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Abstract—Choosing a decomposition method for multi-class classification is an important trade-off between efficiency and predictive
accuracy. Trying all the decomposition methods to find the best one is too time-consuming for many applications, while choosing the
wrong one may result in large loss on predictive accuracy. In this paper, we propose an automatic decomposition method selection
approach called “D-Chooser”, which is lightweight and can choose the best decomposition method accurately. D-Chooser is equipped
with our proposed difficulty index which consists of sub-metrics including distribution divergence, overlapping regions, unevenness degree
and relative size of the solution space. The difficulty index has two intriguing properties: 1) fast to compute and 2) measuring multi-class
problems comprehensively. Extensive experiments on real-world multi-class problems show that D-Chooser achieves an accuracy of
80.56% in choosing the best decomposition method. It can choose the best method in just a few seconds, while existing approaches
verify the effectiveness of a decomposition method often takes a few hours. We also provide case studies on Kaggle competitions and the
results confirm that D-Chooser is able to choose a better decomposition method than the winning solutions.

Index Terms—Machine Learning, Multi-class classification, Decomposition method.
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1 INTRODUCTION

Multi-class classification is used in many real-world appli-
cations such as medical data analysis [1], [2] and object
detection [3]. One fundamental way to tackle the multi-
class classification problem is through decomposition into
multiple binary classification problems. Among the various
decomposition methods [4], one-vs-all, one-vs-one and error-
correcting output codes (ECOC) are the mainstream decom-
position methods for multi-class classification. There are
studies aiming to learn the optimal codebook for ECOC [5],
[6] using optimization, which theoretically considers all
of the three decomposition methods. However, a study
indicates that learning the codebook is infeasible due to
the high computation cost [6]. Hence, only the mainstream
decomposition methods (i.e., one-vs-all, one-vs-one and
ECOC) have been implemented in popular libraries such as
scikit-learn [7], WEKA [8], LibSVM [9] and ThunderSVM [10].
As a result, most of the machine learning and data mining
practitioners only use the three mainstream methods either
implicitly or explicitly.

Which decomposition method is more effective is prob-
lem dependent [11], as illustrated in Figure 1. More detailed
experimental setups for Figure 1 are shown in Section 4. Some
pre-eminent experts may be able to tell which decomposition
method to use for a problem magically, and that decomposi-
tion method appears to be the best for the problem. However,
for many practitioners, to choose the best decomposition
method for building an effective classifier, they need to try
one-vs-all, one-vs-one and ECOC for their problems at hand.
This process is very time-consuming, since the classification
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Fig. 1: Best decomposition is problem dependent.

algorithms often have existing hyper-parameters to tune (e.g.,
C and γ in SVMs with RBF kernel), and the decomposition
method selection adds one more hyper-parameter to the
classification algorithms. Let us consider an example of
using SVMs with the radial basis function (RBF) kernel, and
consider a 10 by 10 grid with 10 candidate values for γ of
RBF and 10 candidate values for the regularization constant
C. Then, we need to train and test 100 multi-class SVM
classifiers in total for each decomposition method. As we
have three common decomposition methods to test, totally
we need to train and test 300 multi-class SVM classifiers. This
cost of verifying the effectiveness for all the decomposition
methods is prohibitively high in many applications. In
contrast, if we do not try all the decomposition methods,
choosing a wrong decomposition method may result in great
penalty on the effectiveness of the multi-class classifier.

It is important but challenging to choose the best decom-
position method for a multi-class problem. To help practi-
tioners choose the best decomposition method efficiently
and accurately, we propose an automatic decomposition
method selection approach called “D-Chooser”. D-Chooser
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is equipped with a novel difficulty index which is easy to
compute and can measure the multi-class learning problem
comprehensively using our proposed data-aware sub-metrics.
Thus, the effectiveness of one-vs-all, one-vs-one and ECOC
decomposition can be compared correctly and efficiently via
the difficulty indices.

