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Faster-BNI: Fast Parallel Exact Inference on
Bayesian Networks

Jiantong Jiang, Zeyi Wen, Atif Mansoor, and Ajmal Mian

Abstract—Bayesian networks (BNs) have recently attracted more attention, because they are interpretable machine learning models
and enable a direct representation of causal relations between variables. However, exact inference on BNs is time-consuming,
especially for complex problems, which hinders the widespread adoption of BNs. To improve the efficiency, we propose a fast BN exact
inference named Faster-BNI on multi-core CPUs. Faster-BNI enhances the efficiency of a well-known BN exact inference algorithm,
namely the junction tree algorithm, through hybrid parallelism that tightly integrates coarse- and fine-grained parallelism. Moreover, we
identify that the bottleneck of BN exact inference methods lies in recursively updating the potential tables of the network. To reduce the
table update cost, Faster-BNI employs novel optimizations, including the reduction of potential tables and re-organizing the potential
table storage, to avoid unnecessary memory consumption and simplify potential table operations. Comprehensive experiments on
real-world BNs show that the sequential version of Faster-BNI outperforms existing sequential implementation by 9 to 22 times, and the
parallel version of Faster-BNI achieves up to 11 times faster inference than its parallel counterparts. Faster-BNI source code is freely
available at https://github.com/jjiantong/FastPGM.

Index Terms—Bayesian Networks, Exact Inference, Junction Tree Algorithm.

✦

1 INTRODUCTION

BAYESIAN networks (BNs) [1] are probabilistic graphical
models that use directed acyclic graphs (DAGs) to

compactly represent a set of random variables and their con-
ditional dependencies. The graphical nature of BNs makes
them suitable for a wide range of applications, including
fault diagnosis, healthcare, environmental modeling and
image analysis [2], [3], [4], [5]. BNs have also attracted
much research attention with the recent growing demand
for interpretable machine learning models [6], [7].

One crucial aspect of building BNs is to use Bayesian
models for inference, which is to calculate the conditional
probability of certain query variables, given some values of
other variables called evidence of the BN. Figure 1a shows
the network structure of an example “Asia” BN with eight
variables. One may have interest in whether a patient has
tuberculosis (τ ) and bronchitis (β), given the observations
that the patient has dyspnea (δ = 1) and is a smoker (σ = 1).
In this example, the query variables include τ and β and
the evidence is {δ = 1, σ = 1}. Inference on BNs can be
exact or approximate and both are proven to be NP-hard [8],
[9]. Approximate inference often takes less time than exact
inference at the cost of accuracy. However, with the demand
for the high precision in many applications, simulation
methods in approximate inference algorithms become more
expensive, and the advantages of approximation fade away.
Hence, exact inference becomes increasingly essential [10].

One of the most prominent BN exact inference algo-
rithms is the junction tree (JT) algorithm [11]. It is imple-
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Fig. 1: The example “Asia” BN. (a) The underlying DAG of
the BN and (b) the corresponding junction tree generated by
the BN. Cliques are in blue, separators are in red, and the
double circle indicates the root of the tree.

mented in various mainstream BN libraries [12], [13], [14],
and many variants are also based on the improved versions
of the JT algorithm [15], [16], [17], [18], [19]. The main steps
of JT are as follows. It first converts a BN into a secondary
structure called junction tree, as shown in Figure 1b, where
each node (called clique) and edge (called separator) in the
junction tree contains a subset of random variables and
maintains a potential table over the random variables. It
then passes messages (i.e., functions over variables) along
the tree structure and updates all the potential tables. The
conditional probabilities of all the variables in the BN can be
determined once the potential table updating is completed.
The inference can be easily achieved with the conditional
probabilities of all the variables.

However, the computational complexity of the JT algo-
rithm increases dramatically with the clique sizes (i.e., the
potential table sizes of the cliques), which hinders the use of
BNs in large or complex problems where timely inference is
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required. There are two main types of approaches to accel-
erate the JT algorithm on multi-core CPUs. The first type of
approaches uses coarse-grained inter-clique parallelism that
parallelizes the message passing of different cliques [10],
[20], [21], [22]. However, inter-clique parallelism is load
unbalanced, because the workloads for various cliques are
highly different. Some approaches in this category utilize
pointer jumping techniques which introduce extra overhead
caused by the rerooting [20], [21] or merging operation [22].
The second type is fine-grained intra-clique parallelism
that parallelizes the potential table operations inside each
clique [23], [24]. However, this approach has efficiency
issues from the large parallelization overhead since the
table operations are invoked frequently. Moreover, inter-
clique parallelism exhibits limited performance for the trees
with a small number of cliques, and intra-clique parallelism
has efficiency issues on the trees with many small cliques.
Therefore, both of them can only be more efficient under
certain junction tree structures.

To address the efficiency issues, we propose Faster-BNI,
a fast BN inference solution with hybrid inter- and intra-
clique parallelism. At the inter-clique level, we develop
a junction tree traversal method to exploit parallelization
opportunities across the tree structures and a root selection
strategy to construct a more balanced tree structure. At the
intra-clique level, we parallelize three dominant potential
table operations including potential table marginalization,
extension and reduction. Moreover, we further optimize
Faster-BNI by (i) reducing potential tables to avoid unnec-
essary potential table operations and (ii) re-organizing the
potential table storage to save memory consumption and
simplify the potential table computations. To summarize,
the main contributions of this paper are as follow:

• We propose Faster-BNI that accelerates the BN exact
inference on multi-core CPUs. Faster-BNI uses a hybrid
inter- and intra-clique parallelism, which solves the
efficiency issues in the existing implementations and
suits various network structures.

• We propose new techniques to further enhance Faster-
BNI. First, we propose to reduce the potential tables
when loading evidence to avoid subsequent unneces-
sary potential table operations. Second, we carefully re-
organize the potential table to reduce memory usage
and simplify the potential table computations in the
message passing procedure.

• We conduct extensive experiments to study the effec-
tiveness of Faster-BNI and the impact of the proposed
optimizations. Experimental results show that Faster-
BNI outperforms existing works by up to 22 times.
The practical parallelization speedups of Faster-BNI
approach the theoretical speedups.

