedure
may suffer inferior convergence rates, especially for com-
plex problems with a large data set [18].

To overcome the challenges, we present FastSSVM, a par-
allel and distributed structured SVM training solution with
Message Passing Interface (MPI) and OpenMP, with inter-
node and intra-node optimizations. In the distributed multi-
node system level (i.e., inter-node level), we develop a cas-
cade architecture, where smaller optimizations are solved

2

(a) object detection (b) object segmentation

S

VPV

VP

V PP

P

NP

N

Boeing

Boeing is located in Seattle.

Seattle

located

 x

 y

NP

N

is

in

 x

 y

There is no asbestos in our products now.

S

NP

EX

There

.

.

VP

V

is

NP

DT

no asbestos

N

PP RB

P NP

in

our products

PP$ N

(c) syntactic parsing

Fig. 2: Example tasks for structured SVM learning: (a) and
(b) are from PASCAL VOC dataset [20], and (c) is from WSJ
Corpus [21].

independently and the partial results are combined in a
hierarchical fashion to guarantee convergence. We exploit
centralized and local storage of data for efficient communi-
cation given the available resources. In the single node level
(i.e., intra-node level), we develop techniques to efficiently
synchronize the intermediate weights to take advantage
of the computing power of multi-cores. Moreover, we (i)
alleviate the problem of a large number of constraints by
handling the constraints in batches and (ii) mitigate the slow
convergence rate by adapting stop conditions being aware
of the improvement gained by each training iteration. In
summary, our key contributions in this paper are as follows.
• We propose a solution for training structured SVMs

with a cascade architecture to split the data set and
to optimize the subsets independently. We theoretically
prove that our solution is guaranteed to converge to a
global optimum.

• To improve the efficiency, we design a hybrid
MPI+OpenMP solution, namely FastSSVM, for train-
ing structured SVMs in parallel and distributed en-
vironment. To relieve the communication burden and
achieve high efficiency, we develop a series of novel
techniques, including centralized and local storage
of training data and synchronization of intermediate
weights by temporary separation and sharing.

• We propose mechanisms to alleviate inferior conver-
gence rates for the problems with many constraints, so
that FastSSVM can scale to large scale cluster systems.

• We conduct extensive experiments to study the im-
pact of different optimizations and the efficiency of
FastSSVM. Experimental results show that FastSSVM
outperforms the existing solution SVM-Struct [6] and
FSMO [19] by at least four times, and can achieve
three orders of magnitude speedup for some problems,
which demonstrates the effectiveness of our proposed
techniques.

We plan to integrate FastSSVM into ThunderSVM [17]
such that users are able to easily and efficiently leverage
the computing power of a computer cluster when using
FastSSVM to solve their problems.

2 PRELIMINARIES

In this section, we first present details of structured SVMs.
Then we review the cutting-plane [22] algorithm for training
structured SVMs and fixed-threshold sequential minimal
optimization (FSMO) [19] algorithm for solving quadratic
programming (QP) optimization problems.

2.1 Structured SVMs

Structured SVMs [6], [7] are commonly used for structured
learning problems. An input xi ∈ X is attached with an
output yi ∈ Y , where elements in Y are structured objects
such as sequences, strings, trees, or bounding boxes. Given
a training set in the input space X and output space Y ,
the goal of structured SVM training is to learn a discrim-
inant function that minimizes the empirical risk. Example
tasks are common in computer vision, natural language
processing, and many other application domains, as shown
in Figure 2. For instance, for object detection and object seg-
mentation structured prediction tasks, the input are both the
images; after the inference procedure of Structured SVMs,
we can get the structured output that are the bounding
boxes and segmentation masks, respectively.

Formally, the structured SVM problem can be expressed
as a quadratic programming (QP) optimization problem
with many constraints, where a margin re-scaling approach
is proposed for the case of arbitrary loss functions [7].

min
w,ξ

1

2
||w||2 +

C

n

n∑
i=1

ξi (1)

s.t. ∀i, ξi ≥ 0, ∀i,∀ȳ ∈ Y \yi : w · δΨi(xi, ȳ) ≥ ∆(yi, ȳ)− ξi

where w is the weight vector, ξi is the slack variable
to tolerate misclassification on training instance xi, C is
the regularization constant. For ease of presentation, we
define δΨi(xi, ȳ) ≡ Ψ(xi, yi) − Ψ(xi, ȳ) in the above op-
timization problem. Ψ(x, y) is the feature vector extracted
from both the input x and output y, which depends on
the nature of the task and the goal is to learn a func-
tion Fw(x, y) = w · δΨ(x, y). Intuitively, one can think
of Fw(x, y) as a compatibility function that measures how
relevant x and y are. The objective function in (1) is the
conventional regularized risk used in traditional SVMs. The
constraints state that for each training instance (xi, yi), the
score Fw(xi, yi) of the correct structure yi must be greater
than or equal to the score Fw(xi, ȳ) of all incorrect structures
ȳ by a margin ∆(yi, ȳ) minus a slack ξi. This optimization
problem is referred to as the primal problem in the convex
optimization research community [23]. For a new input xp,
the discriminant function Fw(x, y) learned in the above
optimization problem can be used to predict the structured
output yp, which is yp = argmaxȳ∈Y Fw(xp, ȳ).

2.1.1 Working Set Selection
The optimization problem (1) has a large (typically expo-
nential or infinite) number of constraints. The number of
constraints equals the number of all possible ȳ ∈ Y \yi for
all instances of the training set, which is task dependent. For
example, for multi-class classification task, #constraint =
(#class−1)×#instance, while for multi-label classification
task, #constraint = (2#class − 1) × #instance, which
grows at an exponential rate. Therefore, solving the prob-
lem by considering all the constraints at once is extremely
expensive. One idea to efficient solve the problem is to select
some active constraints to construct the working set to build
an approximation to the whole constraint set. Then the sub-
problem can be solved over the working set and ensures
sufficient accuracy. Joachimes et al. proposed a cutting-plane

3

Algorithm 1: The cutting-plane algorithm

1 Input: {(xi, yi)|i = 1, 2, · · · , n}, C , ε
2 Si ← ∅, ξi ← 0 for all i = 1, · · · , n
3 repeat
4 for i = 1, · · · , n do
5 ȳ ← argmaxȳ∈Y{∆(yi, ȳ)−w · δΨi(xi, ȳ)}
6 ξi ← maxȳ∈Si{∆(yi, ȳ)−w · δΨi(xi, ȳ)}
7 if ∆(yi, ȳ)−w · δΨi(xi, ȳ) > ξi + ε then
8 Si ← Si ∪ {ȳ}
9 αS ← solve the sub-problem over S =

⋃
i Si

10 end if
11 end for
12 until no Si has changed during iteration

method [22] which gradually adds constraints during the
training. The key steps of the algorithm is summarized in
Algorithm 1. It maintains a working set S and proceeds by
iteratively alternating between i) finding the most violated
constraint to add to the working set (Line 5 and Line 8) and
ii) recomputing the solution of the sub-problem over the
current working set once a constraint has been added (Line
9). The algorithm terminates when all the constraints satisfy
the optimality condition (Line 12).

2.1.2 The Fixed-Threshold Sequential Minimal Optimiza-
tion (FSMO) Algorithm
For structured SVM learning, one important thing is to
recognize a set of support vectors from working set. Solving
the QP problem is to identify all the support vectors. The
common and more intuitive approach for finding the sup-
port vectors is to represent the primal problem (1) in a dual
form [23]. The QP problem represented in the dual form is
shown in problem (2) below.

min
α
L(α) =

1

2

∑
i,ȳ 6=yi

∑
j,ȳ 6=yj

αi,ȳαj,ȳδΨi(xi, ȳ) · δΨj(xj , ȳ)

−
∑
i,ȳ 6=yi

αi,ȳ∆(yi, ȳ) (2)

s.t. ∀i, 0 ≤
∑
i,ȳ 6=yi

αi,ȳ ≤
C

n
, ∀i, ȳ, αi,ȳ ≥ 0

The objective function is solely dependent on a set of α.
Once the αs are obtained, the other primal variables can be
easily determined. In analogy to traditional SVMs, we refer
to those predicted ȳ with non-zero αi,ȳ as support vectors.
The set of α is called Lagrangian multipliers.

