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Exploiting GPUs for Efficient Gradient Boosting
Decision Tree Training

Zeyi Wen, Jiashuai Shi, Bingsheng He, Jian Chen, Kotagiri Ramamohanarao and Qinbin Li

Abstract—In this paper, we present a novel parallel implementation for training Gradient Boosting Decision Trees (GBDTs) on
Graphics Processing Units (GPUs). Thanks to the excellent results on classification/regression and the open sourced libraries such as
XGBoost, GBDTs have become very popular in recent years and won many awards in machine learning and data mining competitions.
Although GPUs have demonstrated their success in accelerating many machine learning applications, it is challenging to develop an
efficient GPU-based GBDT algorithm. The key challenges include irregular memory accesses, many sorting operations with small
inputs and varying data parallel granularities in tree construction. To tackle these challenges on GPUs, we propose various novel
techniques including (i) Run-length Encoding compression and thread/block workload dynamic allocation, (ii) data partitioning based
on stable sort, and fast and memory efficient attribute ID lookup in node splitting, (iii) finding approximate split points using two-stage
histogram building, (iv) building histograms with the aware of sparsity and exploiting histogram subtraction to reduce histogram building
workload, (v) reusing intermediate training results for efficient gradient computation, and (vi) exploiting multiple GPUs to handle larger
data sets efficiently. Our experimental results show that our algorithm named ThunderGBM can be 10x times faster than the
state-of-the-art libraries (i.e., XGBoost, LightGBM and CatBoost) running on a relatively high-end workstation of 20 CPU cores. In
comparison with the libraries on GPUs, ThunderGBM can handle higher dimensional problems which the libraries become extremely
slow or simply fail. For the data sets the existing libraries on GPUs can handle, ThunderGBM achieves up to 10 times speedup on the
same hardware, which demonstrates the significance of our GPU optimizations. Moreover, the models trained by ThunderGBM are
identical to those trained by XGBoost, and have similar quality as those trained by LightGBM and CatBoost.

Index Terms—Graphics Processing Units, Gradient Boosting Decision Trees, Machine Learning.
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1 INTRODUCTION

THE recent advancement of machine learning technolo-
gies is not only because of new algorithms to improve

accuracy, but also new algorithms and systems to exploit
the high-performance hardware (e.g., GPUs and FPGAs)
to improve efficiency. Nowadays, many companies (e.g.,
Amazon, Google and Microsoft) are providing GPU clouds
as an integral component in computing infrastructure. More
and more researchers are exploring GPU clouds for machine
learning algorithms [1], [2].

Recently, Gradient Boosting Decision Trees (GBDTs) are
widely used in advertising systems, spam filtering, sales
prediction, medical data analysis, and image labeling [3],
[4], [5]. In contrast with deep learning, GBDTs have the ad-
vantage of simplicity, effectiveness, and user-friendly open
source toolkits such as XGBoost [3], LightGBM [6] and
CatBoost [7]. Additionally, the GBDT has won many awards
in recent machine learning and data mining competitions
(e.g., Kaggle competitions). However, training GBDTs is
often very time-consuming, especially for training a large
number of deep trees on large data sets. In this article, we
propose a novel GPU-based algorithm called ThunderGBM
to improve GBDT training performance.
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The GBDT is essentially an ensemble machine learning
technique where multiple decision trees are trained and
used to predict unseen data. A decision tree is a binary tree
in which each internal node is attached with a yes/no ques-
tion and the leaves are labeled with the target values (e.g.,
“spam” or “non-spam” in spam filtering). Unlike random
forests where individual decision trees are independent [8],
the trees of GBDTs are dependent. Thus, it is challenging to
develop an efficient parallel GBDT training algorithm. There
are a number of key challenges on the efficiency of GPU
accelerations for GBDTs, such as irregular memory accesses,
many sorting operations with small inputs and varying data
parallel granularities in tree construction (more details are
presented in Section 3.1).

We have developed ThunderGBM, a highly efficient
GPU-based training algorithm, to address the challenges.
ThunderGBM is powered by many techniques specifically
designed for GPUs. Notably, to exploit the massive thread
parallelism of GPUs, we develop fine-grained multi-level
parallelism for GBDTs, from the node level, the attribute
level parallelism to parallelizing the gain computation of
each split point. Moreover, ThunderGBM exploits Run-
length Encoding (RLE) compression, since RLE compression
is able to (i) reduce memory consumption so that the GPU
can handle larger data sets, (ii) improve the efficiency of
finding the best split point due to the avoidance of repeated
attribute values, (iii) retain efficiency in splitting nodes with-
out a total decompression. We also propose various novel
techniques to find approximate split points and exploit
multiple GPUs to handle large data sets.

This article is an extension of our previous conference



2

paper [9]. Our major new contributions are summarized in
the following three aspects.

• First, we propose new techniques which lead to
further two times speedup over the implementation
in our conference paper. The experimental results
can be found in Section 5.1.3. The new techniques
include using a stable sorting based method instead
of a histogram based method for more efficiently
partitioning data in parent nodes to child nodes
(cf. Section 3.2.2), and improving the node splitting
process using fast and memory efficient attribute ID
lookup (cf. Section 3.5).

• Second, we extend ThunderGBM to support finding
approximate split points which is not considered in
our previous work. We propose a series of novel tech-
niques for exploiting GPUs (cf. Section 3.4). Specif-
ically, to reduce the shared memory consumption,
we propose sparsity aware techniques to build his-
tograms for efficient handling both low and high
dimensional data. When building the histograms,
we first build a partial histogram on GPU thread
block-level using shared memory, and then build
the global histogram by aggregating them. We also
exploit histogram subtraction to significantly reduce
the workload in building histograms.

• Third, this extension also enables the support for
multiple GPUs in order to handle larger data sets
which cannot be entirely stored in a single GPU.
Through the attribute based training data partition-
ing, we avoid exchanging partial histograms among
GPUs, and hence substantially reduce the communi-
cation cost among GPUs (cf. Section 4.1).

We conduct comprehensive experiments to compare our
algorithm with the state-of-the-art libraries—XGBoost [3],
LightGBM [6] and CatBoost [7]—on both CPUs and GPUs.
The experimental results show that ThunderGBM can
achieve 10x times speedup over the state-of-the-art libraries
running on a relatively high-end workstation on CPUs with
20 cores. In comparison with the libraries on GPUs, Thun-
derGBM can handle high dimensional data sets which the
existing libraries on GPUs fail. For data sets the existing li-
braries on GPUs can handle, ThunderGBM achieves up to 10
times speedup over the libraries on GPUs. This also implies
that GPU optimizations are challenging, and our careful
optimizations outperform those in existing libraries on GPU.
Furthermore, the models produced by ThunderGBM are
identical to those produced by XGBoost, and have similar
quality as those trained by LightGBM and CatBoost. The
source code of ThunderGBM is available on GitHub at
https://github.com/xtra-computing/thundergbm.