This paper is an extension of our conference paper for
Fast-BNI [25]. The major differences from [25] are summa-
rized in the following three aspects. Firstly, we elaborate on
the technical details of our proposed hybrid parallelism and
provide a detailed analysis of its advantages over previous
parallelization schemes (cf. Section 3.2), which were not
provided in our previous work. Secondly, we propose two
new optimizations (cf. Section 3.3), which lead to about two
times speedup over our previous implementation in Fast-

BNI. Thirdly, we conduct additional detailed experiments to
study (i) the comparison between Faster-BNI and Fast-BNI,
(ii) the impact of our new optimizations, (iii) the speedup
of hybrid parallelism, and (iv) the comparison between
different parallelization schemes.

2 BACKGROUND

In this section, we provide the key terminologies and defini-
tions related to exact inference on Bayesian networks (BNs),
and then review the junction tree (JT) algorithm. Finally, we
discuss relevant work for BN exact inference.

2.1 Bayesian Networks and Exact Inference
BNs are graphical models that represent a joint distribution
over a set of random variables V = {V0, V1, ..., Vn−1} in G
via a directed acyclic graph (DAG). Typically, one variable
corresponds to one feature in machine learning problems. In
this paper, we focus specifically on discrete BNs, where the
random variables take on a finite set of discrete values.

A BN is defined as B = (G,P), where G = (V, E) is
a DAG and P is the parameters of the network. Figure 1a
illustrates the DAG G of the “Asia” network with eight (0,1)-
valued variables and eight edges, where each node in V is
associated with one variable and each edge in E indicates
conditional dependency between two variables. Vj is called
a parent of Vi if there exists a directed edge from Vj to Vi

in G. For example, variable σ is the parent of variable λ;
the direct edge between them indicates whether smoking
impacts the likelihood of a patient suffering from lung
cancer. The parameter set P represents a set of conditional
probability distributions (CPDs) that describes the proba-
bility of possible values of each variable given its possible
parent configurations. The joint probability of BN can be
decomposed into the product of the CPDs of each variable:

P (V) = P (V0, V1, ..., Vn−1) =
n−1∏
i=0

P (Vi|Par(Vi)) (1)

where n is the number of variables, Par(Vi) is the set of
parents of Vi, and P (Vi|Par(Vi)) is the CPD of variable Vi.

Exact inference on BNs is to calculate the posterior
marginal distributions of certain variables of interest, called
the query variables. And in most cases, we have some ob-
served variables and the observed values are called evidences
of the network. In the example BN in Figure 1a, suppose
we have the observations that the patient has dyspnea
(δ = 1) and is a smoker (σ = 1). The variable of interest
could be bronchitis (β) and thus the computation is the
posterior marginal distribution over β given the evidence
of {δ = 1, σ = 1}, i.e., P (β|δ = 1, σ = 1).

2.2 Junction Tree Algorithm
The JT algorithm is an essential exact inference algorithm.
It first converts the original BN into a junction tree, then
computes probabilities on the resulting junction tree.

The steps involved in converting the BN to a junction
include moralization, triangulation, clique identification and
junction tree construction [11]. The basic idea is to turn
highly-connected nodes in the BN into cliques of the junc-
tion tree. We omit the details as it is not the primary focus
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Operation 1: Procedure of junction tree updating.
Input: Junction tree J
Croot ← Arbitrarily select a clique from J as the root
J ← Load evidence to J
Collection (J , Croot)
Distribution (J , Croot)

of this paper. This is mainly because generating a junction
tree takes a tiny part of the total inference time and is only
done offline once for multiple queries. Figure 1b shows a
possible junction tree generated from “Asia”. Each node
Ci of the junction tree is called a clique which contains a
subset of the random variables as its related variables (i.e.,
Ui ⊆ V). Each edge Sij between Ci and Cj is called a
separator which contains all shared variables of Ci and Cj

(i.e., Uij = Ui ∩ Uj). In the discrete BNs, there is a potential
table ϕCi (resp. ϕSij ) associated with each clique Ci (resp.
separator Sij). The potential table is a function over the
related variables of its associated clique (resp. separator).

When new evidence comes, two steps are required to
update the junction tree, as shown in Operation 1. The
first step is to load evidence to update the tree. It checks
every clique of the junction tree to find whether there are
some potential table entries of the clique that contain the
observed variables but have different instantiations from the
evidence. Such conflict entries are set to zero. The second
step is message passing, which contains two recursive phases
collection and distribution. In this step, all the potential tables
are recursively updated by messages that are computed from
other potential tables. For the collection phase, messages
are collected along the tree from the leaves to the root,
while messages are distributed from the root to the leaves
for the distribution phase. Note that the root clique can be
an arbitrary clique in the junction tree. Formally, a message
passed from Ci to Cj can be written as:

ϕ∗
Sij

=
∑

Ui\Uij

ϕCi
, ϕ∗

Cj
= ϕCj

ϕ∗
Sij

ϕSij

(2)

where ϕ∗
Sij

and ϕ∗
Cj

represent the updated potential tables
of separator Sij and clique Cj , respectively. The computa-
tional complexity depends on the clique sizes, which are the
potential table sizes of the cliques in the junction tree.

Once the message passing ends, we can get potentials of
all the cliques. Thus, we can easily compute the marginal
distribution of any query variable Vi from a clique Ci that
contains the variable (i.e. Vi ∈ Ui), by marginalizing out all
the other variables in the clique.

P (Vi) =
∑
Ui\Vi

P (Ui) (3)

In this work, we aim to accelerate the JT algorithm with
a focus on evidence loading and message passing.

2.3 Related Work
BNs are powerful models for learning and reasoning under
uncertainty in artificial intelligence. This study mainly fo-
cuses on improving the efficiency of a key exact inference
algorithm: JT algorithm. In what follows, we categorize the

most relevant work into two categories: algorithms for BN
exact inference and studies dedicated to accelerating JT.