The dual QP problem can be solved by the fixed-
threshold sequential minimal optimization (FSMO) algo-
rithm which is simple and faster than the standard SVM
training algorithms for structured SVM problems as shown
by [19]. The key idea is to adjust the value of one α at a time
until all the αs satisfy the optimality condition. The pseu-
docode of FSMO is given in Algorithm 2. By traversing all
the training instances (xi, ȳ) in working set S , the algorithm
finds the constraint which violates the KKT conditions [24]
shown in Equation 3, and iteratively updates αi,ȳ and w.

In this work, we focus on accelerating FSMO algorithm
for solving the QP problem.

Algorithm 2: FSMO

1 Input: {(xi, yi)|i = 1, 2, · · · , n}, S , αS , C
2 w =

∑
i,ȳ 6=yi

αiȳδΨi(xi, ȳ)

3 repeat
4 for (xi, ȳ) in S do
5 if (xi, ȳ) violates the KKT condition do
6 αiȳ ← αoldiȳ + ∆(yi,ȳ)−w·δΨi(xi,ȳ)

‖δΨi(xi,ȳ)‖2 ,
∑
ȳ 6=yi

∈ [0, Cn]

7 w ← wold + (αiȳ − αoldiȳ)δΨi(xi, ȳ)
8 end if
9 end for

10 until no αiȳ changed during iteration

∆(yi, ȳ)−w · δΨi(xi, ȳ) = 0, if 0 < αiȳ <
C

n

∆(yi, ȳ)−w · δΨi(xi, ȳ) > 0, if αiȳ =
C

n
∆(yi, ȳ)−w · δΨi(xi, ȳ) < 0, if αiȳ = 0

(3)

3 OPTIMIZATION FOR BETTER PARALLELISM

We find two major issues in the existing implementations.
First, the number of constraints is large, it is inefficient to
only add one constrant to the working set at each iteration.
Second, the learning procedure may result in inferior con-
vergence rates, especially for problems with many parame-
ters and constraints. In this section, we aim to optimize the
learning procedure to tackle these two major issues.

3.1 Handling Constraints in Batches

The cutting-plane method builds an approximation to the
constraint set by adding the most violated constraint in
each iteration. However, the naive approach that solving
the sub-QP problem once a constraint is added is inefficient.
To speed up the cutting-plane algorithm, our idea is to
efficiently build a richer approximation in each iteration. In-
stead of adding one constraint in each iteration, we propose
to obtain multiple violated constraints in batches before
solving the sub-QP problem.

To achieve faster convergence, each selected constraint
should violate the optimality condition as much as possible,
while the batch of constraints should be diverse (i.e. the sub-
problem is a good representation of the whole problem).
For instance, if we just add the same constraint multiple
times, the duplicated constraints does not contribute to the
convergence rate. Therefore, we scan all instances within
each epoch and find only one most violated constraint of
each instance to ensure that the constraints being added
at the same iteration belong to different training instances.
Meanwhile, we find that the training time can be reduced
with the increase of batch size in practice. However, if the
batch size is too large, the accuracy is impaired. Since the
total number of constraints is proportional to the number
of training instances in Structured SVM training, we set the
batch size be proportional to the number of instances, i.e.,
batch size = #instances/100.

4

3.2 Training Convergence Improvement

In order to alleviate the problem of slow convergence or
non-convergence, we add stop conditions according to the
change of the dual value in two levels, including the inner
FSMO solver and outer cutting plane training.
Inner FSMO Solver. When FSMO has enough iterations (e.g.,
2000 times), we start to check the dual values between two
adjacent iterations. If the change of dual value is less than
a certain threshold (e.g., 0.1) for several consecutive times
(e.g., 5 times), the iteration of FSMO can be stopped in
advance, even if some αi,ȳ can continue to be updated. We
employ the judgment of the stop criterion only after enough
iterations, so as to avoid the case that the solving procedure
is terminated incorrectly due to the slow optimization at
the beginning of the problem solving. Since FSMO needs to
be called many times, terminating the solving procedure in
advance will hardly affect finding the global optimum.
Outer Cutting-Plane Training. After multiple epochs, some-
times there are new constraints generated, but the change of
the dual values is extremely small. Then it will bring large
computing overhead to continue the iterative procedure,
while the accuracy can hardly be improved. Therefore, we
add a threshold for the change rate of dual value (e.g., 1‰),
so that the training procedure can be terminated in advance.

4 OUR FASTSSVM SOLUTIONS

In this section, we present FastSSVM, a parallel and dis-
tributed structured SVM training solution that exploits an
MPI+OpenMP approach. FastSSVM performs two-level op-
timizations, including distributed multi-node system level
(cf. Section 4.1) and single node level (cf. Section 4.2).

4.1 Distributed Multi-Node System Level Optimizations

We develop a cascade architecture that splits the input data
set and solves them separately with multiple MPI processes.
The partial results are combined and filtered until the global
optimum is reached. The input working set is stored cen-
trally (cf. Section 4.1.1) or locally (cf. Section 4.1.2) to make
use of available resources of the distributed system and
tackle the challenge of high communication cost between
multiple computing nodes. The proof of convergence of the
cascade architecture is provided in Section 4.1.3.

4.1.1 FastSSVM with Centralized Storage

As mentioned in Section 2.1, structured SVM training in-
volves two steps: i) working set selection, and ii) solving
the QP problem using FSMO. Meanwhile, we add another
step of computing the information of each constraint when
it is added to the working set, since constraint information
is fixed for one specific constraint and is reused many times.

We find that solving the QP problem is often the most
expensive part of the training procedure. Therefore, we aim
to parallelize the FSMO algorithm. However, parallelization
is not trivial due to dependencies between the computation
steps. Therefore, we developed a cascade architecture [25],
as shown in Figure 3a, where the optimization problem is
splitted into smaller and independent sub-problems and the
partial solutions are combined in a hierarchical fashion.

P0

Layer 1

Layer 2

Layer 3

Total working set

SV2_L2
SV0_L2

SV3_L1
SV2_L1

SV1_L1
SV0_L1

P0

P0

P2P0

P1 P2 P3

Total working set

SV2_L2
SV0_L2

SV3_L1
SV2_L1

SV1_L1
SV0_L1

P0

P0

P2P0

P1 P2 P3

SV0_L3 SV0_L3

(a) FastSSVM with centralized storage (b) FastSSVM with local storage

Send & receive α
and constraint info

Broadcast α and
constraint info

Scatter α and
constraint info Send & receive α Broadcast α

Fig. 3: Overview of FastSSVM. “SVx Ly” indicates the sup-
port vectors produced by process x in layer y.

In the cascade architecture, the root process P0 splits
the input working set and scatters to all the processes, as
shown in green lines in Figure 3a. Each sub-QP problem
is then solved by one computing process individually. Then
the non-support vectors (i.e., training instances with α value
equal to 0) are eliminated to reduce the computation cost,
and two sets of partial support vectors are combined for the
next layer, as shown in yellow lines. This procedure contin-
ues until only one set of support vectors is left. Often such
a single pass can produce satisfactory accuracy, however,
to reach the global optimum, feedback loops are required.
Intuitively, the instances that are recognized as non-support
vectors and thus are eliminated by local computations can
be added back to the working set in the next feedback loops,
if those instances are support vectors globally. Specifically,
each process of the first layer receives the resulting support
vectors from the last layer, as shown in blue lines, and
combined with the non-support vectors of the original input
vectors to test for convergence. If the combined support
vectors of each process are exactly the same as the input
vectors, it has converged to the global optimum. Otherwise,
the training procedure needs to proceed with another pass.