2 BACKGROUND AND RELATED WORK

In this section, we first present some background on GBDTs
and GPUs, and then discuss the related studies GBDTs.

2.1 Background

Figure 1 gives an example of GBDTs and how the prediction
works. The key idea is that multiple decision trees are
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Fig. 1. An example of trees in the GBDT and its prediction

TABLE 1
Dense and sparse data representation

Dense Sparse
y1 = 0.0,x1 = 〈0.0, 0.0, 0.1, 0.0〉 y1 = 0.0,x1 = (a3 : 0.1)
y2 = 0.4,x2 = 〈1.2, 0.0, 0.1, 0.6〉 y2 = 0.4,x2 = (a1 : 1.2); (a3 : 0.1); (a4 : 0.6)
y3 = 1.0,x3 = 〈0.5, 1.0, 0.0, 0.0〉 y3 = 1.0,x3 = (a1 : 0.5); (a2 : 1.0)
y4 = 0.2,x4 = 〈1.2, 0.0, 2.0, 0.0〉 y4 = 0.2,x4 = (a1 : 1.2); (a3 : 2.0)

trained for GBDTs, and the prediction result is the accu-
mulated values of the individual prediction of each tree. A
decision tree is a binary tree, where the internal nodes are
associated with decision rules (e.g., “salary>100k”) and the
leaf nodes are associated with values (e.g., probability of
buying a house). More details about decision trees can be
found from this reference [3] and its related material. The
decision trees in GBDTs are dependent, because the later
tree corrects the error of the previous trees.

2.1.1 Dense and sparse data representation
GBDTs are trained using a set of instances (a.k.a. data
points), and the set is called a training data set. We can
represent the training data set in either a dense or a sparse
form. The dense representation is basically a matrix, which
is efficient for accessing the value of an attribute given an in-
stance. For example, the third attribute of the fourth instance
(i.e., a3 of x4) can be easily retrieved at the third column of
the fourth row in the matrix. However, the disadvantage is
huge memory consumption for high dimension and sparse
data sets. In comparison, the sparse representation stores
only the non-zero elements, which is more memory efficient
for data sets with many attribute values of zero, but more ex-
pensive to locate the attribute value of an instance. Suppose
we have a training data set which has four instances: x1, x2,
x3 and x4 with their associated target values y1, y2, y3 and
y4, respectively. We have a dense and sparse representation
as shown in Table 1. Each attribute of an instance can be
associated with a value. For example, a3 of x4 is 2.0, where
a3 can be the “score” attribute of the “student” x4 and 2.0
is the value the “score” attribute takes.

In decision tree training, we need to enumerate all the
possible split points of each attribute, such that we can split
a node using the best split point. This approach is also called
finding the exact split point for an attribute. To facilitate
enumeration through all the split points, the matrix (e.g.,
Table 1) is transposed and the attribute values are stored in
sorted order. This is a common and efficient approach used
in training decision trees [3], [10]. The sorted results on each
attribute of Table 1 are shown below.
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a1 = (x2 : 1.2); (x4 : 1.2); (x3 : 0.5)
a2 = (x3 : 1.0)
a3 = (x4 : 2.0); (x2 : 0.1); (x1 : 0.1)
a4 = (x2 : 0.6)
We note that any missing instance value in the list is zero.
The sorted results are useful when computing the quality
(i.e., gain as defined in Section 2.1.3) of each possible split
point, because we can easily obtain the number of instances
on the left/right side of the split point under evaluation. For
large data sets, the number of possible split points of each
attribute is very large. To reduce the number of possible
split points, histograms with a fixed number of bins are used
in GBDT training. The key idea is that the domain of each
attribute is divided into B parts and the attribute values in
the same bin are considered as the same. Thus, the number
of possible split points of each attribute is B.

2.1.2 Missing values
An additional advantage of sparse representation is that
missing values of attributes are naturally supported. The
missing values are treated as either −∞ or +∞ in GBDT
training [3], which can be decided during learning. More
specifically, the missing values may be put in the left child
node (i.e., treated as −∞) or right child node (i.e., treated
as +∞), depending on which way of putting the missing
values results in better reduction of loss. In the dense
presentation, missing values need to be filled (e.g., treated
as 0) to allow sorting attribute values for efficiently finding
the exact split points of nodes.

2.1.3 Loss function and gain of a split point
Training GBDTs is to reduce the value of a loss function
denoted by l(yi, ŷi) where yi and ŷi are the true and pre-
dicted value of xi, respectively. The common loss functions
include mean squared error and cross-entropy loss [11]. The
first order and second order derivatives of the loss function
are denoted by gi and hi which are computed as follows.

gi =
∂l(yi, ŷi)

∂ŷi
, hi =

∂2l(yi, ŷi)

∂ŷ2i
(1)

where gi is also called gradient. The first order and second
order derivatives are used to compute the quality, i.e., gain,
of a split point using the following formula [3].

gain =
1

2

[ G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR − λ

]
(2)

where GL and GR denote the sum of gi of all the instances
in the left and right node, respectively; similarly, HL and
HR denote the sum of hi of all the instances in the left and
right node, respectively; λ is the regularization constant.

2.1.4 Graphics Processing Units
A GPU contains a large number of (e.g., thousands of) cores
which are grouped into streaming multiprocessors (SMs).
In the NVIDIA Compute Unified Device Architecture (CUDA),
GPU threads are grouped into blocks which are also called
thread blocks. Each thread block is executed in an SM. At
any timestamp, an SM can only execute instructions of one
thread block. Compared with main memory, GPUs have
relatively small global memory (e.g., 12 GB memory in Tesla

P100). Accessing the GPU global memory is much more ex-
pensive than computation, so we should avoid accessing the
GPU global memory as much as possible. Irregular accesses
to global memory is even more expensive. The data transfer
between CPUs and GPUs is through PCI-e which is one
order of magnitude slower than accessing the GPU global
memory. Therefore, we should make full use of the GPU
memory to efficiently handle large data sets, and reduce
data transferring between CPUs and GPUs. Previous studies
have demonstrated inefficiency of GPUs in several data-
intensive applications with irregular memory accesses [12],
[13]. The recursive nature of GBDTs has posed new technical
challenges. In this article, we propose methods to overcome
the limitation of GPU memory and take advantage of GPU
massive computing capability.