Exact inference on BNs. In the early 1980s, Pearl pro-
posed an efficient message passing inference algorithm
called polytree [26], [27] that works only for singly con-
nected networks. The JT algorithm [11] extended it to mul-
tiply connected networks by first transforming the graph
into a junction tree. The algorithm can be further divided
into Shenoy-Shafer algorithm [17] and Hugin algorithm [18],
[19]. There are many other exact inference algorithms, such
as arc reversal [28], variable elimination [29], symbolic prob-
abilistic inference [30], [31] and differential approach [32].
This paper mainly focuses on improving the efficiency of the
JT algorithm using parallel techniques, as the JT algorithm
is used in mainstream implementations.

Accelerating JT. Kozlov and Singh [10] proposed a par-
allel implementation that mainly considers the topology of
the tree structure, and thus the performance is dependent
on the structure of the network. Some other methods also
focus on the coarse-grained inter-clique parallelism by using
the pointer jumping technique [20], [21], [22]. However,
studies [20], [21] exhibit limited performance for multiple
evidences, since rerooting is required when the evidences
appear at different cliques. Although work [22] does not
required rerooting, it may introduce extra overhead when
some cliques appear at different chains at the same time.
On the other hand, some approaches parallelize inside
cliques [23], [24], which use a fine-grained intra-clique paral-
lelism. Several research studies also utilize intra-clique par-
allelism to accelerate JT on other platforms like GPUs [33],
[34]. However, intra-clique parallelism may have a large
parallelization overhead, which decreases the efficiency.

3 OUR PROPOSED FASTER-BNI
This section elaborates the technical details of our proposed
Faster-BNI, a parallel solution for exact inference on BNs.

3.1 Design Overview

Here, we provide an overview of our proposed Faster-BNI,
illustrated in Figure 2. Overall, Faster-BNI takes the junction
tree as input, executes evidence loading and message pass-
ing procedures, and finally outputs the posterior probability
distributions of the non-evidence variables. In what follows,
we elaborate on detailed structure of Faster-BNI.

Initially, the junction tree is stored in the form of po-
tential tables for clique and separator layers. During this
phase, we employ the root selection strategy and junction
traversal method to construct a more balanced junction tree,
in order to exploit inter-clique parallelization opportunities
(cf. Section 3.2.1). Subsequently, the evidence loading proce-
dure is performed, utilizing a table reduction optimization
to reduce the potential table size and simplify the subse-
quent computations (cf. Section 3.3.1). After that, the critical
procedure of message passing is executed, comprising col-
lection and distribution phases. Within this procedure, we
identify and parallelize two pivotal potential table opera-
tions at the intra-clique parallelization level: potential table
marginalization within the separator layers, and potential
table extension within the clique layers (cf. Section 3.2.2).
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Fig. 2: The overview of Faster-BNI. “PT” stands for “poten-
tial table”.

These operations are performed throughout the message
passing procedure, as depicted in Figure 2. To further im-
prove the efficiency of message passing, we introduce a table
storage organization optimization, significantly simplifying
the potential table computations (cf. Section 3.3.2).

Faster-BNI employs hybrid parallelism that closely inte-
grates inter- and intra-clique parallelism, which can remedy
the shortcomings of using only one of the two granularities,
including (i) load unbalancing among threads, (ii) high par-
allelization overhead and (iii) structure-dependent parallel
performance (cf. Section 3.2.3).

3.2 Faster-BNI Parallelization Scheme

This section provides the design of our hybrid inter- and
intra-clique parallelization scheme as well as its advantages
over other parallelization schemes.

3.2.1 Inter-clique Parallelism
We consider inter-clique parallelism in Faster-BNI, which is
coarse-grained parallelism that takes the independence in
topology of the junction tree into consideration.

The message passing procedure is inherently sequential
due to the dependencies between the passing functions.
Specifically, for the collection procedure, one clique Ci can
pass the message to its parent only when Ci has received
all the messages from its children. Similarly, Ci can only
pass the message to its children when it has received the
message from its parent in the distribution procedure. But
some cliques can still be performed in parallel since they are
computationally independent. In order to exploit the paral-
lelization opportunities in the tree structure, we propose a
junction tree traversal method based on breadth-first search.
Our traversal method views all the cliques and separators
as nodes of the tree, and marks the layer where each clique
and separator is located. Figure 3a shows an example that
marks the layers of the junction tree shown in Figure 1b.
In the collection procedure, computations are performed
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Fig. 3: Two possible junction trees generated by the “Asia”
BN with layers marked. Tree (b) is more balanced than tree
(a). The double circles indicate the roots of the junction trees.

layer by layer from the leaves to the root, while distribution
operates from the root to the leaves. The potential table
operations inside each layer can be parallelized because
the computations in the same layer are independent. In
each layer, inter-clique parallelism distributes evenly all the
cliques (or separators) in the layer to different threads.

The efficiency of inter-clique parallelism is better when
the number of cliques (or separators) inside each layer is
large enough. Accordingly, instead of selecting an arbitrary
clique as the root, we select the root clique that minimizes
the number of layers. This generates a more balanced tree
that has a smaller number of layers and a larger average
number of cliques (or separators) per layer. The root se-
lection strategy is implemented by checking each clique
in the tree, finding its longest distance to other cliques
and minimizing the distance. Figure 3 shows two possible
junction trees with different root cliques. We can see that the
tree in Figure 3b is more balanced with a smaller number
of layers (i.e., 5) and a larger average number of cliques (or
separators) per layer (i.e., 2.2).

The root selection strategy and junction tree traversal
method take less than 1% of the total inference time, and
are performed offline before loading evidence. They only
require to perform once for multiple queries. Therefore, their
execution time is negligible.

3.2.2 Intra-clique Parallelism
We consider intra-clique parallelism in Faster-BNI, which
is fine-grained parallelism that focuses on the expensive
potential table operations inside each clique (or separator).
We first identify two essential potential table operations that
require high computational overhead in space and time.