The main advantage of the cascade architecture is that it
eliminates non-support vectors early from the optimization
procedure. In many cases, there are a large number of non-
support vectors, thus one single process does not have to
compute on the whole working set. Meanwhile, for solving
the sub-QP problem on each process, a naive approach is to
initialize the weights w to zero vector and iteratively find
the solutions. But in the cascade architecture, the weights
w of a process can be initialized to better starting points
according to the αs, when the process receives the combina-
tion of support vectors from the previous layer.

For FastSSVM with centralized storge, the working set
is stored centrally on the root process, and all the other
computing processes do not need to store the entire working
set. In the example shown in Figure 3a, P0 obtains the entire
working set as the input of the FSMO algorithm, while the
memory storage requirement of processes P1, P2 and P3 can
be significantly reduced in many cases. This can be very
suitable for such a scenario where some computing nodes
can only provide computing resources but not memory
resources. However, such implementation introduces more
communication cost. Thus, we propose FastSSVM with local
storage to deal with the communication overhead next.

5

4.1.2 FastSSVM with Local Storage
The efficiency of FastSSVM can be further boosted by opti-
mization on communication. Figure 3a shows the commu-
nication between processes, where both point-to-point (i.e.,
MPI Send and MPI Recv) and collective communication
(i.e., MPI Scatter and MPI Bcast) are included.

During the procedure, both the partial solution α and
the constraint information need to be transferred. Constraint
information includes the margin ∆(yi, ȳ) and the difference
of feature vectors δΨi(xi, ȳ). The main challenge is caused
by δΨi(xi, ȳ). Those vectors are task-dependent and often
have a high dimension. For example, the dimension is
Nc × Nf for the multi-class classification problem, where
Nc represents the number of classes and Nf represents the
number of features. Although they are sparse and we can
compress them into the vectors with 2×Nf dimension, they
still cause expensive overhead for communication, consid-
ering the large amount of constraints. Communication over-
head becomes bottleneck with the increase of parallelism.

To reduce communication overhead, we let all nodes do
the working set selection and compute the information of
constraints iteratively. For FastSSVM with local storage, the
constraint information is stored locally on each process, then
the point-to-point and collective communicating of con-
straint information can be avoided. Hence, only the solution
α, which is relatively small, needs to be transferred between
MPI processes in the cascade architecture, as shown in Fig-
ure 3b. Thus the communication cost is significantly reduced
while the computation cost almost remains the same.

4.1.3 Convergence Analysis
Here, we theoretically analyze that the cascade architecture
is guaranteed to converge to the global optimum.

Let T be a subset of the working set S and L(T)
denotes the dual value over T (cf. Problem 2). Let SV (T)
be the support vectors from T . We have ∀T ⊂ S, L(T) =
L(SV (T)) ≥ L(S). Consider a family F of sets of training
instances, where the set T ∗ ∈ F is the best set in the
family F that achieves the lowest L(T). We have L(F) =
L(T ∗) = min

T ∈F
L(T) ≥ L(S). In what follows, we first define

such a cascade structured SVM architecture that features a
sequence of families and then prove its convergence.

Definition 1. A cascade structured SVM architecture is a
sequence of families of subsets of working set S , denoted as
Fm, which satisfies the following conditions.

1) For all m > 1, a set U ∈ Fm contains all the support
vectors of the best set T ∗Fm−1

∈ Fm−1.
2) For all m, there is a k > m, subject to:

* All the sets U ∈ Fk contains all the support vectors
of the best set in Fk−1.

* The union of all the sets in Fk is equal to S .

Theorem 1. A cascade architecture (Fm) converges to the global
optimum, i.e., ∃m∗, ∀m > m∗, L(Fm) = L(S).

Proof. According to 1) of Definition 1, SV (T ∗Fm−1
) ⊂ U ,

so we have L(T ∗Fm−1
) = L(SV (T ∗Fm−1

)) ≥ L(U), which
means L(Fm−1) = L(T ∗Fm−1

) ≥ L(U) ≥ L(Fm) for all
m > 1. Thus, L(Fm) is monotonically decreasing. This
sequence is bounded by L(S), so it converges to some value

Algorithm 3: FastSSVM with separated weights

1 Input: Sj , αSj , C, t, constraint info
2 N ← t
3 repeat
4 #pragma omp parallel num threads (N)
5 {
6 Slocalj ← split Sj into N parts
7 initialize w according to αSlocal

j

8 repeat
9 for constraint i in Slocalj do

10 check the KKT condition
11 if i violates the KKT condition
12 update αji
13 update w
14 end if
15 end for
16 until no αji changed during iteration
17 }
18 Sj ← remove non-support vectors
19 N ← N/2
20 until N < 1

L∗ ≥ W (S). There is a l > 0 such that for all m > l,
L(Fm) = L∗. According to 2) of Definition 1, there is a
k > l, every set U ∈ Fk+1 contains all the support vectors
of the best set T ∗Fk

∈ Fk, and L(Fk+1) = L(Fk) = L∗. Fol-
lowing the proof in the literature [25], we know L(T ∗Fk

) =
L(∪U∈Fk+1

). Due to that L(∪U∈Fk+1
U) = L(S), we can get

L(Fk) = L(T ∗Fk
) = L(S). Since L(Fm) is monotonically

decreasing, for all m > k, we have L(Fm) = L(S).

4.2 Single Node Level Optimizations
In the single node level, multiple OpenMP threads can
directly employ the proposed cascade architecture (cf. Sec-
tion 4.2.1). We also develop techniques to efficiently syn-
chronize the intermediate weights to fully utilize the shared
memory systems used by OpenMP (cf. Section 4.2.2).

4.2.1 FastSSVM with separated weights
Inside each MPI process, the OpenMP-based multi-threaded
implementation can directly apply to the cascade architec-
ture presented in Section 4.1. The implementation is sum-
marized in pseudo-code in Algorithm 3.

For MPI process j, the partial working set Sj is the input
of all the t OpenMP threads inside the computing node j.
Inside the OpenMP region (Line 5 to 17), the partial working
set Sj is splitted into N parts (Line 6), and each thread
holds a local weight vector w which is initialize according
to the local working set Slocalj (Line 7). Then part of the αs
are solved by each thread and the w is updated iteratively
until no αji changed during iteration (Line 8 to 16). After
that, non-support vectors are removed from Sj and then
we reduce N to go to the next layer (Line 18 and Line
19). According to Section 4.1.3, the cascade structured SVM
architecture can converge to the global optimum.

4.2.2 FastSSVM with shared weights
OpenMP codes typically run on shared memory machines.
In a shared memory machine, global memory can be ac-

6

cessed by all the cores. Information exchanged between
threads uses shared variables. Hence, a more efficient im-
plementation is to maintain a shared weight vector in all the
threads and to read and write it atomically.

Compared with FastSSVM with separated weights,
FastSSVM with shared weights only has one single layer,
which saves the execution time. More specifically, the
OpenMP parallel region of the separated weights version
(Line 5 to 17) is executed log2t times as shown in Algo-
rithm 3, where t represents the number of OpenMP threads.
For FastSSVM with shared weights, the parallel region is
only executed once with a parallel factor t as the outer
loop (Line 3, Line 19 to 20) is eliminated. Since the weight
vector is shared by all the threads for FastSSVM with shared
weights, we initialize the global weight vector outside the
parallel region, instead of initializing the local weight vec-
tor inside the parallel region (Line 7) for FastSSVM with
separated weights. Meanwhile, we define a critical area for
the update of the weight vector (Line 13) using the compiler
directive #pragma omp critical to ensure that only one thread
can read or write the shared weights at the same time.