2.2 Related studies on decision trees and GBDTs
2.2.1 GPU accelerated decision tree prediction
In the studies of GPU accelerated decision trees, most of the
work focuses on the decision tree prediction process. Sharp
proposed to use GPUs for accelerating the decision forest
prediction [14]. Sharp’s key idea is to use a GPU thread
to predict the target value of one instance in order to take
advantage of the massive thread parallelism on the GPU.
Similar to Sharp’s algorithm, Birkbeck et al. presented a
GPU-based algorithm for the decision tree prediction [15].
Their algorithm stores the decision tree in the texture mem-
ory of GPUs to improve efficiency. Van Essen et al. tried to
find out which hardware (i.e., multi-core CPUs, GPUs and
FPGAs) is the best for decision tree prediction [16], and their
results show that FPGAs performs the best for prediction.
Although the above proposed techniques can be used to
accelerate the prediction module during GBDT training, our
proposed approach is faster since the prediction can be
totally avoided by reusing intermediate training results (cf.
Section 3.2.1).

2.2.2 GPU accelerated decision tree training
Grahn et al. proposed to use a GPU thread to train one
decision tree for the random forest training [17]. Thus, many
decision trees can be trained in parallel, unlike the trees
having dependency in GBDTs. Nasridinov et al. developed
a GPU-based algorithm to compute the information gain
when finding the best split point of a node [18]. Lo et al. [19]
designed a GPU-based algorithm to train decision trees.
Their key idea is to split one node at a time and sort the
values of each attribute for all the instances in the node. One
key limitation of the above discussed GPU-based algorithms
for decision tree training is that the level of parallelism
is low and the GPU can be severely underutilized. Strnad
and Nerat [20] proposed a GPU-based algorithm with
three levels of parallelism: evaluating multiple possible split
points concurrently, finding the best split point for multiple
attributes on a node concurrently, and finding the best
attribute for multiple nodes concurrently. The bottleneck of
their algorithm lies in launching too many kernels inside
GPU kernels, and repeatedly sorting attribute values for
every newly created node. For example, many small sort-
ing operations degrade the GPU performance significantly.
Most of the above-mentioned ideas for training decision
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trees are implemented in the GPU version of XGBoost. How-
ever, the GPU version of XGBoost supports only dense data
representation when finding exact split points. In contrast,
our algorithm utilizes data compression techniques to train
GBDTs more efficiently and to support larger data sets.

2.2.3 Gradient Boosting Decision Trees
Gradient Boost Machines (GBMs) were first introduced by
Friedman [21], and have shown great potential in many real
world applications [22], [23]. Panda et al. [10] proposed a
MapReduce-based learning algorithm for decision trees that
ensembles with approximation when finding split points for
large data sets. Tyree et al. proposed parallel CPU boosting
regression trees for webpage ranking problems [24]. Si et al.
developed a GBDT training algorithm for high dimensional
sparse output [25]. Chen and Guestrin proposed an efficient
GBDT algorithm which is implemented in XGBoost [3].
Mitchell and Frank proposed to use GPUs to accelerate the
finding split point procedure of XGBoost [26]. XGBoost with
GPUs uses dense data representation for the ease of tracking
back which attribute has the best gain, which makes it
unable to handle large data sets due to the large memory
consumption. LightGBM [6] is an alternative implementa-
tion of GBDTs, but it only supports finding approximate
split points. XGBoost also supports approximation. The
key difference of the approximation between XGBoost and
LightGBM is that XGBoost adapts the breadth first node
splitting and LightGBM uses the depth first node splitting.
CatBoost [7] is the latest implementation of GBDTs and
also only supports finding approximate split points. Cat-
Boost trains much simpler trees which are called oblivious
decision trees where a level of the tree has the same split
point [27]. Table 2 summarizes the key differences between
our ThunderGBM algorithm with the other popular GBDT
implementations on GPUs.

2.3 The GBDT training and the existing libraries
The GBDT training consists of two key components: (i)
finding a split point to a node and (ii) splitting a node.

2.3.1 The existing GBDT libraries
The most popular library for GBDT training is XGBoost [3].
Here, we first describe both the CPU implementation and
GPU implementation of GBDTs in XGBoost. Then, we
present LightGBM [6] and CatBoost [7].

The parallel XGBoost on CPUs: The key idea of parallelism
in XGBoost is to find the best split points for multiple
attributes of multiple nodes concurrently (i.e., Line 5 and 7
of Algorithm 1). In other words, XGBoost uses attribute level
and node level parallelism. Parallelizing these two levels
results in more than enough threads to occupy the CPUs.

The parallel XGBoost on GPUs: Similarly to the CPU
version, XGBoost on GPUs also uses attribute level and node
level parallelism. For attribute level parallelism (i.e., Line 7
of Algorithm 1), a GPU thread block is dedicated to compute
the best split point of an attribute. For node level parallelism
(i.e., Line 5), the algorithm uses a so-called “node interleav-
ing” techniques which requires reserving many copies of
memory for gi and hi of instance xi (the number of copies
equals to the number of nodes to split). Moreover, for the

ease of tracking back which attribute the best split point
belongs to, they use the dense data representation for the
training data set. Therefore, the XGBoost on GPUs requires
too much GPU memory and cannot handle large data sets.
That motivates us to carefully examine the algorithm, and
develop GPU-efficient parallelization as well as memory
access patterns (as described in the next section).

LightGBM and CatBoost have similar parallelism prin-
ciples as XGBoost. The key difference is that LightGBM
eliminates some instances with small gi and combines at-
tributes that are correlated, and CatBoost trains the so-
called oblivious trees where the whole level of a tree has
an identical split point.

3 OUR THUNDERGBM ALGORITHM

3.1 Challenges and design rationale

3.1.1 Challenges
The key challenges of designing ThunderGBM are in four
aspects. First, the memory access pattern is irregular due to
the nature of tree structures. The irregular memory accesses
can significantly degrade the efficiency of GPU-based algo-
rithms. Second, the values of the attributes of every node
need to be sorted to facilitate the enumeration of possible
split points, and the number of sorting operations with
small inputs may be huge. Performing a large number of
sorting operations is expensive on GPUs especially for a
large number of small segments (each attribute of a node
is stored as a segment). Third, the data parallel granularity
changes as the tree grows. At the early stages, the nodes
are large which contain many training instances (e.g., the
root node contains all the training instances); at the later
stages, the nodes become smaller but the number of nodes
is large. This is challenging because the massive thread
parallelism of the GPU needs to adapt to different parallel
granularities. Fourth, the same attribute value appears in
many instances which causes the same split point having
different gains when the gains are computed in parallel.
Removing duplicated split points is expensive, because we
need to access the neighboring elements which requires
extensive memory accesses.