D-Chooser has the following key steps. First, we represent
each class in a binary problem with representative data, and
then a probability distribution is constructed to capture the
key properties of the class. Second, we compute the average
divergence of all the binary problems in each decomposition
with novel techniques to make the average divergences of the
three decomposition methods more comparable. Moreover,
overlapping regions, unevenness degree and relative size of
the solution space are computed based on the given data set.
Third, we select the decomposition method with the smallest
difficulty index which is calculated based on the sub-metrics
computed in the second step. All the steps of D-Chooser
together aim to comprehensively measure the difficulty of
the binary problems, so that the best decomposition method
can be chosen automatically by D-Chooser. To summarize,
the major contributions of this work are listed below.

• We propose D-Chooser for decomposition method
selection. To comprehensively measure multi-class
problems in D-Chooser, we develop a novel difficulty
index which considers a series of data-aware sub-
metrics including distribution divergence, overlap-
ping regions, unevenness degree and relative size of
the solution space.

• To compute the sub-metrics efficiently, we develop
clustering based techniques to represent the binary
problems, such that the distributions can be quickly
constructed based on the clusters using our derived
equations. The time complexity of our D-chooser is
O(K|D|n) where K, |D| and n are the number of classes,
the number of the total training instances and the
data dimensionality, respectively. In comparison, the
complexity of verifying a decomposition method is
much larger, e.g., O(Γ · K|D|2n) [12] where Γ is the
number of iterations in parameter-tuning. Thus, D-
Chooser only needs a few seconds to select the best
decomposition method in the tested data sets, while
verifying a decomposition method often takes a few
hours.

• We conduct extensive experiments and the experimen-
tal results show that D-Chooser achieves an accuracy
of 80.56% in choosing the best decomposition method.
We also provide case studies on Kaggle competitions
and demonstrate that D-Chooser is able to choose
a better decomposition method than the winning
solutions.

The remainder of this paper is structured as follows.
We first present the preliminaries in Section 2. Then, we
elaborate the details of D-Chooser in Section 3 and we show
our experimental results in Section 4. Finally, we discuss the
related work in Section 5 and draw a conclusion of the paper
in Section 6.

2 PRELIMINARIES

A multi-class classification problem can be decomposed into
a number of binary problems. We present three mainstream
decomposition methods next.

One-vs-all decomposition: The one-vs-all decomposition
learns a binary classifier for each class, where the class is
distinguished from all the other classes. Formally, given a
multi-class classification problem with K classes, the total
number of binary classifiers is K. There are many ways to
combine the results of the K binary classifiers. In this paper,
we use a widely used approach where the final prediction
result is the class with the largest decision value among
the K binary classifiers [13]. Formally, the predicted class is
computed by class = argmaxi∈{1,2,...,K} vi, where vi is the
decision value computed from the i-th binary classifier.

One-vs-one decomposition: The one-vs-one decomposition
consists of dividing the multi-class classification problem into
as many binary classification problems as all the possible
combinations between pairs of classes, so one binary classifier
is learned to discriminate between each pair of classes. Then,
the outputs of these binary classifiers are combined in order
to predict the final class of an instance. Formally, given a
multi-class classification problem with K classes, the total
number of binary classifiers is K(K−1)

2 . We use a common ap-
proach, namely majority voting [14], [15], to decide the final
prediction result. Specifically, the class with the maximum
vote among the K classes serves as the predicted class and is
defined by class = argmaxi∈{1,2,...,K}

∑
1≤i 6=j≤K sij , where

sij is 1 if the predicted class is i in the binary classification
problem containing instances of classes i and j; sij is 0
otherwise.