4.3 Performance Analysis
The FSMO implementation is the core of FastSSVM, and
the cascade architecture used in our FSMO implementation
causes parallelization overhead that grows with the number
of processes p. For example, these cascade architectures can-
not run faster than Ω(logp). Therefore, we mainly analyze
our implementation of FSMO by estimating overhead of the
cascade architecture in this section, and suggest the usage
of multiple nodes to solve the QP problem.

The FSMO algorithm needs to be invoked many times
during the training. Assume that M is the average number
of constraints to be handled in each call. FSMO iteratively
traverses the constraints and updates the corresponding αs
of the constraints, until no α is updated after I iterations.

In the case of single-node implementation, the operation
on the critical path is executedM×D times in each iteration,
where D is the dimension of the difference between feature
vectors δΨi(xi, ȳ). Assuming that the execution of such an
operation needs t seconds, then the total time of I iterations
is Ttotal(1) = I × t×M ×D.

For a L-layer p-node cascade architecture with L =
log2p+ 1, suppose that the ratio of support vectors (SVs) is
k, which means there are k ×M SVs in total in the training
problem. Those SVs are filtered through each layer. Assume
that the first L− 1 layers have the same filtering ratio while
the last layer handles all the SVs. Specifically, each node in
each layer passes SVs with a same ratio of ρ to the next layer,
where ρ = k

1
L−1 . Then, in the i-th layer, p

2i−1 nodes handle
ρi−1×M constraints in parallel, so the computation time of
each node in layer i is:

T compeach (i) = I × t× ρi−1 ×M
p

2i−1

×D (4)

For each node of the first L − 1 layers, the indices and
values of αs of ρi×M

p

2i−1
SVs are passed to the next layer. We

denote the network transmission speed by E bps. Then, the
communication time of each node of layer i (i 6= L) is:

T commeach (i) = I × ρi ×M
p

2i−1

× 96

E
(5)

where 96 is the number of bits needed to transmit an SV
(i.e., 4 bytes for the index of α and 8 bytes for the value of
it). From the above results, we can draw three conclusions.

First, the execution time of the FSMO algorithm increases
as the number of constraints M and the number of features
Nf increase. According to Equation (4), T compeach (i) is propor-
tional to M and D, where the value of D depends on the
task (e.g., D = 2×Nf in our implementation).

Second, according to Equations (4) and (5), we get the
total time of I iterations of the L-layer cascade architecture:

Ttotal(L) =

{
I·M
2L−1 (t ·D · 1−(2ρ)L

1−2ρ
+ ρ · 96

E
· 1−(2ρ)L−1

1−2ρ
), ρ 6= 0.5

I·M
2L−1 (t ·D · L+ 1

2
· 96
E
· (L− 1)), ρ = 0.5

where ρ = k
1

L−1 . If Ttotal(L + 1) − Ttotal(L) < 0, it means
that the execution time is shortened when we increase the
number of nodes p from 2L−1 to 2L.

Third, it is not recommended to increase nodes if k is
large. According to Equation (4), we can get:

T compeach (i+1)−T compeach (i) = I×t×M
p
×D×((2×ρ)i−(2×ρ)i−1)

When ρ > 0.5 (i.e., k > 0.5L−1), T compeach (i+1)−T compeach (i) > 0.
In other words, when the number of SVs is large, the compu-
tation of last layer becomes the bottleneck. More precisely,
if the SV ratio k > 50% for a 2-layer cascade, or k > 25%
for a 3-layer cascade, or k > 12.5% for a 4-layer cascade and
so on, the computation time of the last layer is the longest,
which is T compeach (L) = I × t × k ×M × D = k × Ttotal(1).
Therefore, with the increase of k, T compeach (L) approaches
the total time of the 1-layer cascade Ttotal(1), and extra
communication overhead is also added.

This theoretical analysis provides a general guideline on
multiple nodes. The situation in the experiments is often
more complicated. The values of M , I , D, and k all depends
on the specific problem to be solved, and they are usually
unknown beforehand. In practice, the number of iterations
(i.e., I) for FSMO solver on each node in each layer is
actually different. The fastest node must wait for the slowest
node to finish its iterations. Besides, it is only an ideal case
that each node in each layer holds the same filtering ratio ρ.
After all, the number of the resulting SVs for different nodes
in the same layer is different. It results in different commu-
nication times and directly leads to different problem scales
for different nodes in the subsequent layers. Moreover, the
number of SVs in different layers is often different.

5 EXPERIMENTAL EVALUATION

In this section, we first present our experimental setup (cf.
Section 5.1), then present the main result by comparing
FastSSVM with the state-of-the-art work (cf. Section 5.2).
After that, we compare different OpenMP and MPI im-
plementations of FastSSVM and determine the best ones
(cf. Section 5.3). Finally, we compare the performance of
FastSSVM under different configurations (cf. Section 5.4).

5.1 Experimental Setup
We implemented FastSSVM using hybrid MPI and OpenMP
parallellism in C++ for three kinds of applications, includ-
ing multi-class classification, multi-label classification and
object detection. For comparison, we ran SVM-Struct [6]

7

TABLE 1: Data set information and parameters. “MC” indi-
cates Multi-Class task, “ML” indicates Multi-Label task, and
“OD” indicates Object Detection task. The size of bounding
box for object detection is showed in the “# feature” column.

Data set Task # instance # class # feature C(×1000)
letter MC 15,000 26 16 100

MNIST MC 60,000 10 780 10
pendigits MC 119,904 10 16 10
protein MC 17,766 3 357 10
acoustic MC 78,823 3 50 100
seismic MC 78,823 3 50 100

smallNORB MC 24,300 5 2,048 10
tmc2007 ML 43,038 22 30,438 1,000

digit OD 20,000 10 784 100

that uses the Hildreth and D’Espo optimizer [26] for solving
QP problems and we also implemented the original FSMO
algorithm [19]. Specially, for object detection tasks, we used
the API of SVM-Struct and specialized some functions to
implement our own instantiation. We ran our experiments
on a cluster of eight computing nodes connected by 1Gpbs
Ethernet, each with a quad-core 2.67GHz Intel i7920 CPU
and 8GB RAM. The value ε = 0.1 was used for all the ex-
periments as the stopping criterion (cf. Algorithm 1 Line 7).
We used publicly available data sets letter, MNIST, pendig-
its, protein, SensIT Vehicle (acoustic), SensIT Vehicle (seismic),
smallNORB and siam-competition2007 (tmc2007). Besides, for
object detection task, we created a handwritten digit detection
data set (digit) from the MNIST of handwritten digits [27]
by sampling 20000 images from the original data set and
putting each of the sampled images into a random location
of a 64 * 64 image. The accuracy and training time increase
as the increase of the regularization constant C . We chose
C from 1000, 10000, 100000 and 1000000 for each data
set, so that the selected appropriate C leads to satisfactory
accuracy with reasonable training time. Table 1 summarizes
the information of the data sets and the parameter C we set.

5.2 Overall Effectiveness

In this section, we mainly provide the overall effectiveness
of our FastSSVM. We first compare FastSSVM with the
existing work (cf. Section 5.2.1), then investigate the impact
of different optimizations (cf. Section 5.2.2), and finally
examine the single node efficiency (cf. Section 5.2.3).