3.1.2 Key design rationale
In order to better take advantage of GPU accelerations, we
have the following design rationales. To begin with, accord-
ing to the massive thread parallelism of GPUs, we develop
fine-grained multi-level parallelism for GBDTs. In addition
to the node level and attribute level parallelism, we propose
fine-grain parallelism by parallelizing the gain computation
of each split point. Due to the GPU memory limitation,
we look for more memory efficient representation than the
dense and sparse representations. Particularly, we exploit
Run Length Encoding (RLE) compression in ThunderGBM,
since RLE compression is able to (i) reduce memory con-
sumption, (ii) improve the efficiency of finding the best split
point due to the avoidance of repeated attribute values,
(iii) retain efficiency in splitting nodes without a total de-
compression. RLE compression is particularly effective for
our algorithm (especially for handling data sets with high
compression ratio), because it helps reduce PCI-e traffic.
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TABLE 2
Comparision between ThunderGBM and existing GPU implementations of GBDTs. XGBoost (GPU) has the option of finding exact split points, but
it either runs out of memory or produces extremely large RMSE. Hence, we consider XGBoost (GPU) does not support finding exact split points.

GBDT GPU
implementation

sparsity
aware

multi-GPU
support

find exact
split points

find approximate split
points with histograms

use data
compression

train regular
decision tree

XGBoost (GPU) [3] 7 3 7 3 7 3
LightGBM (GPU) [6] 3 7 7 3 7 3
CatBoost (GPU) [7] 7 3 7 3 7 7
ThunderGBM 3 3 3 3 3 3

Based on the fine-grained multi-level parallelism and
compression, we further address all the technical challenges.

• To reduce the irregular memory access, we propose
to reuse the intermediate training results to compute
gradients and avoid traversing the trees. To avoid the
same split point having different gains, we exploit
the RLE compression and develop novel techniques
to split an RLE element. We also design a memory
friendly and fast attribute ID look up technique in
node splitting.

• To keep the attribute values sorted in a node for
ease of locating the best split points, we propose
to use the order preserving partitioning, powered
by techniques to control memory consumption. The
order preserving partitioning is further enhanced by
a stable sorting based method.

• To further improve the efficiency of finding the best
split points, we extend ThunderGBM to support
finding approximate split points using histograms
and propose a series of novel techniques. For ex-
ample, to reduce the shared memory consumption,
we propose sparsity aware techniques to build his-
tograms faster and more memory friendly. When
building the histograms, we first build a partial his-
togram on GPU thread block-level, and then build
the global histogram by aggregating the partial his-
tograms. Through the exploitation of histogram sub-
traction, ThunderGBM can reduce the workload in
building histograms by half.

• To handle the changing number of nodes and the
increasing number of segments (the number of seg-
ments equals to the number of attributes times the
number of nodes), we develop techniques to dynam-
ically allocate the number of segments that each GPU
thread block handles.

• Finally, we also enable the support for multi-
ple GPUs in order to handle larger data sets
which cannot be entirely stored in one GPU.
Through the attribute based training data partition-
ing, ThunderGBM avoids exchanging partial his-
tograms among GPUs, and hence significantly re-
duces the communication cost.

Our major contributions in this extension are in four
aspects: (i) proposing data partitioning based on stable sort
(cf. Section 3.2.2), and fast and memory efficient attribute
ID lookup in node splitting (cf. Section 3.5), (ii) developing
sparsity aware techniques to support finding approximate
split points and build histograms efficiently (cf. Section 3.4),
(iii) using two-stage histogram building to exploit shared
memory and histogram subtraction to reduce histogram

building workload, and (iv) designing mechanisms to sup-
port multiple GPUs in order to handle larger data sets which
cannot be entirely stored in one GPU (cf. Section 4.1).

3.2 Training GBDTs using sparse representation
Here, we first provide the technical details of finding the
exact split points in ThunderGBM when the training data
is represented in sparse formate. Then, we explain the
techniques of splitting a node and how to keep the attribute
values in the new nodes sorted.

3.2.1 Finding the exact split point for a node
Finding the exact split point for a node is to find the split
point with the maximum loss reduction. All the possible
split points are enumerated based on the training data set.
There are three steps in finding the exact split point for a
node: (i) compute the gain for each possible split point, (ii)
reset the gain of repeated split points to 0, and (iii) select the
best split point (i.e., the split point with the maximum gain).

(i) Compute the gain of a split point: As discussed in Sec-
tion 2.1.3, we need to compute gi and hi for computing the
gain of each possible split point (cf. Equation 2). Although
ThunderGBM supports user defined loss functions, for ease
of presentation we use the mean squared error as the loss
function1. Then, gi = 2(ŷi − yi) and hi = 2. As computing
gi and hi requires the predicted value (i.e., ŷi) for each
training instance, a naive approach is that we first use
the trained decision trees to perform prediction and then
compute gi and hi using Equation 1. This naive approach
results in a large number of irregular memory accesses due
to tree traversal. Next, we present optimizations to avoid
the irregular memory accessess.

Computing gi using intermediate training results: Before we
present our optimization in computing the predicted values,
we first discuss a simple optimization. The quick and simple
optimization is that each time we need to compute gi and hi,
we only predict the target value using the latest trained tree
and reuse the predicted target value of the previous trees
(i.e., predict a target value incrementally). This is because
the predicted target value is the accumulated result of all the
previous trees. However, traversing a tree on GPUs is very
expensive while predicting the target values. This is because
the tree traversal results in thread branch divergence and
irregular memory access. Recall that during the training, the
training instances are partitioned into new nodes. At the
end of training a tree, all the training instances are in leaf
nodes. Hence, we avoid traversing the tree to decide which
leaf node an instance belongs to, and perform prediction by

1. ThunderGBM can support other loss functions by customizing the
computing of gi and hi, and nothing else needs to be changed.
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obtaining the weight of the leaf node where the instance
belongs.

After we have obtained gi and hi, we can compute GL,
GR, HL and HR. Because the values of each attribute are
sorted as discussed in Section 2.1.1, we can consider all the
instances on the left (right) part of the possible split point go
to the left (right) node. Then, we can obtain the aggregated
gi and hi of the left and right nodes (e.g., GL and GR) for
computing the gain shown in Equation 2 relatively easily as
follows. Computing GL and HL can be done by segmented
prefix sum which is available in CUDA Thrust [28].

GL of the ith possible split point is the ith element of
the prefix sum result; GR equals to (G − GL) where G is
the total gradients of the node to split. The gains of all the
possible split points are computed in parallel on GPUs. The
instances with missing values on that attribute either go to
the left or right child node, depending on which way results
in a larger gain.

(ii) Reset gain of repeated split points: We need to compute
the gains of all the possible split points of an attribute
(e.g., a1 in Section 2.1.1) in parallel. However, some split
points may be repeated in the attribute (e.g., a1 = 1.2 in
Section 2.1.1). The split points with the same value next to
each other may have different gains. The different gains
are due to different values of GL, GR, HL and HR (cf.
Equation 2) computed from the segmented prefix sum.

The interpretation of the different gains is that instances
of equal attribute values to the split point can go to the left
child node and the right child node. In reality an instance
should belong to only one node (either left or right child
node). To avoid the same split point having different gains,
we set the gains after the first value to 0, i.e., forcing all the
instances with the same attribute values going to only one
child node.