Potential table marginalization. According to Equa-
tion (2), potential table marginalization operation is used
in the message passing procedure to update the potential
table of a separator (i.e., ϕ∗

Sij
) from the potential table of

a clique (i.e., ϕCi ), which is used in the separator lay-
ers. Figures 4a and 4b show the procedure of marginal-
izing X from the potential table with related variables
{X,Y, Z}. In this example, variable X has three possible
states {x1, x2, x3}, while Y and Z have two possible states.
Here, marginalization sums over all possible states of X
while retaining the states of Y and Z . For example, to
update the entry (y2, z2), we add the probabilities of all
the entries in the original table that contain (y2, z2) without
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Fig. 4: Example of potential table marginalization and exten-
sion. (a) to (b): marginalizing variable X from {X,Y, Z}; (b)
to (c): extending variable W from {Y,Z}. Due to the table
storage organization optimization in Section 3.3.2, the range
vector of each potential table and the index mappings from
(a) to (b) are also provided.

considering the states of X . Therefore, this entry is updated
to 0.16 + 0.001 + 0.18 = 0.341.

Potential table extension. According to Equation (2),
we need to perform multiplication in the message passing
procedure when updating the potential table of a clique (i.e.,
ϕ∗
Cj

) using the message from a separator (i.e., ϕ∗
Sij

/ϕSij ).
Potential table extension is a pre-computation of multipli-
cation that makes the two factors of multiplication have an
equal size. It is used in the clique layers. Figures 4b and 4c
show the procedure of extending the potential table from
related variables {Y,Z} to {Y,Z,W}, where variable W
has two possible states w1 and w2. This operation may be
performed for the case that we need to compute the Carte-
sian product of the potential table in Figure 4b and another
potential table with related variables {Y,Z,W}, and the
potential table extension operation is performed before the
multiplication. For the example shown in Figures 4b and 4c,
the entry (y2, z2) is extended to two entries (y2, z2, w1) and
(y2, z2, w2), each of which has a probability 0.341 obtained
from the entry (y2, z2).

To summarize, the key step to the above potential table
operations is to find the table index mappings between the
original and the updated tables. Accordingly, the complexity
of these potential table operations depend on the potential
table size, which increases dramatically with the number
of random variables in the clique (or separator) and the
number of states of the variables. Since the potential table
operations are performed frequently during the message
passing procedure, intra-clique parallelism is to parallelize
each entry of the potential table operations, so as to reduce

the time consumption in the potential table operations. The
computations of finding the index mappings for different
entries are independent and thus can be processed in par-
allel. Besides potential table marginalization and extension,
potential table multiplication and division, as well as the
potential table updating on evidence loading, are also par-
allelized. Intra-clique parallelism distributes the potential
table entries evenly to the threads and hence achieves good
load balancing among threads.

3.2.3 Hybrid Inter- and Intra-clique Parallelism

We find some limitations in accelerating the JT algorithm
using only inter- or intra-clique parallelism.

Limitations of inter-clique parallelism. Inter-clique par-
allelism has the following two major limitations. First, inter-
clique parallelism is load unbalanced, because the work-
loads of potential table operations for different cliques (or
separators) can be highly different. The workload of the po-
tential table operation of a clique (resp. separator) depends
on the potential table size of the clique (resp. separator). If
multiple cliques (resp. separators) in the same layer having
different potential table size, the execution time is deter-
mined by the time of the largest clique (resp. separator).
Second, the dependencies among cliques (or separators) can
be the bottleneck. Therefore, this scheme can be efficient
for the tree structure where there are a large number of
cliques inside each layer, but has limited parallelization
opportunities if the number of cliques for each layer is small.

Limitations of intra-clique parallelism. The main limi-
tation of intra-clique parallelism is the high parallelization
overhead. On the one hand, the potential table operations
are performed frequently. On the other hand, the work-
loads for each potential table entry can be relatively small.
Therefore, this scheme is more efficient for the junction trees
with large cliques (or separators), so that each thread has
a larger amount of workload to amortize parallel overhead
(e.g., frequent thread invocations). However, it may exhibit
limited performance for a tree structure with many small
cliques (or separators).

To overcome the limitations, a natural idea is to integrate
the two granularities of parallelism. A simple strategy is to
dynamically schedule the tasks. The tasks of the cliques (or
separators) within the same layer are continuously gener-
ated. When processing the inner potential table operations,
the tasks for different potential table entries are also gen-
erated and processed by the idle threads. However, this
simple integration strategy fails to get good speedups. The
main reason is that the efficiency of inter- and intra-clique
parallelism is structure-dependent, making it hard to find
the structure suitable for both. For example, junction trees
that contain a large number of cliques benefit from inter-
clique parallelism. However, such type of structures may
have many small cliques, which limits the efficiency of intra-
clique parallelism. Furthermore, the scheme leads to more
cost for scheduling and it is also inefficient to invoke parallel
threads in a nested way due to the thread creation overhead.

To tackle the shortcomings of accelerating the JT algo-
rithm using inter-clique parallelism, intra-clique parallelism
and the simple integration strategy, we propose hybrid
inter- and intra-clique parallelism that closely integrates the
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two granularities of parallelism and avoids the nested in-
vocations of parallel threads. In particular, at the beginning
of each layer, all the potential table entries corresponding to
this layer are pushed into a work pool and constitute one of
the parallel tasks. The pre-processing before parallelization
also includes the decisions of whether the tables need to
perform the corresponding potential table operation, and
the organization of continuous memory for all the table
entries to be operated in this layer to store the data required
for the operation. Then the tasks in the work pool can be
distributed to the parallel threads to perform the potential
table operations on different table entries concurrently. This
process is performed layer by layer.

The proposed hybrid parallelism has the following three
main advantages. (i) Workload balancing. Compared with
inter-clique parallelism, the workloads of different potential
table entries can be evenly distributed to each thread with
hybrid parallelism. Since the entries executed in parallel are
from the same layer, they do the same operation and have
the same amount of computations. Thus, Faster-BNI solves
the issue of load unbalancing. (ii) Lower parallel overhead.
Compared with intra-clique parallelism, all the potential
tables within the same layer are considered at the same
time in hybrid parallelism. Therefore, the parallel invocation
overhead is significantly reduced. On the other hand, each
thread has a more reasonable amount of workload as the
work pool for one parallel invocation contains more tasks,
which can also amortize the parallelization overhead. (iii)
Adaptability to various structures. Faster-BNI does not
require some specific junction tree structures to achieve
good efficiency, since the inter- and intra-clique parallelism
are tightly integrated. More specifically, Faster-BNI does not
require the junction trees with many cliques inside each
layer to fit inter-clique parallelism, or the junction trees with
large cliques to fit intra-clique parallelism. The proposed
hybrid parallelism can adapt to various tree structures.