5.2.1 Comparison with State-of-the-art Work

We conducted experiments for FastSSVM, SVM-Struct [6]
and FSMO [19], and Table 2 shows the performance com-
parison in terms of training time and accuracy. Detailed pro-
cess of determining the best optimization configuration for
FastSSVM can be found in Sections 5.3 and 5.4. We used the
default OpenMP and MPI implementations, i.e. FastSSVM
with shared weights and local storage, due to their good
efficiency as demonstrated in Section 5.3. We also set the
number of feedback iterations of the cascade architecture to
1 as demonstrated in Section 5.4.2. Different data sets get
the shortest training time under different configurations as
shown in Section 5.4.1. For example, letter gets the shortest
training time when p is 4 and t is 8, while seismic benefits
from p = 8 and t = 8. We set the best configuration of

8 8

162

9 9 12
64

17
5 4

20
81

4 7 9

1138

34

5

1

10

100

1000

10000

let
ter

MN
IST

pe
nd
igi
ts

pro
tei
n

ac
ou
sti
c

sei
sm
ic

sm
all
NO
RB

tm
c2
00
7

dig
it

Sp
ee
du
p

SVM-Struct FSMO

(a)

0

20

40

60

80

1 2 4 8 16 32

Number of nodes

smallNORB
tmc2007
digit

(b)

Fig. 4: Comparsion of training time: (a) shows the speedups
of FastSSVM over existing implementations; (b) shows the
speedups of FastSSVM under different number of comput-
ing nodes over SVM-Struct.

p and t for each data set and the results are shown in the
“FastSSVM-parallel on multiple nodes” column.

Comparison of training time. For ease of comparison, Fig-
ure 4a shows the speedups of FastSSVM over SVM-Struct
and FSMO on all the data sets tested. Generally, FastSSVM
achieves four to 34 times speedup compared with the ex-
isting work, and has up to 162 times speedup compared
with SVM-Struct and even more than 1000 speedup over
FSMO on the smallNORB data set. The speedups are mainly
due to the two-level optimizations for parallel and dis-
tributed training and the techniques of adapted batch size
and training convergence improvement, which are not used
in [6], [19]. More specifically, Figure 4b shows the general
speedups of FastSSVM under different number of com-
puting nodes over the existing work SVM-Struct. Multiple
computing nodes can speedup up the training procedure,
indicating that FastSSVM has good scalability. Detailed ex-
periments on the effect of optimization configurations can
be found in Section 5.4.

Comparison of accuracy. We used accuracy as evaluation
indicators for multi-class problems, F1 score for multi-label
problems. For object detection, we used IoU (i.e., Intersec-
tion over Union)-based indicators. An example is viewed
as a correct example if it has the correct predicted label
and the IoU between the ground-truth and the predicted
bounding box is larger than 0.5. We can observe that all the
implementations have the similar accuracy, indicating that
FastSSVM can achieve higher efficiency while maintaining
the similar accuracy compared with the existing work.

MNIST and pendigits are well-known real-world data
sets and ideal testbeds for new machine learning meth-
ods, and thus have been extensively used to explore the
performance of neural networks and other deep learning
techniques. DropConnect [28] and MIN [29] are state-of-
the-art for MNIST with and without data augmentation
or preprocessing, and obtain the accuracies of 99.79% and
99.76%, respectively; ShapeNet [30] and KerNet [31] are
the most recent work tested on pendigits and obtain the
accuracies of 97.7% and 96.71%, respectively. We observe
that there are some gaps in terms of accuracy between
FastSSVM and state-of-the-art neural network based solu-
tions. However, although it has become non-challenge for
neural network based solutions to achieve high accuracies,
such networks are often big and deep with large model

8

0%

50%

100%

150%
Im

p
ac

t
o

n
 t

ra
in

in
g

ti
m

e Algorithmic opt.
Multi-thread opt.
Multi-node opt.

(a) Individual optimizations

0

20

40

60

80

100

A
ve

ra
ge

 n
o

d
e

ef
fi

ci
en

cy

(b) Average node efficiency

Fig. 5: Impact of the individual optimizations and average
node efficiency.

sizes and a huge number of hyper-parameters, which results
in weeks or months to train them on CPUs, and tuning
hyper-parameters requires even more extra time. Therefore,
such models are often required to be trained on modern
massively parallel GPUs. We have conducted experiments
on MNIST for some small networks, such as LeNet [32], on
the same CPU used in our other experiments. Results show
that even some small networks require more training time
than FastSSVM. Moreover, FastSSVM enjoys a much smaller
model size and much fewer hyper-parameters. For example,
the model size of MNIST is about 60KB, while it requires
200KB even for the relatively small neural network LeNet.

5.2.2 Impact of Individual Optimizations
As we have discussed in Sections 3 and 4, we have some
optimizations for our FastSSVM. Here, we study their im-
pacts on the overall efficiency. The optimizations include
(i) Algorithmic optimizations: include adapted batch size
(cf. Section 3.1) and training convergence improvement (cf.
Section 3.2) to deal with a large number of constraints
and inferior convergence rates; (ii) Multi-thread optimiza-
tion: uses OpenMP to utilize the shared memory system
(cf. Section 4.2); (iii) Multi-node optimization: uses MPI to
efficiently communicate given the available resources (cf.
Section 4.1). To investigate where the speedups of FastSSVM
to FSMO originate from, we first switched off the multi-node
optimization under the “FastSSVM-parallel on multiple
nodes”, and the results under the best configuration of t are
shown in the “FastSSVM-parallel on a single node” column.
Then, we switched off the multi-thread optimization, and
the results are shown in the “FastSSVM-sequential” column.

Figure 5a shows the contribution of each optimization to
the overall speedups. Overall, 25% of the speedup originates
from algorithmic optimizations, 35% from multi-thread op-
timization, and 40% from multi-node optimization.

5.2.3 Single Node Efficiency
For each data set, we further examine the training time of
each single node (i.e., MPI process) under its best configu-
ration of p and t to illustrate the node efficiency. For ease
of comparison and result visualization, we normalize the
total training time to 100 for each data set and compute the
average and standard deviation of the training time on all
the single nodes. The results are shown in Figure 5b. We use
the error bar to show the standard deviation.

0

100

200

300

1 2 4 8

Tr
ai

ni
ng

 ti
m

e
(s

) Separated weights
Shared weights

(a) letter

0
500
1000
1500
2000
2500

1 2 4 8

(b) MNIST

0

500

1000

1500

1 2 4 8

(c) pendigits

0

40

80

120

1 2 4 8

Tr
ai
ni
ng

tim
e
(s
)

(d) protein

0

400

800

1200

1600

1 2 4 8

(e) acoustic

0

400

800

1200

1 2 4 8

(f) seismic

Fig. 6: Comparison of OpenMP-based implementations un-
der different number of OpenMP threads.

In general, the average node efficiency is higher than
70% and the deviation is basically less than 10% on the
data sets tested. In practice, the average node efficiency
cannot achieve 100%, due to a certain deviation of work-
load between different nodes. More specifically, different
nodes have different workloads in the step of solving QP
problem using FSMO, due to the inherent characteristics of
the cascade structured SVM architecture. Taking a 4-node
3-layer cascade architecture as an example (cf. Figure 3),
P0 has to do the computation in all the 3 layers and hence
has the heaviest workload; P2 computes in 2 layers and
has the moderate workload; while P1 and P3 only need
to compute in the first layer and hence have the lightest
workloads. However, the time of the QP solving step often
can be significantly reduced under the best configuration,
and hence such limitation of the cascade architecture in the
QP solving step does not have much impact.

5.3 Determining the Best OpenMP/MPI Implementation
In this section, we aim at determining the best OpenMP
implementation (cf. Section 5.3.1) and the best MPI im-
plementation (cf. Section 5.3.2), which serve as the default
configuration in the following experiments.