Error-correcting output codes decomposition: The error-
correcting output codes (ECOC) decomposition method
replaces the original class label by a “codeword” [16]. A
codeword is a vector of E dimensions where each dimension
is either 1 or -1 and E is a user defined hyper-parameter.
For better generality, the codeword is generated randomly
in practice. The codewords of the K classes together form a
K× E matrix denoted by M which is also called “code book”.
Each column of the matrix corresponds to a binary classifier.
Table 1 shows an example codeword matrix for a data set
with four classes and E is equal to six which means six binary
classifiers need to be trained. An instance x of class i is a
positive instance for the jth binary classifier if and only if
Mij is 1; it is a negative instance otherwise. For example, the
classifier B3 in Table 1 treats the instances of class 1 and 2 as
positive instances, and likewise treats the instances of class 3
and 4 as negative instances.

When predicting the label of an unseen instance, each
binary classifier outputs a “-1” or “1”, and the results of all
the binary classifiers form a vector of E dimensions. Then,
this output vector is compared against the codewords in
the matrix M. The class with the most similar codeword
to the output vector is chosen as the predicted label for
this unseen instance. The common methods to measure
the similarity between the vector and a codeword include
Euclidean distance and Hamming distance [17]. Compared
with one-vs-all and one-vs-one, the advantage of ECOC is
that the number of binary classifiers is controllable by the
users through the hyper-parameter E.



3

decompose

integratecompute 
sub-metrics

Multi-class
learning 
problem

Distribution
divergence

Overlapping 
regions

Unevenness 
degree

Relative size of 
the solution 

space

Centroids of each 
binary problem

clustering

Centroid separating 
hyper-plane of each 

binary problem

Two Gaussian distributions for 
each binary problem

compute

Sub-metrics

Distances to the 
hyper-plane

Binary problems

P1

P2

PB

The best 
decomposition 

method

   Select  smallest
 difficulty index

One-vs-one
One-vs-all 

ECOC
Difficulty 
index for 
one-vs-all

Difficulty 
index for
ECOC

Difficulty 
index for 

one-vs-one

Difficulty index

Fig. 2: Process of the best decomposition method selection in D-Chooser.

TABLE 1: An example ECOC codeword matrix.

label
classifier

B1 B2 B3 B4 B5 B6

1 1 -1 1 -1 -1 1
2 -1 -1 1 -1 1 1
3 1 1 -1 1 -1 -1
4 -1 1 -1 -1 1 1

3 OUR PROPOSED D-CHOOSER

Here, we elaborate our proposed Decomposition method
Chooser (D-Chooser). Designing the decomposition chooser
has two key challenges. First, the decomposition chooser
should be lightweight, since an inefficient decomposition
chooser downgrades its advantage over verifying the decom-
position methods. Second, the decomposition chooser should
select the best method correctly, as choosing the wrong one
leads to a prominent loss on the predictive accuracy.

3.1 Design rationale
We develop difficulty index and integrate it into D-Chooser,
such that the effectiveness among the decomposition meth-
ods can be compared correctly and efficiently. In order to
achieve a lightweight decomposition chooser, we develop
clustering based techniques to construct the distributions,
such that the distribution based sub-metrics including
distribution divergence and overlapping regions can be
computed efficiently. With the cluster centroids, the distances
to the separating hyper-plane of the clusters are measured
for the training instances, and a probability distribution
is constructed based on these distances. We measure the
distribution divergence and overlapping regions of all the
binary problems, with mechanisms to make the distribution
divergence and overlapping regions of different decomposi-
tion methods comparable.

To allow the difficulty index to measure a problem from
different perspectives, the unevenness degree and relative
size of the solution space sub-metrics are combined into the
index. These two sub-metrics can be efficiently computed
based on the meta information (e.g., cardinality) of the
problems. The overview of the whole process of the best
decomposition method selection is shown in Figure 2. The
proposed difficulty index (shown at the right of the figure)
consists of four data-aware sub-metrics for comprehensively

measuring multi-class problems. The four sub-metrics are
distribution divergence sub-metric, overlapping regions sub-
metric, unevenness degree sub-metric and relative size of
solution space sub-metric. Next, we formulate the problem
and present the details of the sub-metrics.