3.3 Further Enhancing Faster-BNI

In this section, we aim to tackle two crucial challenges
to enhance Faster-BNI. Firstly, in evidence loading, it is
inefficient to only change the values of the conflict potential
table entries but maintain the potential table size. Secondly,
there are many large potential tables in one junction tree,
which consume much memory and lead to complicated
computations in the message passing procedure.

3.3.1 Table Reduction in Evidence Loading
During the evidence loading procedure, some potential
tables in the junction tree are updated to reflect the evidence
information. This is the potential table reduction operation,
as shown in Figures 5a and 5b. Specifically, the potential
table contains three related variables X , Y and Z at the
beginning. Assuming we observe Z = z1, then all the table
entries that conflict with the evidence Z = z1 are set to zero.
However, the potential table size is not changed after this
operation as shown in Figures 5a and 5b, which is inefficient
because the complexity of all the potential table operations
depends on the potential table size.

We can observe from Figure 5b that after loading evi-
dence Z = z1, the related variables of the table are the same
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Fig. 5: Example of potential table reduction. (a) the original
potential table before potential table reduction, (b) the table
after naive potential table reduction and (c) the table after
optimized potential table reduction.

as before (i.e., {X,Y, Z}), but they should become {X,Y }
because the values of Z in all the non-zero entries are fixed
to z1. Therefore, we can directly delete the conflict entries
instead of setting them to zero, and remove the evidence
variables from the related variables of the clique at the same
time, as shown in Figure 5c. Note that the potential table
reduction operation is also parallelized in Faster-BNI. Like
potential table marginalization and extension, the key step
to potential table reduction is also to find the table index
mappings between the original and the updated tables.
Therefore, the parallelization scheme of Faster-BNI can be
applied to the potential table reduction operation.

By the optimized potential table reduction, the size of
potential table can be reduced by a factor of f , where f
equals the product of the number of states of all the evidence
variables. For the simple example in Figure 5, the size of
the table is reduced by half, since there is one evidence
variable Z with two states originally. As a result, the table
reduction optimization brings a nice cascading effect on the
complexity of the subsequent potential table operations in
the message passing procedure, such as the time-consuming
operations of potential table marginalization and extension,
because the complexity of all the potential table operations
depends on the corresponding potential table size.

3.3.2 Table Storage Organization in Message Passing

In large problems, the number of variables and the number
of states of each variable are often large, leading to high
complexity of the potential table operations. We analyze
the complexity using potential table marginalization as an
example. To marginalize the potential table ϕCi of clique Ci

to get the potential table ϕ∗
Sij

of separator Sij , the traversal
of ϕCi

and ϕ∗
Sij

is required. The size of ϕCi
equals the

number of possible states of the related variables Ui of Ci,
which is

∏
Vk∈Ui

rVk
, where rVk

is the number of states of Vk.
Similarly, the size of ϕ∗

Sij
is
∏

Vk∈Uij
rVk

. For each entry to be
marginalized, we need to get and compare the values of all
the related variables Uij of Sij . Additionally, the algorithm
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proceeds every clique during message passing. Therefore,
the overall complexity is O(

∑nc
l=1(|Uij | × (

∏
Vk∈Ui

rVk
+∏

Vk∈Uij
rVk

))), where nc is the number of cliques. On the
other hand, large potential tables also result in more mem-
ory consumption, since we need to store the configurations
of the variables and the corresponding probability for each
entry of the table. To conclude, the potential table operations
require high computational overhead in space and time.

To alleviate the high cost of time and space, Faster-BNI
uses a potential table data structure. Suppose that clique Ci

contains qi variables. It corresponds to a potential table ϕCi

and we use a qi-dimensional range vector rvi to represent the
variables contained in its potential table. Each configuration
of the table can be compiled into a qi-dimensional state vector
according to the order of rvi. We use an index for each table
entry to avoid storing the configurations, because each index
can be transformed to and from a state vector. The transfor-
mations can be performed using a qi-dimensional auxiliary
array of the clique that stores the cumulative numbers of
possible states starting from the rightmost element of rvi.

The key to the potential table operations is to find the
index mappings between the two involved tables. Typically,
the transformations between indexes and state vectors of
the two tables are required for finding the mappings. In
order to further reduce the computational burden of such
transformations, we propose to constrain the order of the
range vector as follows: for each non-root clique Ci, its
parent clique Cj and the separator Sij between them, those
variables stored on the left of rvi are the variables not in
Sij , while those on the right are the variables contained in
Sij . In this way, we can obtain the mappings of the involved
tables without checking the state vector for each entry. This
simplified index mapping computation can be applied to
the following two cases in the message passing procedure:
(i) the potential table marginalization operations in the
collection procedure, and (ii) the potential table extension
operations in the distribution procedure.

We use the potential table marginalization in collection
as an example to analyze the advantage of the optimization
on computation simplification, while the potential table
extension operations in distribution work in a similar way.
Suppose that Figure 4a is the potential table ϕCi

of clique
Ci, and Figure 4b is the updated potential table ϕSij

of
separator Sij . Through the proposed data structure, finding
an index mapping between the two tables (e.g., idx = 6 of
old table ϕCi

to idx∗ = 2 of updated table ϕSij
) is initially

realized by (i) performing an index-to-configuration map-
ping for ϕCi

to get the configuration cfg = {x2, y2, z1}, (ii)
getting the configuration cfg∗ = {y2, z1} of ϕSij

according
to cfg and the range vector indices of the variables to be
marginalized (e.g., index of X is 0), and (iii) performing a
configuration-to-index mapping for ϕSij

to obtain idx∗ = 2.
With the help of the table storage organization optimization,
variables {Y,Z} are guaranteed to be the right part of rvi

because they are contained in Sij . As a result, the mappings
between the indexes in ϕCi

and the ones in ϕSij
are intuitive

from Figure 4. Each index idx∗ of the new table can be easily
calculated from the index idx of the old table by idx%4,
where % is the modulo operator, and 4 is the product of
the number of states of Y and Z . In this way, the overall
complexity significantly reduces to O(

∑nc
l=1

∏
Vk∈Ui

rVk
).