5.3.1 OpenMP: Separated Weights VS Shared Weights
Here, we compare the performance of our two OpenMP-
based implementations. The experiments were conducted
on a single node, and the number of OpenMP threads
t ranges from 1 to 8. Figure 6 illustrates the training
time for different t for both OpenMP implementations,
i.e., FastSSVM with separated weights (cf. Section 4.2.1)
and FastSSVM with shared weights (cf. Section 4.2.2). We
observe that the latter always leads to shorter training
time, indicating that we can employ the weight sharing
approach to take more efficient advantage of the shared
memory systems used by OpenMP. On some data sets such
as MNIST and protein, the improvement is more than 4
times. In the following experiments, the default OpenMP
implementation is shared weights due to its good efficiency.

5.3.2 MPI: Centralized Storage VS Local Storage
We compare the performance of our two MPI-based imple-
mentations here. We set the number of OpenMP threads t

9

TABLE 2: Training elapsed time and accuracy of FastSSVM and comparison with existing solutions.

Data set
FastSSVM-parallel
on multiple nodes

FastSSVM-parallel
on a single node FastSSVM-sequential SVM-Struct FSMO

Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy
letter 48.1s 72.20% 59.7s 72.20% 140s 72.12% 372s 69.90% 213s 71.68%

MNIST 144s 92.07% 239s 92.00% 1574s 91.96% 1121s 91.91% 2946s 91.83%
pendigits 208s 90.54% 360s 90.68% 846s 90.60% 33841s 90.88% 16789s 90.79%
protein 21.5s 68.54% 24.3s 68.81% 47.5s 68.81% 201s 68.81% 96s 68.82%
acoustic 233s 67.07% 540s 66.46% 1112s 66.01% 2011s 65.86% 1664s 64.15%
seismic 135s 66.5% 463s 67.03% 836s 66.93% 1681s 66.65% 1245s 64.32%

smallNORB 278s 75.21% 1636s 75.57% 6045s 75.39% 17777s 75.80% 316602s 75.97%
tmc2007 215s 70.65% 340s 70.36% 3144s 68.17% 3565s 63.64% 7256s 68.17%

digit 105523s 64.52% 229877s 66.53% 478596s 67.45% 499189s 66.56% 527474s 69.89%

0

40

80

120

1 2 4 8

Tr
ai

ni
ng

 ti
m

e
(s

) Centralized storage
Local storage

(a) letter

0

200

400

600

1 2 4 8

(b) MNIST

0
100
200
300
400
500

1 2 4 8

(c) pendigits

0
20
40
60
80
100

1 2 4 8

Tr
ai
ni
ng

tim
e
(s
)

(d) protein

0

200

400

600

800

1 2 4 8

(e) acoustic

0

200

400

600

1 2 4 8

(f) seismic

Fig. 7: Comparison of MPI-based implementations under
different number of MPI processes.

to 8 to fully utilize the computing power of each node, and
the number of MPI processes p ranges from 1 to 8. Figure 7
shows the training time for the two MPI implementations
on six of the data sets. We observe that FastSSVM with local
storage always leads to higher efficiency on the data sets
tested, because this implementation leverages more memory
to save communication cost. We have the same observation
on all the data sets tested. Particularly, the training time of
the two implementations is almost the same for the pendigits
data set, as shown in Figure 7c, because the dimensionNf of
pendigits is rather small compared with the other data sets.
As discussed in Section 4.1.2, communication cost is mainly
caused by transferring the vector δΨi(xi, ȳ), whose dimen-
sion is 2×Nf in our implementation. Thus, communication
cost of pendigits in FastSSVM with centralized storage is
relatively small, hence the improvement in FastSSVM with
local storage has a limited effect on the training time. On the
contrary, we can observe a notable difference between the
two MPI implementations for the MNIST and protein data
sets (cf. Figures 7b and 7d), whose Nf is relatively large.

Communication study. We further investigate the effect of
communication cost on FastSSVM with centralized storage.
We varied the number of MPI processes p and the number
of OpenMP threads t. Figure 8 shows the computation and
communication time for varying parameter settings with the
MNIST data set as an example. We observed that the com-
munication overhead increases with the increase of p. When
p = 8 and t = 8, the total training time is 493.9s, while the
communication time occupies 342.5s. Communication time

0

500

1000

1500

2000

2500

p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8 p=1 p=2 p=4 p=8

Tr
ai

n
in

g
ti

m
e

(s
)

Computation

Communication

t=1 t=2 t=4 t=8

Fig. 8: Computation and communication time of FastSSVM
with centralized storage and shared weights on MNIST.

accounts for more than half of the total time, becoming the
bottleneck of the whole training procedure. Most of the com-
munication cost is due to transferring δΨi(xi, ȳ) between
adjacent layers, as shown in Figure 3a. The other data sets
also have similar trends. When p reaches 8, there is usually a
non-negligible communication overhead. Thus, some of the
data sets tested achieve their shortest training time when
p = 1 for the centralized storage version. Therefore, we
develop FastSSVM with local storage to eliminate the com-
munication of δΨi(xi, ȳ), which reduces the communication
cost by over 90% and shortens the whole training time. For
example, in the case of p = 8 and t = 8 for MNIST, the
communication time of the FastSSVM with local storage
is less than 1s. Therefore, compared with FastSSVM with
centralized storage, FastSSVM with local storage reduces
more than 50% of the training time of MNIST.

5.4 Effect of Optimization Configurations

In this section, we first extensively compare the train-
ing time under different parallel granularity and find the
shortest training time that FastSSVM can achieve (cf. Sec-
tion 5.4.1). Then, we examine the effect of feedback iterations
of the cascade architecture on the convergence behavior and
training time (cf. Section 5.4.2).

5.4.1 Effect of Parallel Granularity
For each data set, we conducted experiments for FastSSVM
with varying number of MPI processes p and OpenMP
threads t. We used the FastSSVM with local storage and
shared weights, which achieves the best efficiency. Consid-
ering the problem scales, we extend p from eight to 32 for
experiments on the smallNORB, tmc2007 and digit data sets1,

1. Since the original cluster only has eight computing nodes, we ran
experiments on these three data sets on Oracle Cloud Infrastructure.
We created 32 computing instances, each with a 8-core 2.00GHz Intel
Xeon Platinum 8167M CPU.

10

0
20
40
60
80

100
120

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

Tr
ai

ni
ng

tim
e

(m
in

)

the shortest time

t=8t=4t=2t=1

(a) smallNORB

0
10
20
30
40
50
60

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

Tr
ai

ni
ng

tim
e

(m
in

)

t=1 t=2 t=4 t=8

the shortest time

(b) tmc2007

0
20
40
60
80

100
120
140

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

p=1
p=2

p=8
p=16

p=32
p=1

p=2
p=8

p=16
p=32

Tr
ai

ni
ng

tim
e

(h
)

t=1 t=2 t=4 t=8

the shortest time

(c) digit

Fig. 9: Training time on different parallel granularity for
FastSSVM with local storage and shared weights.

while eight computing nodes are enough for other data sets.
Figure 9 illustrates the training time for varying p and t on
these three data sets. The other data sets also have similar
trends. We have the two key findings described below.

Varying number of OpenMP threads. Multiple OpenMP
threads can reduce the training time in most of the cases, in-
dicating our techniques to take advantage of the computing
power of multi-cores. In particular, when t increases from
1 to 2, the training time is significantly reduced; when t
continues to increase to 4 or 8, the training time tends to
decrease slowly and gradually stabilize. In our experiments,
six out of nine data sets achieve the shortest training time
when t reaches 8. The exceptions include the tmc2007,
pendigits and acoustic data sets which achieve the shortest
training time when t = 4. In the case of the three data sets,
the training time is similar when t = 4 and t = 8.