(iii) Select the best split point for each node: After we have
obtained the gain of all the possible split points, we first
use the segmented reduction to obtain the best split point
for each attribute of a node. Then, we use the GPU parallel
reduction [29] to get the best split point for each node. When
using segmented reduction, each segment needs to have
its own key to distinguish one segment from another. A
naive method to set key for each segment is using one block
per segment. However, the granularity of parallelism varies
as the tree grows. Specifically, the number of segments is
increasing as the tree grows, and some data sets may have
a large number of segments (due to high dimensionality
and the large number of tree nodes). Using one block per
segment results in low efficiency, due to the overhead of
scheduling and launching a large number of GPU thread
blocks.

We propose techniques to automatically decide how
many segments a block should process depending on the
data set. The simple and effective formula we use is:
1 + # of segments

(# of SM)×C where C is a user defined constant and we
set it to 1000 (i.e., one SM—GPU Stream Multi-processor—
executes 1000 blocks). The basic idea of the formula is that
we set the number of blocks created to handle the segments
to a fixed number, such that the number of blocks does not
explode when the number of segments is large. Although
the formula is simple, it brings 10% to 20% performance
improvement for some data sets [9].

3.2.2 Splitting a node
After we have found the best split point, we split the node
using that split point. Splitting a node is essentially dividing
the training instances in the node into two groups: one
group to be relocated in the left child and the other group to
be relocated in the right child. During splitting, an important
task is to partition the training instances that belonging to
the current node into two child nodes. For partitioning,
we can use the sorted values on that attribute to directly
partition the training instances, and we will present more
details in Section 3.5. The most challenging task in splitting
the node is to maintain values of each attribute in the new
nodes in sorted order, for efficiently finding the exact split
points. Here, we propose to extend the histogram based
method [30] for order preserving partitioning, and further
develop data partitioning using stable sort.

Histogram based data partitioning: In the histogram based
data partitioning, suppose we want to partition the data into
k partitions (i.e., creating k new nodes of a tree); each thread
handles b elements and requires maintaining k counters (a
counter for each partition). Based on the counters of each
thread, we can build histograms and determine where an
element should go to in the new partitions. So the total
number of counters is: (# of threads) × (# of partitions).
A naive approach is to set the workload of a thread to a
constant (e.g., b = 16), but such an approach suffers from the
uncontrollable amount of memory consumption and runs
out of GPU memory for large data sets, because of the large
number of counters. To control the memory consumption
by the counters, we need to limit the number of threads.
To address the limitation of the existing approach [30], we
propose techniques to automatically decide the number of
threads used in partitioning a node under the memory
constraint. The formulas for computing the thread workload
and the number of threads are shown below.

thread workload =
(# of attribute values)× (# of nodes)

Maximum allowed memory size

# of threads =
# of attribute values

thread workload
The basic idea is that we allocate more workload to a thread
when the number of partitions (i.e., # of attribute values ×
# of nodes) is large, such that we avoid using a large number
of counters and running out of GPU memory. The maximum
allowed memory size is a user predefined value (e.g., 230

for 2GB). This histogram based data partitioning is imple-
mented in our previous version of ThunderGBM [9]. Next,
we discuss the sorting based approach for data partitioning
which is more efficient in terms of shared memory con-
sumption.

Data partitioning using stable sort: Our key goal in this
data partitioning is to preserve the sorted order for the
attribute values. This goal can be accomplished by a stable
sort operation. More specifically, we assign a key to each
attribute value, where the key is computed based on the
attribute ID and node ID of the attribute value. In Thun-
derGBM, we store the attribute ID in the higher bits and
the node ID in the lower bits of the key. The underlying
idea is that the attribute ID serves as the primary key, and
the node ID serves as the secondary key. As a result, the
sorting algorithm orders the attribute values first by their
attribute ids and then by the node ids if the attribute ids
are equal. The sorting algorithm we use in ThunderGBM
is radix sort provided in NVIDIA CUB [31]. Using stable
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sort instead of histogram based data partitioning reduces
the shared memory consumption, because of the avoidance
of maintaining the counters for each partition.

3.3 GBDT training with Run-length Encoding

Here, we present the Run-length Encoding (RLE) compres-
sion for storing the training data more memory efficiently.
We also describe the property of RLE compression in GB-
DTs, where the same split point with different gains issue
is avoided and the gain computation cost is reduced. The
key intuition of RLE is that the instances with the same
attribute values in a node are combined into one. Thus, the
memory consumption can be improved and we can also
avoid evaluating the gain of duplicated split points.

We have observed that there are many repeated val-
ues in each sorted attribute, and the repeated values can
be compressed using Run-length Encoding (RLE) [32].
Given a sequence of values 1.2, 1.2, 1.2, 3.4, 3.4, 3.4, 3.4,
RLE represents the sequence using value-and-length pairs:
(1.2, 3), (3.4, 4).

This compression has the following two advantages. (i)
Reduce memory consumption: some data sets which orig-
inally cannot fit into the GPU memory now can be stored
in the GPU memory; the memory traffic for transferring
the training data set through PCI-e is reduced. (ii) Improve
the efficiency of finding the best split point: the same split
point with different gains issue is naturally avoided and
the number of split points to compute gains is reduced.
Moreover, as we will see later in this section, we retain fast
execution time in splitting nodes without the requirement
of a total decompression.

Since the GBDT with RLE compression is similar to the
GBDT with sparse representation (discussed in Section 3.2)
in selecting the best split, the major difference is how to
compute gain of split points using RLE. Computing the gain
for each possible split point requires computing gi and hi for
each instance in the node. In the sparse data representation,
each possible split point corresponds to an attribute value of
one instance; in data representation with RLE compression,
each possible split point corresponds to a few instances with
the same attribute value. Here, we denote the first order
and second order derivatives for an RLE element by g′i and
h′i, respectively. Then, g′i and h′i for the split point of RLE
are the sum of the first order and second order derivatives,
respectively. To calculate the first order derivative g′i (resp.
the second order derivative h′i) for each RLE element is to
compute the sum of gi (resp. the sum of hi) of each instance
in the node.

3.4 Finding best split points using histograms

The number of possible split points may be very large for
data sets with a large number of instances. The cost of
finding the exact split points is high for such problems.
Here, we elaborate the techniques of finding approximate
split points using histograms, and the details of two-stage
histogram building and building histograms by subtraction.
Then, we present building histograms for high dimensional
data with lock-free techniques. The key idea of finding
approximate split points is that we only consider a fixed

number of possible split points instead of enumerating all
the possible split points from the training data.