3.4 Potential Applications and Generalization

Here, we briefly discuss the potential applications and gen-
eralization of our proposed techniques. Faster-BNI is able
to generalize to a broader range of probabilistic graphical
models (PGMs), such as Markov Random Fields (MRFs).
While BNs and MRFs exhibit different graphical structures,
i.e., directed graphs for BNs and undirected graphs for
MRFs, the underlying principle of message passing remains
consistent across both models. More specifically, both the JT
algorithm in BNs and belief propagation-based inference al-
gorithms in MRFs involve passing messages between nodes
in a graph, iteratively updating beliefs, and converging to
the desired inference results.

Message passing constitutes the majority of the execu-
tion time for the JT algorithm. Faster-BNI enhances message
passing through optimizations such as hybrid paralleliza-
tion and table storage organization. By recognizing the
shared principle of message passing in the PGMs, the opti-
mization techniques proposed in Faster-BNI can be adapted
and extended to accelerate inference tasks in other PGMs.

4 EXPERIMENTAL EVALUATION

In this section, we extensively evaluate our proposed tech-
niques and compare the results with existing methods.

4.1 Experimental Setup

Baselines and platform. We implemented Faster-BNI using
OpenMP in C++ for exact inference on BNs and compared
its performance with the existing methods. Specifically, we
compared Faster-BNI with the sequential JT implementa-
tion in the open-source library UnBBayes [12]. We also
compared Faster-BNI with previous parallel implementa-
tions [10], [23], [34]. Implementation [10] (denoted by Direct,
Dir.) uses a direct coarse-grained parallelism that mainly
considers the topological dependencies of the tree structure;
implementation [23] (denoted by Primitive, Prim.) proposes
four fine-grained node-level primitives to accelerate the JT
algorithm; implementation [34] (denoted by Element, Elem.)
accelerates the message passing by utilizing fine-grained
element-wise parallelism and arithmetic parallelism. All the
experiments were conducted on a Linux machine with a 32-
core AMD EPYC 7502 CPU and 64GB main memory. The
query results of Faster-BNI are exactly the same as the other
implementations, since all of them are implementations of
the same exact inference algorithm.
Data sets. We used six real-world BNs1 as shown in Table 1.
The BNs are from various fields and have different sizes.
These BNs have been widely used for comparative studies
in the community, and the last four are considered as large-
scale in the community. They also have various structures
and state spaces, and thus lead to very different junction
trees, as listed in Table 1. The junction trees generated from
the Diabetes and Munin4 BNs have very large average clique
sizes, which are more than 50,000, and the maximum clique
sizes of them even exceed 3,500,000. We generated 1,000
test cases from each network. Following the common set-
tings [40], [41], [42], each test case has 20 observed variables.

1. https://www.bnlearn.com/bnrepository/
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TABLE 1: Information of reference BNs and the resulting junction trees.

Data set Reference BN information Resulting JT information
# of nodes # of edges # of parameters # of cliques # of layers Ave. clique size Max clique size

Hailfinder [35] 56 66 2656 43 15 232 3267
Pathfinder [36] 109 195 77155 91 13 2007 32256
Diabetes [37] 413 602 429409 336 79 59071 3534300
Pigs [38] 441 592 5618 368 29 11842 1594323
Munin [39] 1041 1397 80592 872 35 19526 1000000
Munin4 [39] 1038 1388 80352 882 31 54358 3528000

TABLE 2: Execution time comparison of Faster-BNI with other implementations under both sequential and parallel setting.
Speedup of Faster-BNI over each compared implementation is also reported.

Data set
Sequential implementation Parallel implementation

Execution time (sec) Speedup Execution time (sec) Speedup
UnBBayes Faster-BNI-seq UnBBayes Dir. Prim. Elem. Faster-BNI-par Dir. Prim. Elem.

Hailfinder 13.7 0.9 14.8 1.7 1.9 2.2 0.9 1.9 2.0 2.4
Pathfinder 175.8 16.6 10.6 28.9 19.4 21.9 5.2 5.6 3.7 4.2
Diabetes 48842 2223 22.0 2347 1661 2610 438.4 5.4 3.8 6.0
Pigs 24530 1878 13.1 2769 1338 2275 271.0 10.2 4.9 8.4
Munin 41486 4660 8.9 6398 3081 5372 600.2 10.7 5.1 8.9
Munin4 200501 16280 12.3 14776 7036 15957 2173 6.8 3.2 7.3

TABLE 3: Detailed comparison of the parallel and sequential versions of Faster-BNI with UnBBayes and Prim. on the
Hailfinder and Pathfinder BNs. “-seq” and “-par” represent sequential and parallel implementation, respectively.

Hailfinder L1-cache accesses L1-cache misses (rate) LL-cache accesses LL-cache misses (rate) CPU utilization
Faster-BNI-par 5.1× 109 1.8× 108(3.61%) 5.6× 107 2.8× 106(4.85%) 12
Faster-BNI-seq 4.6× 109 1.2× 108(2.52%) 4.5× 105 3.6× 103(0.81%) 1
Prim. 5.0× 109 4.6× 108(9.21%) 1.5× 108 3.1× 107(19.71%) 12
UnBBayes 3.6× 1010 1.5× 109(4.27%) 8.9× 107 7.4× 106(8.33%) 1
Pathfinder L1-cache accesses L1-cache misses (rate) LL-cache accesses LL-cache misses (rate) CPU utilization
Faster-BNI-par 8.0× 1010 2.0× 109(2.49%) 1.3× 108 3.6× 104(0.03%) 12
Faster-BNI-seq 7.9× 1010 1.8× 109(2.29%) 8.6× 107 7.0× 104(0.08%) 1
Prim. 7.1× 1010 3.4× 109(4.80%) 4.2× 108 1.7× 106(0.4%) 12
UnBBayes 6.8× 1011 1.7× 1010(2.52%) 3.7× 108 1.4× 108(37.74%) 1