3.2 Problem formulation

The decomposition method selection problem is to find a
decomposition method which leads to the highest predictive
accuracy. Formally, the problem is to find the decomposition
method with the minimum difficulty index shown as follows.

arg min
m∈M

Im(P) = ωᵀzm (1)

where Im(P) is the difficulty index of the multi-class problem
P under the decomposition method m, M is a set of
decomposition methods which is {ova, ovo, ecoc}, ω is a
weight vector and zm is a vector of sub-metrics for measuring
the multi-class problem P . In this work, we propose two
metrics based on hyper-plane construction which can work
on linearly separable problems. For non-linearly separable
problems, our proposed techniques support kernel functions
to map the problems from their original data spaces to high
dimensional spaces induced by the kernel functions, where
the problems may become linearly separable [18].

3.2.1 Sub-metrics of the difficulty index

As we have formulated in Problem (1), the difficulty index
I(P) is equal to ωᵀz, and z consists of a set of sub-metrics1.
In this paper, the sub-metrics considered include distribution
divergence, overlapping regions, unevenness degree and
relative size of the solution space. Formally, the vector of sub-
metrics is defined as z = (z1, z2, z3, z4) where z1, z2, z3

and z4 measure distribution divergence, overlapping regions,

1. For ease of presentation, m is omitted in Im(P) and zm.
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unevenness degree and relative size of the solution space,
respectively. The four sub-metrics are defined as follows.

z1 =
1

|B|
∑

(o,o′)∈B

∫
go(u) log

go(u)

go′(u)
du

z2 =
1

|B|
∑

(o,o′)∈B

∫
min(go(u), go′(u))du

z3 =
1

|B| · 2
∑

(o,o′)∈B

(
|Do|
|Do′ |

+
|Do′ |
|Do|

)

z4 =
1

|B| · n
∑

(o,o′)∈B

(|Do|+ |Do′ |)

(2)

where B is the set of binary problems, go(u) is a distance
distribution for the o class of the binary problem, and go′(u)
is that for the o′ class of the binary problem; |Do| and |Do′ |
are the number of instances in the o class and the o′ class,
respectively; n is the data dimensionality.

3.3 Sub-metrics computed based on distributions

Here we present two sub-metrics (i.e., z1 and z2) based
on distributions in the difficulty index: one for measuring
distribution divergence between the two classes of a binary
problem, and the other for measuring the overlapping
regions. In the following, we first present the details of
constructing distributions. Then, we present the distribution
divergence sub-metric and the overlapping region sub-
metric.

3.3.1 Constructing the distributions
Construction of the distributions of training data has three
key steps: finding centroids, computing the hyper-plane
and estimating the distribution. The overview of the steps
for constructing the distribution is shown in Figure 3. We
elaborate more details of the three steps in the following.

Step 1: Finding centroids
A straightforward way of capturing the essential information
of a binary problem is that each class of the training data set
is represented by its centroid. The triangles on the upper right
of Figure 3 represent the centroids of two classes respectively.
The empty circles indicate the instances from the positive
class and the solid circles represent instances belonging
to the negative class. To achieve good efficiency, we can
use the formula to compute the centroid directly, instead
of applying the clustering algorithm. Moreover, directly
applying existing algorithms to find the separating hyper-
plane for the centroids cannot reduce the time complexity.
Hence, we need to mathematically derive a fast way to
compute the hyper-plane and the distance of a training
instance to the hyper-plane.

By exploiting this property of k-means and with the
formulas we derive, the time complexity of the k-means
clustering algorithm to represent class i is only O(|Di| · n),
which is remarkably lower than O(|Di|2 · n). Moreover, the
hyper-plane separating the centroids of the binary problem
can be computed in a time complexity of O(n) as we
will show later of this section, which is again dramatically
cheaper than O(n2k2). Next, we present the details of

Fig. 3: Constructing the distribution.

computing the centroid of their original data space and of
the data space induced by the kernel functions.