Varying number of MPI processes. An appropriate number
of MPI processes can reduce the training time, indicating
that FastSSVM can be efficiently scaled to multiple comput-
ing nodes. Figure 9 shows that the three data sets achieve
the shortest training time when p = 32; other data sets
also achieve the shortest training time when p reaches 4
or 8. In particular, when the number of MPI processes p
increases from 1 to 2, the training time increases in some
cases. One reason is that in the two-layer cascade structured
SVM architecture, the procedure of non-support vector elim-
ination is only performed twice; when p reaches 4 and 8, this
procedure is performed 6 times and 14 times, respectively,
thus we can usually obtain a shorter training time. With the
increase of p, the training time tends to gradually stabilize,
because the main limitation of the cascade architecture is the

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

1 2 3 4 5

Ac
cu

ra
cy

 (%
)

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of feedback iterations

(a) pendigits

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

1 2 3 4 5

Ac
cu

ra
cy

 (%
)

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of feedback iterations

(b) protein

Fig. 10: Accuracy and training time over # of feedback iter-
ations of FastSSVM with local storage and shared weights.

last layer that consists of one single sub-QP optimization
procedure and its size has a lower bound given by the
number of support vectors.

5.4.2 Effect of Feedback Iterations
We examine the effect of feedback iterations of the cascade
structured SVM architecture on the convergence behavior
and execution time. We set the best configuration of p and
t for each data set and the maximum number of feedback
iterationsNm varies from one to five. We use the accuracy to
show the final loss of differentNm. Figure 10 uses two exam-
ple data sets to show the accuracy and training time trend
for different number of iterations of the cascade architecture.
The implementation we used is FastSSVM with local storage
and shared weights. We observe that with the increase of
Nm, the training time increases in most of the cases, while
the accuracy maintains similar. The exceptions are protein
and seismic data sets, where the training time does not
increase monotonically with Nm. The main reason is that as
Nm increases, the better convergence leads to a decrease in
the number of epochs (where an epoch represents one com-
plete pass through the training data set). Taking protein (cf.
Figures 10b) as an example, when the number of feedback
iteration Nm = 1, the training procedure spends 8 epochs;
when Nm reaches 2, it only takes 7 epochs for the training
procedure, reducing the total training time to some extent.
In general, practically a single pass through the cascade
architecture can produce sufficient accuracy. Therefore, we
serve one iteration without feedback loops as the default
configuration. As one iteration in the cascade architecture is
computationally expensive, our solution tends to be optimal
because the minimal number of iteration is needed. This
provides a relatively simple way for solving problems.

6 RELATED WORK

This study mainly focuses on improving the efficiency of
a machine learning algorithm: structured SVMs. Structured
SVM generalizes the traditional SVM to new formulations
that has structured outputs, thus can be used to solve
structured prediction tasks in a number of areas. In what
follows, we categorize the most relevant related work into
three categories: the studies dedicated to training SVMs,
the studies dedicated to training structured SVMs, and the
studies dedicated to solving structured prediction problems
in general.

Training SVMs. The SMO algorithm [33] was proposed
in 1998, which is a simple but efficient solution, and hence

11

it is used in LibSVM [34], WEKA and ThunderSVM [17].
Other studies [35], [36], [37] in parallel or distributed SVM
training have been proposed for improving the efficiency
of SVMs. Catanzaro et al. [38] first introduced GPUs for
SVM training. Wen et al. [39], [40] proposed GPU based
SVMs with precomputing the whole kernel matrix which is
stored in high-speed storage (e.g., SSDs). Another study [41]
further improves the algorithms by avoiding storage of the
whole kernel matrix. However, these studies are to optimize
ordinary SVMs which aim to solve binary classification and
regression problems. Those approaches are not applicable to
complex structured output problems.

Training structured SVMs. Some approaches [42], [43],
[44] have been proposed for efficient structured SVM learn-
ing. For example, Balamurugan et al. [44] proposed SDM,
which traverses the training data set sequentially and op-
timizes the dual variable corresponding to one instance
at a time. Chang et al. [45] proposed a parallel learning
algorithm DEMI-DCD. It decouples the model update steps
from the inference steps during learning. However, it solves
the inference problems in parallel while using one thread
for learning. This approach does not deal with the large
number of constraints and may be slow for large data
sets. Since 2006, the community has been overwhelmed by
deep learning, particularly DNN based techniques. Little
research effort has been dedicated to traditional machine
learning. Structured SVMs provide approaches to solve
complex problems in many domains. This work focuses on
improve the efficiency of structured SVM training to boost
the applications of structured SVMs.

Solving structured prediction problems. Various approaches
have been proposed for solving structured prediction tasks.
Like structured SVMs, some approaches are the extension
of the standard classification methods [46]. And some meth-
ods are the integration with deep learning [47]. There are
also some search based methods for learning structured
output models. Those methods learn different forms of
knowledge, including greedy policies [48], heuristic and cost
functions [49], coarse-to-fine knowledge [50], and so on. This
work aims to specifically improve the training efficiency of
structured SVMs.

7 CONCLUSION AND FUTURE WORK

In this paper, we have developed an efficient solution for
structured SVM training and elaborated the significance of
accelerating the training procedure of structured SVMs. The
main challenges of developing a fast solution for training
structured SVMs include (i) a large number of constraints
for the QP problem, (ii) inferior convergence rates for large
and complex structured problems, and (iii) high communi-
cation cost to transfer intermediate results on a distributed
multi-core system. FastSSVM leverages a series of tech-
niques to alleviate the challenges and achieve high effi-
ciency, including adapted batch size, training convergence
improvement, local storage of constraint information, and
sharing intermediate weights. Our experiments on publicly
available data sets have shown that FastSSVM outperforms
the existing solutions by at least four times, and by two to
three orders of magnitude in some cases, indicating the ef-
fectiveness of our solution on distributed computer systems.

This work can potentially boost the popularity of structured
SVMs—a fundamental machine learning algorithm.

The total training time of FastSSVM can be further
reduced by carefully optimizing the batch size in working
set selection, and we consider this direction as our future
work. Moreover, FastSSVM spends much time on traversing
all possible constraints. We will further investigate effective
approximation methods for improving FastSSVM on large
and complex problems.

ACKNOWLEDGEMENT

This work is supported by the National Key R&D Program
of China (Grant No. 2020AAA0103800), a MoE AcRF Tier 1
grant (T1 251RES1824) in Singapore, the National Natural
Science Foundation of China (Grant No. 62072186), and
the Guangdong Basic and Applied Basic Research Foun-
dation (Grant No. 2019B1515130001). This research is also
supported by Oracle for Research, Australia.

REFERENCES

[1] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz,
and D. Terzopoulos, “Image segmentation using deep learning: A
survey,” PAMI, 2021.

[2] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” PAMI, 2020.

[3] S. Sivapatham, R. Ramadoss, A. Kar, and B. Majhi, “Monau-
ral speech separation using ga-dnn integration scheme,” Applied
Acoustics, vol. 160, p. 107140, 2020.

[4] S. Sivapatham, A. Kar, and R. Ramadoss, “Performance analysis
of various training targets for improving speech quality and
intelligibility,” Applied Acoustics, vol. 175, p. 107817, 2021.

[5] M. E. Mavroforakis and S. Theodoridis, “A geometric approach to
support vector machine (svm) classification,” IEEE transactions on
neural networks, vol. 17, no. 3, pp. 671–682, 2006.

[6] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support
vector machine learning for interdependent and structured output
spaces,” in ICML, p. 104, 2004.

[7] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output vari-
ables,” JMLR, vol. 6, no. Sep, pp. 1453–1484, 2005.

[8] M. Le Nguyen, A. Shimazu, and X.-H. Phan, “Semantic parsing
with structured svm ensemble classification models,” in COL-
ING/ACL 2006 Main Conference Poster Sessions, pp. 619–626, 2006.

[9] M. K. Sharma and V. S. Dhaka, “Segmentation of handwritten
words using structured support vector machine,” PAA, pp. 1–13,
2019.