4.2 Overall Comparison
In this section, we study the improvement of Faster-BNI
over Fast-BNI and other existing work.

4.2.1 Comparison with Existing Work
We compare the execution time of both sequential and
parallel implementations of Faster-BNI with the existing
implementations for 1,000 queries. Specifically, we compare
the sequential version of Faster-BNI (i.e., Faster-BNI-seq)
with UnBBayes [12] and the parallel version of Faster-BNI
(i.e., Faster-BNI-par) with Dir. [10], Prim. [23] and Elem. [34].
For comparing the parallel implementations, we vary the
number of OpenMP threads t from 1 to 32 and chose the
one with the shortest execution time.

The experimental results are summarized in Table 2. As
can be seen from the “Speedup” columns of the table, the
sequential implementation of Faster-BNI can be 8.9 to 22.0
times faster than UnBBayes. When comparing the parallel
implementations, Faster-BNI-par can run 1.2 to 15.2 times
faster than the counterparts. It is worth noting that Faster-
BNI has more advantages over existing implementations
on larger networks. For some small-scale networks, the
speedups are relatively small, because they require short
execution time for inference (e.g., less than 1 seconds for
Hailfinder) and the parallelization overhead of the small-
scale networks accounts for a large proportion. Another
observation is that Faster-BNI always achieves its short-
est execution time when t = 32 on large networks. The

experiment on Munin4 is the task that takes the longest
time to complete. This task ran more than two days using
UnBBayes, and spent 2 to 4 hours using the existing parallel
implementations, while the execution time is significantly
reduced to less than one hour using Faster-BNI.

To further investigate why Faster-BNI is faster, we use
perf Linux profiler to obtain the detailed measurements for
Faster-BNI-par, Faster-BNI-seq, UnBBayes and Prim. on two
examples Hailfinder and Pathfinder. We choose the two BNs,
because UnBBayes requires much time on the larger BNs
when profiling. We choose Prim. as a parallel implemen-
tation representative, because it is the best one among the
three parallel baselines. The results are shown in Table 3.
For the parallel implementations, we set the number of
threads t to 12 because both Faster-BNI-par and Prim. can
achieve a relatively good efficiency under this setting. We
can observe that the parallel version of Faster-BNI increases
CPU utilization. Moreover, Faster-BNI have fewer accesses
to the L1 cache and last level (LL) cache due to the proposed
optimizations for reducing the potential table operations.
Faster-BNI also decreases the rate of cache misses.

4.2.2 Comparison with Our Previous Implementation [25]
In this section, we compare Faster-BNI with our previous
implementation Fast-BNI [25].

Figure 6 compares memory efficiency of Faster-BNI and
Fast-BNI. The memory consumption for Fast-BNI serves as
the baseline, denoted as 100% for each dataset, and the
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Fig. 6: Comparison of memory usage between Faster-BNI
and Fast-BNI. Memory usage of Fast-BNI is set as 100%.

TABLE 4: Execution time comparison between Fast-BNI and
Faster-BNI under sequential and parallel settings.

Data set
Sequential implementation

Execution time (sec) SpeedupFast-BNI Faster-BNI
Hailfinder 1.9 0.9 2.1
Pathfinder 38.2 16.6 2.3
Diabetes 3728 2223 1.7
Pigs 2951 1878 1.6
Munin 7408 4660 1.6
Munin4 26382 16280 1.6

Data set
Parallel implementation

Execution time (sec) SpeedupFast-BNI Faster-BNI
Diabetes 527.2 438.4 1.2
Pigs 362.2 271.0 1.3
Munin 789.9 600.2 1.3
Munin4 2952 2173 1.4

memory usage of Faster-BNI is depicted as the percentage
relative to Fast-BNI. Notably, Faster-BNI has significant
memory savings, ranging from 61% to 81%. The benefit is
mainly due to the adoption of our proposed potential table
data structure (cf. Section 3.3.2). The degree of memory-
saving efficiency varies across different datasets, owing to
diverse junction tree structures, such as different numbers
of cliques, variables within cliques, clique sizes, etc.

Table 4 compares the execution time of Faster-BNI with
Fast-BNI under both sequential and parallel settings. We can
observe that our new implementation consistently outper-
forms our previous one. The sequential implementation of
Faster-BNI is about 2 times faster than that of Fast-BNI, and
the parallel implementation of Faster-BNI can bring up to
36% improvement. The improvement is mainly due to our
careful optimizations to reduce the potential table computa-
tions. These optimizations include (i) table reduction: reduc-
ing the potential table in the evidence loading procedure (cf.
Section 3.3.1), and (ii) table storage organization: organizing
potential table storage in the message passing procedure (cf.
Section 3.3.2). These general optimizations can be applied to
both sequential and parallel implementations. The parallel
results on Hailfinder and Pathfinder are omitted in Table 4,
because they already require short inference time for the
sequential implementations by the proposed optimizations.