Existing studies [3], [6], [7] use histograms with a fixed
number of bins to tackle the problems of having too many
possible split points. Then the number of possible split
points of an attribute equals to the number of bins. The
key idea is that the domain of the values of an attribute
is “evenly” divided into B parts, where “evenly” means
that each part has the similar number of attribute values.
After the domain is divided into B parts, attribute values
are mapped to their corresponding bin ids. Dividing the
values intoB parts is a well-studied problem in the database
community. We suggest the interested readers to read the
work [33] for more details. In ThunderGBM, we also use
histograms to address the problems of having a large num-
ber of possible split points.

In ThunderGBM, we build multiple histograms concur-
rently for a node, where the number of histograms in a node
equals to the number of attributes. More formally, suppose
there are N nodes needed to be split, and the total number
of attributes is A. Then, the total number of histograms we
need to build is (N × A). In ThunderGBM, the histograms
are built in two stages. In the first stage, each GPU block
builds a partial histogram using shared memory, and then
in the second stage the partial histograms on different GPU
blocks are aggregated in the global memory to form the final
histogram for an attribute of a node.

Another novel technique we make use of is building
histograms for child nodes by subtraction. More specifically,
when we build the histograms for two sibling nodes n1
and n2, we first build the histograms for one of the two
sibling nodes. Without loss of generality, suppose we decide
to build the histograms for node n1. Then, we subtract the
histograms of their parent by those of node n1 to obtain the
histograms of n2. Thus, we reduce the histogram building
workload by half with subtraction. Formally, we need to
build (2 × A) histograms in total for n1 and n2. With
subtraction, we only need to build A histograms. Moreover,
when selecting which sibling node to build the histograms,
we select the node with fewer attribute values. This is
because building histograms for the node with few attribute
values has lighter workload.

3.4.1 Building histograms for high dimensional data
As an attribute of a node corresponds to a histogram, the
number of histograms may be extremely large for high
dimensional data. For example, a public data set called log1p
has more than four million attributes. Training trees for
such data sets requires constructing billions of histograms
(i.e., N × 4 million), which leads to running out of shared
memory and performing a large number of locking oper-
ations. To tackle the problems of building a large number
of histograms efficiently, we propose the sparsity aware
histogram building technique. We consider each distinct
attribute value as a cut point of the histogram for high
dimensional data. Then, the same attribute values are stored
in the same bin of the histogram. Thus, we can perform
a sorting of the attribute values, and then we perform
a reduction operation on GPUs to accumulate the same
attribute values into the bins of the histograms. By doing
so, we can build a large number of histograms without
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requiring much shared memory. An intriguing property of
this approach is that the process of histogram building is
lock-free.

3.5 Applying the best split points to the nodes
After obtaining the best split point for a node, we split
the node into two child nodes. This node splitting requires
assigning the instances of the parent node to two child
nodes. Assigning the instances to the child nodes is non-
trivial, because the training data is stored in an attribute
oriented manner. We cannot directly access to the attribute
values of an instance without scanning the whole training
data set. In this work, we use the associated instance ID
of each attribute value to assign the instances to the child
nodes. With the attribute values of an instance and the best
split point of the parent node, we can figure out which child
node the instance belongs to.

Another technical challenge is how to obtain the at-
tribute ID of an attribute value. There are three ways to
help find the attribute ID of an attribute value. The first way
is to store an attribute ID for each attribute value, which
requires a large amount of GPU memory. The second way
is to perform a binary search to find the attribute ID of
a given attribute value, which requires both computation
and irregular memory access. It is worthy to note that all
the attribute values are stored in a one-dimensional array
together with the start position and length of each attribute,
i.e., the Compressed Sparse Column (CSC) format. Hence,
it is possible to perform binary search to locate the attribute
ID of an attribute value in the array. The third way is
to associate the attribute ID with the GPU thread block
ID which avoids extra memory consumption and irregular
memory access for the attribute ID lookup. In ThunderGBM,
we use the third way to obtain the attribute ids.

4 ENHANCEMENT OF THUNDERGBM
In this section, we present some enhancement of Thun-
derGBM including supporting multiple GPUs and the pre-
diction algorithm for completeness.

4.1 Training GBDTs on multiple GPUs
One of the key limitations of GPUs is that the global
memory size is relatively small (e.g., 12GB) compared with
the size of main memory. In this work, we propose to
partition the training data by attributes to handle large data
sets (i.e., column based partitioning). This fashion of data
partitioning is different from the existing libraries, such as
XGBoost and CatBoost, which partition the training data by
instances (i.e., row based partitioning). Note that LightGBM
does not support multiple GPUs.

There are two advantages of the attribute based parti-
tioning. First, both finding exact split points and finding
approximate split points by histograms are natively sup-
ported. This is because finding the split points of an attribute
requires accessing all the attribute values. Storing all the
attribute values of an attribute in one GPU helps perform
finding the split points more communication efficiently. In
comparison, XGBoost and CatBoost do not support mul-
tiple GPUs for finding the exact split points, because the

request of accessing all the attribute values when finding a
split point requires too much communication among GPUs.
Therefore, XGBoost and CatBoost only support finding ap-
proximate split points by histograms, which has relatively
lower communication cost compared with finding the exact
split points.

The second advantage is that the GPUs do not need to
exchange the partial histograms in order to find the approx-
imate splits, since all the attribute values of an attribute are
stored locally and the GPU has the whole histogram. Hence,
the GPUs only need to exchange the local best split points in
order to obtain the global best split points for the tree nodes.
This reduces the communication cost fromO(N×A×B) to
O(N ×A), where N is the number of nodes needed to split,
A is the number of attributes in the training data set and
B is the number of bins of the histograms. The intuition is
that a histogram is replaced by a local best split point when
communicating to other GPUs.

4.2 ThunderGBM prediction algorithm
In GBDT training, training the next tree is based on the
results of the previous trees. Hence, the prediction algorithm
is a part of the GBDT training algorithm. Although this
prediction algorithm can be used for other purposes (e.g.,
predict target values for unseen instances), we discuss it
here for the completeness of our GBDT training algorithm.
We need to predict the target values in order to compute
derivatives (e.g., gi) for training a new tree (i.e., splitting
nodes). To perform prediction in parallel, we do both in-
stance level and tree level parallelism (i.e., one GPU thread
predicts the partial target value of an instance using one
tree), since all the instances are independent and all the trees
can be traversed independently. The prediction algorithm
repeats the following two steps until a leaf node is reached:
(i) examine the decision making condition (i.e., the informa-
tion of the split point) of the current node for an instance,
and (ii) go to the left (resp. right) child if the condition is
true (resp. false). Other optimizations [34] for decision tree
prediction can be applied to ThunderGBM, but they are out
of the scope of this article, because prediction can be totally
avoided in the GBDT training as we have discussed earlier.