Computing the centroid in their original data space: Many
multi-class classification problems can be solved in their
original data space by classifiers such as linear SVMs and
logistic regression. Here, we present computing the centroid
in the original data space. The centroid x̄i of a class i in
a binary classification problem denoted by Pij , where j
represents the other class of the binary classification problem.
Let Di denote the set of training instances of class i in Pij .
We compute the centroid using the following equation for
k = 1 by x̄i = 1

|Di|
∑|Di|
t=1(xt1,xt2, ...,xtn), where n is the

number of dimensions of the training instances, xte denotes
the value of the e-th dimension of the training instance xt,
and |Di| is the number of instances in Di. The above equation
means the e-th dimension of the centroid x̄i is the average
value of the e-th dimension on Di.

Computing the centroid when kernel functions are used: Some
classifiers such as SVMs and logistic regression apply kernel
functions to map the problem to higher dimensional data
spaces. We have two options to find the centriods in the space
induced by the kernel function: (i) compute the centroid
in the space induced by the kernel function; (ii) map the
centroid computed in the original data space with the kernel
function. The time complexity of the first option isO(|Di|2 ·n)
for class i, because the whole Hessian matrix needs to
be computed [19]. The second option has a lower time
complexity of O(|Di| · n) which is the cost of computing the
centroids. Therefore, we use the second option to compute
the centroid directly using Di, and map the centroid to the
high dimensional space with the kernel function.

Step 2: Computing the hyper-plane
In the following, we show how the hyper-plane can be
efficiently constructed. Without loss of generality, we suppose
each class has one centroid, as a centroid can represent
multiple centroids through compounding [20]. Hence, only
two centroids are used to represent the binary classification
problem. Therefore, the hyper-plane is the perpendicular
bisecting hyper-plane of a line segment connecting the two
centroids, and is perpendicular to the line segment at its
midpoint. The hyper-plane is depicted as the solid line
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in Figure 3. Suppose x̄o and x̄o′ are two centroids of the
binary classification problem PB , x̄o is the centroid of the
positive class, and x̄o′ is the centroid of the negative class.
Let Lx̄ox̄o′ denote the line passing through x̄o and x̄o′ . The
perpendicular bisecting hyper-plane H of the line segment
connecting x̄o and x̄o′ can be presented aswᵀx+b = 0. Since
Lx̄ox̄o′ is perpendicular to H and wᵀ is also perpendicular
to H (i.e., wᵀ is the normal vector to H), wᵀ can be written
as wᵀ = β · (x̄o − x̄o′)ᵀ, where β is an unknown real value
(i.e., β ∈ R). Let xm be the midpoint of the line segment of
x̄o to x̄o′ , and xm = x̄o+x̄o′

2 . We know that point xm is on
H, and from the above equation, we can obtain the following
equation.

b = −β · (x̄o − x̄o′)ᵀxm = β · (x̄o′ − x̄o)ᵀ
( x̄o + x̄o′

2

)
Then, the perpendicular bisecting hyper-plane H can be
presented as follows by substituting b and w.

β · (x̄o − x̄o′)ᵀx+ β · (x̄o′ − x̄o)ᵀ
( x̄o + x̄o′

2

)
= 0 (3)

The perpendicular bisecting hyper-plane is a simple and
computationally efficient technique. Moreover, our experi-
mental results show that our method is able to select the best
decomposition method with accuracy higher than the more
complex hyper-plane found by optimization. It is worthy
pointing out that this hyper-plane H is unknown, even given
the centroids x̄o and x̄o′ , due to the unknown constant β.
The constant β is used to compute the distance as presented
in Step 3. The sign of β controls the relative position of an
instance to the hyper-plane (e.g., +1 represents the instance
on the left side and −1 represents the instance on the right
side).

Our method can work on multiple centroids in each class.
To support that, we can find the centroids of each class
of the binary problem using k-means. Then, we have 2k
centroids in total (i.e., each class has k centroids). Finding the
separating hyper-plane for these 2k centroids can be done
through training a binary SVM classifier. However, using
multiple centroids needs higher computation cost than using
one centroid which can be computed with a formula.