Ablation study. To get a better understanding of the effi-
ciency improvements, we study the impacts of our proposed
optimizations on the execution time of four key components
in the message passing procedure: (i) table marginalization
on collection (“col. mar.”), (ii) table marginalization on
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Fig. 7: Execution time breakdown on four key components
of the JT algorithm under different settings.

distribution (“dis. mar.”), (iii) table extension on collection
(“col. ext.”), and (iv) table extension on distribution (“dis.
ext.”). These components represent the most complicated
potential table operations in the message passing procedure
(cf. Section 3.2.2). The execution time of the other com-
ponents of JT is denoted by “others”. Figure 7 shows a
breakdown of the execution time. We observe that Faster-
BNI reduces the time cost for the four key components in
Fast-BNI. To investigate where the efficiency improvement
originates from, we first enable table reduction optimiza-
tion under the “Fast-BNI”, and report the results in the
“Fast-BNI + table reduction” bars. Then, we enable table
storage re-organization optimization, and report the results
in the “Faster-BNI” bars. Figure 7, we extract the following
three key conclusions. Firstly, table reduction optimization
reduces the time cost for all the complicated potential ta-
ble operations in message passing. Since this optimization
can reduce the size of some potential tables when loading
evidence, it reduces the computational complexity of the
subsequent potential table operations. Secondly, table stor-
age organization significantly impacts the execution time
of table marginalization operations on collection and table
extension operations on distribution. With the help of table
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Fig. 8: Theoretical speedup computed by Amdahl’s law
and practical speedup of the proposed Faster-BNI under
different number of threads. The ratios of parallel part and
sequential part of the program are also provided.

storage organization, the expensive index mappings in the
above potential table operations are avoided by simple
modulo calculations. Thirdly, the reason why the speedup
of the parallel implementation is not as high as that of
the sequential implementation is that the two optimizations
reduce the parallel ratio of the algorithm, since they reduce
the execution time of the key components.

4.3 Comparison with Theoretical Speedup

Here, we compare the speedups of the parallel version of
Faster-BNI to the sequential version with the theoretical
speedups. The theoretical speedups are computed by Am-
dahl’s Law [43], which is

I(t) =
1

(1− r) + r
t

(4)

where t is the number of parallel threads, r is the ratio of the
parallel part of the program, and I(t) means the theoretical
speedup under t threads. We obtained the ratio of parallel
part r from one sequential run of the program.

Figure 8 shows the theoretical and practical speedups on
the four large-scale BNs. We can observe that the speedups
of Faster-BNI generally approach the theoretical speedups.
Figure 8 also provides the ratios of the parallel and se-
quential parts of the program respectively. The sequential
parts of Faster-BNI mainly come from the pre- and post-
computations for the hybrid parallelism, including poten-
tial table property calculations, memory management and
atomic writing. Junction tree construction is also sequential.
As shown in Figure 8c, the Munin network has the largest
r, which is 91.4%. Therefore, it has the largest theoretical
speedup as well as the practical speedup of Faster-BNI
among the networks tested. On the other hand, results on
the relatively small-scale networks Hailfinder and Pathfinder
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Fig. 9: Execution time of parallel implementations using
three different parallel schemes: inter-clique parallelism,
intra-clique parallelism and hybrid parallelism.

are omitted, since Faster-BNI has a relatively small speedup
on them due to the small ratio of their parallel part (e.g.,
r = 0.5 for Hailfinder). When t reaches 32, the ratios of the
parallel parts for all the networks drop by 0.2 or around 0.2,
leading to a slower speedup growth.

4.4 Comparing the Different Parallelization Schemes
To investigate the performance of different parallel schemes,
we implemented two parallel versions using the schemes
of inter- and intra-clique parallelism, and compared them
with Faster-BNI that employs the hybrid inter- and intra-
clique parallelism. All these parallel versions are based on
the optimized version of Faster-BNI.

Figure 9 shows the speedups of the three parallel imple-
mentations under the four large networks. We observe that
hybrid parallelism always leads to the highest speedups,
indicating the effectiveness of the optimizations used in the
hybrid parallelism on the large BNs. Overall, the inter-clique
parallelism is the worst and the reasons include the limited
parallelization opportunities caused by the dependencies
among cliques and the issues of workload unbalancing.
Especially when increasing threads cannot bring enough
efficiency gains, the speedup may decrease since the effi-
ciency gains cannot surpass the parallelization overhead.
The speedups of intra-clique parallelism can be better than
that of inter-clique parallelism, because these large networks
often generate junction trees with many large cliques, from
which intra-clique parallelism can benefit. Moreover, the
execution time of the intra-clique parallelism can be reduced
by more than 50% using the hybrid parallelism which solves
its efficiency issue of high parallelization overhead.

4.5 Studies on Different Network Sizes
To better understand Faster-BNI, Figure 10 shows the
speedups of the parallel version of Faster-BNI over its
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Fig. 10: Studies on speedup of Faster-BNI-par over Faster-
BNI-seq under different network sizes.

sequential version on BNs with 2,000 samples. The six
BNs tested are of different network sizes and have various
structures of the resulting junction trees, as shown in Table 1.
We can observe that Faster-BNI achieves high speedups for
larger networks, indicating good scalability of the proposed
techniques to large networks. For example, Faster-BNI
achieves 7.8 times speedup on the Munin and 7.5 on Munin4
BNs, both of which have larger number of nodes and edges
in their network structure. On the other hand, the speedups
of parallel implementation for the small-scale networks (i.e.,
Hailfinder and Pathfinder) are relatively small, because they
already require short execution time for the inference on
BNs and the parallelization overhead of these small-scale
networks accounts for a large proportion. Therefore, with
the help of the proposed general optimizations discussed in
Section 3.3, our sequential implementation is sufficient for
such small-scale networks with a relatively small number of
nodes and small clique sizes in the generated junction tree.

5 CONCLUSION

In this paper, we have proposed a parallel junction tree
(JT) algorithm namely Faster-BNI. The challenges of devel-
oping a fast solution for exact inference on BNs includ-
ing addressing load unbalancing issues, amortizing paral-
lelization overhead and generalizing to various network
structures. To tackle these challenges, Faster-BNI exploits
hybrid parallelism that tightly integrate inter- and intra-
clique parallelism. Moreover, Faster-BNI is powered by a
series of careful optimizations including (i) junction tree
traversal method to exploit parallelization opportunities, (ii)
root selection strategy to generate a more balanced tree for
better parallelization, (iii) optimized potential table reduc-
tion to reduce the subsequent potential table operations
and (iv) well-organized potential table storage to reduce
memory consumption and simplify the potential table com-
putations. Extensive experimental results have shown that
Faster-BNI achieves up to 22 times faster than the existing
solutions; the parallel version of Faster-BNI achieves up to
8 times speedup and the practical speedups of Faster-BNI
approach the theoretical speedups. Furthermore, Faster-BNI
has demonstrated good scalability to the network sizes.
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