4.3 Summary of computation steps and communica-
tion in the GBDT training
In the GBDT training, there are two key computation steps:
(i) finding a split point for a node and (ii) splitting a node.
In the following, we relate the challenges mentioned in
Section 3.1 to the two key computation steps. The irregular
memory access issue occurs in both of the steps, and the
large number of sorting operations occurs in the first step.
The varying data parallel granularity challenge appears in
both steps. The same split point having different gain issue
occurs in the first step.

There are two major communications during the GBDT
training: (i) obtaining the global best split point and (ii)
splitting the training instances in one node into two groups.
Obtaining the global best split point is simple and is just
aggregating the local best split points from different GPUs.
In comparison, assigning a training instance to a new node
is challenging, i.e., updating the mapping between node
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TABLE 3
Information of data sets used in the experiments

data set card. dim. data set card. dim.
covetype 581012 54 log1p 16087 4272228
e2006 16087 150361 news20 19954 1355191
higgs 1.1x107 28 real-sim 72201 20958
ins 13184290 35 susy 5x106 18

IDs and instance IDs. This is because the information of
an instance is stored in multiple GPUs. Therefore, in our
algorithm, each GPU constructs a partial mapping between
node IDs and instance IDs, and then the GPUs need to
exchange the partial mapping information between node
IDs and instance IDs, in order to correctly assign a training
instance to a new node.

5 EXPERIMENTAL STUDIES

Experimental setup. We used 8 publicly available data sets
as shown in Table 3. The data sets were downloaded from
the LibSVM website2. The data sets cover a wide range of
the cardinality and dimensionality. The experiments were
conducted on a workstation running Linux with 2 Xeon E5-
2640v4 10 core CPUs, 256GB main memory and two Pascal
P100 GPUs of 12GB memory. Each program was compiled
with the -O3 option. ThunderGBM was implemented in
CUDA-C. The default tree depth is 6 and the number of
trees is 40. The total time measured in all the experiments
includes the time of data transfer via PCI-e bus.

Comparison. We compare ThunderGBM with well-known
GBDT libraries, namely XGBoost [3], LightGBM [6] and
CatBoost [7]. The version number of XGBoost, LightGBM
and CatBoost on GitHub is 85939c6, 2323cb3 and 503b3b8,
respectively. The libraries support both CPUs and GPUs,
hence we compare ThunderGBM with both versions of
the libraries. Although ThunderGBM supports other loss
functions, the loss function in our experiments for all the
libraries (including ThunderGBM) is the mean squared er-
ror: l(yi, ŷi) =

∑
i (yi − ŷi)2.

5.1 Overall performance study
This set of experiments aims to study the improvement of
execution time of ThunderGMB over the existing libraries
XGBoost, LightGBM and CatBoost. We first present the
improvement of ThunderGBM over the three libraries on
the GPU, and then we present the improvement of Thun-
derGBM over the libraries on CPUs. We show that Thun-
derGBM running on the GPU significantly outperforms the
three existing libraries on the GPU or the CPU. After that,
we study the efficiency improvement of ThunderGBM over
our previous implementation [9]. Finally, we compare the
Root Mean Squared Error (RMSE) of the libraries against
ThunderGBM to study the quality of the trained models.

5.1.1 Execution time comparison on the GPU
We measured the total time (including data transfer from
main memory to GPUs via PCI-e bus) of training all the trees
for ThunderGBM, XGBoost, LightGBM and CatBoost. Dur-
ing training, the split points are found using the histogram

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2. Comparison with existing libraries on the GPU and CPUs

based method. We study the execution time of finding the
exact split points in Section 5.1.3, as the functionality is only
supported by ThunderGBM and XGBoost.

The results of the four GPU implementation of GBDTs
are shown in Figure 2a. The first observation is that our
ThunderGBM algorithm can handle all the data sets effi-
ciently, and outperforms all the existing libraries. In com-
parison, XGBoost and CatBoost cannot handle high dimen-
sional data sets such as e2006, news20 and log1p (marked
with “n/a”). This is because the GPU versions of XGBoost
and CatBoost do not make use of data sparsity, which leads
to running out of GPU memory. Moreover, XGBoost took 27
seconds to handle real-sim which CatBoost cannot handle.
ThunderGBM can handle real-sim 15 and 3.6 times faster
than XGBoost and LightGBM, respectively. The GPU version
of LightGBM is more reliable than XGBoost and CatBoost
and can handle all the data sets. However, ThunderGBM
can outperform LightGBM by up to 10 times on the data
sets tested (e.g., log1p).

5.1.2 Execution time comparison on CPUs
We study the speedup of ThunderGBM on the GPU over
XGBoost, LightGBM and CatBoost on CPUs. Note that the
number of CPU threads (i.e., 40 threads) in XGBoost is
automatically selected by the XGBoost library. We have also
tried XGBoost with 10, 20, 40 and 80 threads, and found
that using 40 threads results in the shortest execution time
for XGBoost in the 8 data sets. Similarly for LightGBM and
CatBoost, the number of threads is chosen by the libraries.

The results of the three libraries on CPUs are shown in
Figure 2, in comparison with ThunderGBM running on the
GPU. Among the three libraries, LightGBM is more reliable
compared with XGBoost and CatBoost. XGBoost runs out of
memory on the log1p data set, while CatBoost runs out of
memory on e2006 and news20 besides log1p. ThunderGBM
is often several times faster than LightGBM. For e2006,
ThunderGBM achieves 60 times speedup over XGBoost.

5.1.3 Comparison with our previous implementation [9]
Our previous implementation of GBDT training on GPUs
only supports finding exact split points, so we compare it
against our new implementation with finding exact split
points. As we can see from Figure 4a, our new implemen-
tation denoted by “thundergbm” consistently outperforms
our previous implementation [9] denoted by “thundergbm
(old)”. For example, the speedup of our new algorithm is 3.2
and 2.5 times over our previous implementation on ins and
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Fig. 3. Elapsed time breakdown on e2006 and higgs

susy, respectively. The improvement over our previous im-
plementation mainly lies in (i) the use of stable sort instead
of data partitioning to reduce shared memory consumption
(cf. Section 3.2.2), and (ii) fast and memory efficient attribute
ID look up in node splitting (cf. Section 3.5).

To further investigate why the new version of Thun-
derGBM is faster than the previous version. We use nvprof to
obtain the detailed measurements for the two versions. The
results are shown in Table 4. Overall, our new algorithm
increases GPU utilization, GFLOPs and shared memory
throughput; it decreases the PCI-e transactions and read
operations to the caches and global memory. Figure 4 shows
that the effect of our optimizations on different key com-
ponents. The elapsed time for RLE compression and data
partitioning is significantly reduced, which leads to the final
improvement of the total elapsed time.