Step 3: Estimating a probability distribution
Although other distributions are applicable in our proposed
difficulty index, we focus our discussion on constructing a
Gaussian distribution. To construct the distribution, we first
compute the distance between a training instance of Do to
the hyper-plane H using the formula below.

dt =
wᵀxt + b

‖w‖
=

β

|β|
·

(x̄o − x̄o′)ᵀ(xt − x̄o+x̄o′
2 )

‖x̄o − x̄o′‖
(4)

We present more details on distance computation (e.g.,
distances in spaces induced by kernels) later in this section. It
is important to note that the distance dt can be either positive
or negative depending on β, and the denominator of the
above equation is a constant. Also note that β ∈ R and β

|β| is
either -1 or 1, and β

|β| can be cancelled out when computing
the distribution divergence and overlapping regions.

All the distances of the instances in Do are denoted
by {d1, d2, ..., d|Do|}. We assume these distances follow a
Gaussian probability distribution (i.e., go(u) ∼ (µo, σ

2
o)),

and denote the probability density function by p(d) =
1√

2πσo
exp(−‖d−µo‖2

2σ2
o

), where d is a variable in R. The mean
µo is estimated using |Do| as follows.

µ̂o =
1

|Do|

|Do|∑
t=1

dt =
β

|Do| · |β|

|Do|∑
t=1

f(xt) (5)

where f(xt) =
(x̄o−x̄o′ )

ᵀ(xt−
x̄o+x̄

o′
2 )

‖x̄o−x̄o′‖
. It is straightforward to

extend f(xt) to the kernel space. Similarly, we can estimate
σ2
o by the equation below.

σ̂2
o =

1

|Do| − 1

|Do|∑
t=1

(
f(xt)−

1

|Do|

|Do|∑
l=1

f(xl)
)2 (6)

By using Equations (5) and (6), we can construct the
Gaussian probability distribution for the training instances
of other classes (e.g., Do′ ). We illustrate the distributions
on the lower right of Figure 3. It is important to point out
that Equation (6) does not have the unknown constant β,
and therefore σ̂2

o can be computed given the data set Do.
In contrast, µ̂o cannot be computed given Do due to the
existence of the unknown constant β in Equation (5). We will
show how to cancel out the unknown constant when we
need to use µ̂o in computing divergence.

Algorithm 1 summarizes the process of constructing the
Gaussian probability distribution of the data set. Given
the training data set and hyper-plane, we can compute
the distances of the training instances to the hyper-plane
(cf. Line 3 of Algorithm 1). Using those distances, we can
compute the statistics to construct the distance distribution
(cf. Line 4 of Algorithm 1).

Algorithm 1: Constructing the Gaussian distribution
Input: Data set Di and hyper-plane H
Output: Mean µ̂i and variance σ̂i

1 d1 ← 0, d2 ← 0, ..., d|Di| ← 0
2 for t = 1 to |D|i and xt ∈ Di do
3 dt ← ComputeDistance(xt, H) //Eq. (4)

4 µ̂i, σ̂
2
i ← ComputeStats(d1, d2, ..., d|Di|) //Eqs. (5) &

(6)

3.3.2 Computing the distribution divergence
Here we first present details of computing the distribution
divergence of a binary classification problem. Then we
discuss computing the aggregated distribution divergence
of one-vs-all, one-vs-one and ECOC, such that the diver-
gence can be compared among the three decomposition
methods. Given a binary classification problem PB , we can
construct two Gaussian distributions go(u) ∼ (µo, σ

2
o) and

go′(u) ∼ (µo′ , σ
2
o′). In this paper, we focus our presentation

on using KL divergence to measure the difference of two
distributions, although other statistical distances, such as
Hellinger distance [21] and Jensen-Shannon divergence [22],
can be easily integrated into D-Chooser. We show the
equations of computing the KL divergence from go′(u) to
go(u). By the definition of KL divergence, we have

Dvg(go(u)‖go′(u)) = log
σ̂o′

σ̂o
+
σ̂2
o + (µ̂o − µ̂o′)2

2σ̂2
o′

− 1

2
. (7)
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Note that we use z1 in Equation (2) for consistency with the
other sub-metrics. Here we use Dvg(go(u)‖go′(u)) for a more
informative and common representation of KL divergence.
The detailed derivation is in Appendix A. The unknown β
in the term (µ̂o − µ̂o′)2 of Equation (7) can be cancelled out
using the definition of µ as follows.