[10] S. Nowozin and C. H. Lampert, “Structured learning and pre-
diction in computer vision,” Foundations and Trends® in Computer
Graphics and Vision, vol. 6, no. 3–4, pp. 185–365, 2011.

[11] S. Branson, O. Beijbom, and S. Belongie, “Efficient large-scale
structured learning,” in CVPR, pp. 1806–1813, 2013.

[12] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks,
and P. H. Torr, “Struck: Structured output tracking with kernels,”
PAMI, vol. 38, no. 10, pp. 2096–2109, 2015.

[13] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang, “Object
tracking via dual linear structured svm and explicit feature map,”
in CVPR, pp. 4266–4274, 2016.

[14] D. Li, Y. Ju, and Q. Zou, “Protein folds prediction with hierarchical
structured svm,” Current Proteomics, vol. 13, no. 2, pp. 79–85, 2016.

[15] W. Lin, D. Ji, and Y. Lu, “Disorder recognition in clinical texts using
multi-label structured svm,” BMC bioinformatics, vol. 18, no. 1,
p. 75, 2017.

[16] Y. Zhu, X. Zhu, M. Kim, D. Shen, and G. Wu, “Early diagnosis
of alzheimer’s disease by joint feature selection and classification
on temporally structured support vector machine,” in MICCAI,
pp. 264–272, Springer, 2016.

[17] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “Thundersvm: A fast svm
library on gpus and cpus,” JMLR, vol. 19, no. 1, pp. 797–801, 2018.

[18] C.-p. Lee, K.-W. Chang, S. Upadhyay, and D. Roth, “Distributed
training of structured svm,” arXiv preprint arXiv:1506.02620, 2015.

12

[19] C. Lee and M.-G. Jang, “Fast training of structured svm using
fixed-threshold sequential minimal optimization,” ETRI journal,
vol. 31, no. 2, pp. 121–128, 2009.

[20] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The pascal visual object classes (voc) challenge,” IJCV,
vol. 88, no. 2, pp. 303–338, 2010.

[21] E. Charniak, B. D, N. Ge, K. Hall, and M. Johnson, “Bllip 1987-
89 wsj corpus release 1 ldc2000t43,” Philadelphia: Linguistic Data
Consortium, 2000.

[22] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural svms,” Machine learning, vol. 77, no. 1, pp. 27–59, 2009.

[23] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[24] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[25] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik,
“Parallel support vector machines: The cascade svm,” in NIPS,
pp. 521–528, 2005.

[26] I. N. Bronshtein and K. A. Semendyayev, Handbook of mathematics.
Springer Science & Business Media, 2013.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[28] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regulariza-
tion of neural networks using dropconnect,” in ICML, pp. 1058–
1066, PMLR, 2013.

[29] J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout network in
network,” arXiv preprint arXiv:1511.02583, 2015.

[30] G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. Wong,
“Shapenet: A shapelet-neural network approach for multivariate
time series classification,” in AAAI, 2021.

[31] I. Lauriola, C. Gallicchio, and F. Aiolli, “Enhancing deep neu-
ral networks via multiple kernel learning,” Pattern Recognition,
vol. 101, p. 107194, 2020.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[33] J. Platt, “Sequential minimal optimization: A fast algorithm for
training support vector machines,” 1998.

[34] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM TIST, vol. 2, pp. 27:1–27:27, 2011.

[35] J.-P. Zhang, Z.-W. Li, and J. Yang, “A parallel svm training algo-
rithm on large-scale classification problems,” in International Conf.
on Machine Learning and Cybernetics, vol. 3, pp. 1637–1641, 2005.

[36] F. Ö. Çatak and M. E. Balaban, “A mapreduce-based distributed
svm algorithm for binary classification,” Turkish Journal of Electrical
Engineering & Computer Sciences, vol. 24, no. 3, pp. 863–873, 2016.

[37] A. Navia-Vázquez, D. Gutierrez-Gonzalez, E. Parrado-Hernández,
and J. Navarro-Abellan, “Distributed support vector machines,”
IEEE Transactions on Neural Networks, vol. 17, no. 4, p. 1091, 2006.

[38] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast Support Vector
Machine training and classification on graphics processors,” in
ICML, pp. 104–111, 2008.

[39] Z. Wen, R. Zhang, K. Ramamohanarao, J. Qi, and K. Taylor,
“MASCOT: fast and highly scalable SVM cross-validation using
GPUs and SSDs,” in ICDM, pp. 580–589, 2014.

[40] Z. Wen, R. Zhang, K. Ramamohanarao, and L. Yang, “Scalable
and fast SVM regression using modern hardware,” WWW, vol. 21,
no. 2, pp. 261–287, 2018.

[41] Z. Wen, J. Shi, B. He, J. Chen, and Y. Chen, “Efficient multi-class
probabilistic svms on gpus,” TKDE, vol. 31, no. 9, pp. 1693–1706,
2018.

[42] T. Finley and T. Joachims, “Training structural svms when exact
inference is intractable,” in ICML, pp. 304–311, 2008.

[43] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
coordinate frank-wolfe optimization for structural svms,” in
ICML, pp. 53–61, 2013.

[44] P. Balamurugan, S. Shevade, S. Sundararajan, and S. S. Keerthi, “A
sequential dual method for structural SVMs,” in SDM, pp. 223–
234, 2011.

[45] K.-W. Chang, V. Srikumar, and D. Roth, “Multi-core structural svm
training,” in ECML/PKDD, pp. 401–416, Springer, 2013.

[46] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” 2001.

[47] D. Belanger, B. Yang, and A. McCallum, “End-to-end learn-
ing for structured prediction energy networks,” arXiv preprint
arXiv:1703.05667, 2017.

[48] K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daume, and
J. Langford, “Learning to search better than your teacher,” in
ICML, pp. 2058–2066, 2015.

[49] J. R. Doppa, A. Fern, and P. Tadepalli, “Hc-search: A learning
framework for search-based structured prediction,” Journal of Ar-
tificial Intelligence Research, vol. 50, pp. 369–407, 2014.

[50] D. Weiss and B. Taskar, “Structured prediction cascades,” in Inter-
national Conference on Artificial Intelligence and Statistics, pp. 916–
923, 2010.

Jiantong Jiang is currently a PhD student at
The University of Western Australia, after receiv-
ing a Master’s degree from Northeastern Univer-
sity in China. Before commencing her PhD study,
she was a Research Assistant at School of Soft-
ware Engineering, Zhejiang University, China.
Her research interests include high-performance
computing and machine learning.

Zeyi Wen is a Lecturer at The University of
Western Australia (UWA). Before joining UWA,
Zeyi worked as a Research Fellow in National
University of Singapore from 2017 and 2019,
after receiving his PhD degree from and working
as a Research Fellow at The University of Mel-
bourne. Zeyi’s areas of research include parallel
computing, machine learning and data mining.

Zeke Wang received his Ph.D. degree from Zhe-
jiang University, China in 2011. He is a Research
Professor at Collaborative Innovation Center of
Artificial Intelligence, Department of Computer
Science, Zhejiang University, China. His current
research interests mainly focus on building ma-
chine learning systems using FPGAs.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science in Hong Kong University of
Science and Technology (2003-2008). He is an
Associate Professor in School of Computing of
National University of Singapore. His research
interests are high performance computing, dis-
tributed and parallel systems, and database sys-
tems.

Jian Chen is currently a Professor of the School
of Software Engineering at South China Univer-
sity of Technology where she started as an As-
sistant Professor in 2005. She received her B.S.
and Ph.D. degrees, both in Computer Science,
from Sun Yat-Sen University, China, in 2000 and
2005 respectively. Her research interests can be
summarized as developing effective and efficient
data analysis techniques for complex data and
the related applications.