5.1.4 RMSE comparison
We have compared the trees constructed by ThunderGBM
and XGBoost, and found that the trees are identical. Here,
we show the Root Mean Squared Error (RMSE) on the train-
ing data sets for the trees trained by ThunderGBM, XGBoost,
LightGBM and CatBoost. Due to the space limitation, we
summarize the key results here. ThunderGBM produces
the same RMSE as XGBoost. The RMSE of CatBoost is
always higher than ThunderGBM on the data sets. This is
because CatBoost uses the simplified version of decision
trees called “oblivious decision trees” where a level of
the tree has the same split point [27]. When comparing
with LightGBM, ThunderGBM has comparable RMSE. In
summary, the quality of the trees trained by ThunderGBM
is the same or similar to XGBoost and LightGBM, and is
better than CatBoost. This indicates ThunderGBM can train
the trees much faster than the three libraries while having
better or similar tree quality.

5.2 Scalability studies on multiple GPUs
We study the scalability of different GPU based GBDT
implementations on multiple GPU environments. Figure 4b
shows the results of the four implementations on two Pascal
P100 GPUs. LightGBM does not support multiple GPUs,
and the elapsed time is identical to Figure 2a on a single
GPU. We do not duplicate the results of LightGBM here for
ease of inspecting the other three implementations.

The training time of XGBoost on two GPUs (cf. Fig-
ure 4b) is even higher than that on single GPU (cf. Figure 2a).
For example, XGBoost only needs less than 2 seconds to
handle the covtype data set using one GPU, while it needs
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Fig. 4. Comparison with old version and existing libraries on 2 GPUs

more than 20 seconds to handle the same data set using two
GPUs. Similarly, using two GPUs does not help CatBoost
much either, and it again fails to handle the data sets (e.g.,
e2006, log1p and news20) that it cannot handle using one
GPU. As the other libraries do not support multiple GPUs
well, we study the scalability of ThunderGBM only next.

5.2.1 Scalability of ThunderGBM on multiple GPUs
For investigating the scalability of ThunderGBM over mul-
tiple GPUs, we constructed larger data sets using the higgs
data set. The original data set has about 300 million attribute
values. We constructed five bigger data sets of 600, 900,
1200, 15000, and 18000 million attribute values, respectively,
through attribute value duplication. We used four Tesla K80
GPUs in the experiments.

Figure 5a shows the results. ThunderGBM on one GPU
can handle data sets of size up to 600 million attribute
values, and that on two GPUs can handle data sets of size
up to 1500 million attribute values. With three or four GPUs,
ThunderGBM can handle all the six data sets. Therefore,
ThunderGBM can handle very large data sets with more
GPUs. Another observation from the figure is that Thun-
derGBM on more GPUs is often faster than that on fewer
GPUs, especially for large data sets.

5.3 Sensitivity studies
We perform sensitivity studies on two key parameters of
GBDTs: tree depth and the number of trees. Due to the space
limitation, here we briefly summarize the results. We vary
the tree depth from 4 to 10 and the number of trees from
10 to 80. These sensitivity studies show that the speedup of
ThunderGBM over other libraries is stable. The elapsed time
of ThunderGBM on the GBDT training increases as the tree
depth or the number of trees increases.

5.4 Elapsed time of the key components
Here we study the elapsed time of three key components:
(i) building histograms, (ii) partitioning data to child nodes
and (iii) applying the best splits. The elapsed time of the
other components is denoted by “others”. As we can see
from Figure 5b, these three key components account for
more than 65% of the total elapsed time. In the higgs data
set, these three components even account for 98%. A further
observation is that partitioning data to new nodes is the
dominating component in the whole training. Hence, for the
future improvement of ThunderGBM, the key challenge is
to improve the efficiency of partitioning data to new nodes.
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TABLE 4
Detailed comparison with the old version of ThunderGBM [9]

e2006 GFLOPs
Global memory

read transactions
L2 read

transactions
L1 read

transaction
Shared memory load
throughput (GB/s)

PCI-e transactions GPU utilizationCount Total size (MB)
thundergbm (old) 19.21 8.8x109 6.5x1010 1.2x1011 164 5928 119 0.81
thundergbm 90.24 2.3x1010 3.7x1010 7.5x1010 230 1885 161 0.84

higgs
thundergbm (old) 4.03 2.2x1014 7.5x1011 1.0x1012 155 5928 1267 0.77
thundergbm 8.94 1.0x1010 1.7x1010 3.8x1010 250 2211 4694 0.85
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Fig. 6. Individual optimization and prediction efficiency

5.5 Impact of individual optimizations
As we have discussed in Section 3, we have some op-
timizations specifically for our GPU algorithm. Here, we
study their individual impacts on the overall efficiency. The
techniques include (i) Customized IdxComp Workload: to
decide thread workload depending on datasets discussed in
Section 3.2; (ii) RLE: to compress datasets with RLE com-
pression discussed in Section 3.3; (iii) SmartGD: to compute
gi and hi using the intermediate training results discussed
in Section 3.2; (iv) Directly Split RLE: to directly split RLE
elements as discussed in Section 3.3. We switched off each
individual optimization, and investigate the execution time
change to the entire algorithm. Figure 6a shows the change
in the execution time of disabling each optimization. Two
techniques (including SmartGD and Directly Split RLE)
have quite significant impact on the overall algorithm. This
demonstrates the important of our SmartGD and Directly
Split RLE techniques. The Customized IdxComp Workload
has significant improvement on execution time for large
datasets, this is because more workload a thread does, more
memory the algorithm saves.

5.6 Prediction execution time comparison
For completeness, we also evaluated the execution time
of prediction of our algorithm in comparison with XG-

Boost. Figure 6b provides the results of prediction time
of ThunderGBM, XGBoost running on CPUs and XGBoost
running on the GPU. Our algorithm is often much faster
than the XGBoost implementations. The trees trained by
ThunderGBM and XGBoost are the same. Therefore, the
predictive accuracy and generalization capability are the
same and does not reveal any new information and hence
the results are omitted here.

6 CONCLUSION AND FUTURE WORK

GPU accelerations have become a hot research topic for
improving the efficiency of machine learning and data
mining algorithms. This article presents a novel parallel
implementation named ThunderGBM for training GBDTs,
which have become very popular in recent years and won
many awards in machine learning and data mining com-
petitions. Although GPUs have much higher computational
power and memory bandwidth than CPUs, it is a non-trivial
task to fully exploit GPUs for training GBDTs. We have
addressed a series of technical challenges in training GBDTs
on GPUs, including irregular memory access and order
reserving node partitioning. Our experimental results show
that ThunderGBM can be 10x times faster than the state-
of-the-art libraries (i.e., XGBoost, LightGBM and CatBoost)
running on a relatively high-end workstation with 20 CPU
cores. ThunderGBM can handle high dimensional data sets
which existing libraries on GPUs fail to handle, and achieves
up to 10 times speedup over the libraries on GPUs for the
data sets the libraries can handle.
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