(µ̂o − µ̂o′)
2 =

( β

|Do| · |β|

|Do|∑
t=1

f(xt)−
β

|Do′ | · |β|

|Do′ |∑
l=1

f(xl)
)2

=
( 1

|Do|

|Do|∑
t=1

f(xt)−
1

|Do′ |

|Do′ |∑
l=1

f(xl)
)2

By using the above result of (µ̂o − µ̂o′)2 and Equation (6),
we can rewrite Equation (7) as follows.

Dvg(go(u)‖go′(u))

=
1

2
log
|Do| − 1

|Do′ | − 1
− 1

2

+
1

2
log

∑|Do′ |
l=1

(
f(xl)− 1

|Do′ |
∑|Do′ |
t=1 f(xt)

)2∑|Do|
t=1

(
f(xt)− 1

|Do|
∑|Do|
l=1 f(xl)

)2
+

(|Do′ | − 1)
∑|Do|
t=1

(
f(xt)− 1

|Do|
∑|Do|
l=1 f(xl)

)2
2(|Do| − 1)

∑|Do′ |
l=1

(
f(xl)− 1

|Do′ |
∑|Do′ |
t=1 f(xt)

)2
+

(|Do′ | − 1)
(

1
|Do|

∑|Do|
t=1 f(xt)− 1

|Do′ |
∑|Do′ |
l=1 f(xl)

)2
2
∑|Do′ |
l=1

(
f(xl)− 1

|Do′ |
∑|Do′ |
t=1 f(xt)

)2

(8)

Computing the aggregated divergence

In one-vs-all, one-vs-one and ECOC decomposition, we have
multiple binary classifiers. The KL divergence is asymmetric,
that is, Dvg(go(u)‖go′(u)) may not equal Dvg(go′(u)‖go(u)).
The straightforward way to compute the aggregated KL
divergence is to compute two KL divergences of each binary
classification problem, and then to compute the average
of all the KL divergences in a multi-class classification
problem. However, in the one-vs-all decomposition, a better
approach is to compute only Dvg(go(u)‖go′(u)) where o
is the class for “one” and o′ is the class for “all”. This is
because Do which forms the distribution of interest (i.e.,
go(u)) appears in binary problems of one-vs-all, one-vs-
one and ECOC decomposition. In contrast, Do′ may not
appear in any binary problems of one-vs-one or ECOC
decomposition. For example, suppose we have four classes
C1, C2, C3, C4 and B(Ci, Cj) denotes a binary classifier
composed of the data in classes Ci and Cj . Let the class o
stand for C1. In one-vs-one, we can generate six binary
classifiers including B1(C1, C2), B2(C1, C3), B3(C1, C4),
B4(C2, C3), B5(C2, C4), B6(C3, C4) and C1 appears in the
first three binary classifiers. In one-vs-all, C1 appears in
binary classifiers such as B1(C1, (C2, C3, C4)). In ECOC, C1

may appear in several binary classifiers according to the
codewords. For example, a codeword [1,−1,−1, 1] can form
a binary classifier B1((C2, C3), (C1, C4)) which includes C1.
However, the class o′ which is (C2, C3, C4) in one-vs-all
may not appear in any binary classifiers of one-vs-one or
ECOC. Therefore go(u) is more important than go′(u) and
Dvg(go′(u)‖go(u)) is not considered for one-vs-all in D-
Chooser (i.e., one-side divergence). Hence, the one-side KL
divergence of one-vs-all and the average KL divergences

Algorithm 2: Computing KL divergence
Input: Data sets Di and Dj of problem Pij
Output: KLij and KLji

1 x̄1
i , ..., x̄

k
i ← GetCentroid(Di)

2 x̄1
j , ..., x̄

k
j ← GetCentroid(Dj)

3 H← FindHyperPlane(x̄1
i , ..., x̄

k
i , x̄1

j , ..., x̄
k
j )

4 µ̂i, σ̂
2
i ← ConstructGaussian(Di, H) //Alg. 1

5 µ̂j , σ̂j
2 ← ConstructGaussian(Dj , H) //Alg. 1

6 KLij ← ComputeKLDiverg.(µ̂i, σ̂i, µ̂j , σ̂j) //Eq. (7)
7 KLji ← ComputeKLDiverg.(µ̂j , σ̂j , µ̂i, σ̂i) //Eq. (7)

b +∞−∞

distribution co(x)
distribution co’(x)

Fig. 4: The overlapping region of two distributions.

of one-vs-one and ECOC are more comparable. Finally, the
decomposition method with a larger average/one-side KL
divergence is chosen by D-Chooser.

Algorithm 2 summarizes the process of computing the KL
divergence. We first construct the distance distributions of the
binary problem, using the techniques discussed earlier in this
section (cf. Lines 1 to 5 of Algorithm 2). Then, we compute
the KL divergence of the distributions using Equation (13)
and (14) as shown in Lines 7 to 8 in Algorithm 2.

3.3.3 Computing the overlapping regions

Another sub-metric for measuring the difficulty of a binary
classification problem PB is the overlapping region of the
two distributions. Figure 4 shows an example of the over-
lapping region of two distributions. The two distributions
intersect at point b and the shadow area illustrates the
overlapping region. The smaller the overlapping region, the
easier the classification problem is. Formally, the overlapping
region, denoted by z2, of the two distributions go(u) and
go′(u) can be written as follows.

Rgn(PB) =

∫ b

−∞
go(u)du+

∫ +∞

b
go′(u)du

where b is the value that two distributions intersect, go(u) is
to the left of go′(u). The equation can be written in a more
compact form as follows.

Rgn(PB) =

∫
min(go(u), go′(u))du (9)

The overlapping regions of the |B| binary problems are
averaged, and the average value is used as a sub-metric
to measure the multi-class problem under the decomposition
method.
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3.3.4 Distance computation with kernel functions

With the hyper-plane H, we can compute the distance dt
from a training instance xt to the hyper-plane H, such that a
Gaussian probability distribution of these distances can be
constructed. If the separating hyper-plane for the centroids
is obtained by training SVMs, we can use the decision
function of SVMs to obtain the distance from an instance
xt to the hyper-plane. The decision function is as follows:
dt =

∑n
l=1 ylαlK(xl,xt) + b where yl is the label (either -1

or +1) of the training instance xl, αl is the parameter of the
hyper-plane, K(·) is the kernel function for mapping data
from their original data space to a higher dimensional data
space [23], and b is the bias of the hyper-plane of the trained
SVM.

Alternatively, the distances can be computed directly
using Equation (4). It is known that some problems can be
solved in their original data spaces, while the others may
be solved in higher dimensional data spaces induced by
kernel functions. Computing distances to the separating
hyper-plane for the centroids is not trivial as discussed
earlier in this section. In the following, we present details
of computing the distance when kernel functions are used,
which is more complex than computing distances in the
original data space. Then, we provide a uniform form for the
distance computation equations.

Kernel functions can be used in some classifiers such
as SVMs and logistic regression. Here, we discuss how to
compute the distance in the data space induced by the kernel
functions. Let K(xt, x̄i) denote a kernel function, where
K(xt, x̄i) = ϕ(xt)

ᵀϕ(x̄i) and ϕ(·) is a mapping function
which maps the instances into a higher dimensional data
space. Then, by extending Equation (4), the distance in the
space induced by the kernel function can be computed as
follows.

dt =
β

|β|
·

[ϕ(x̄i)− ϕ(x̄j)]
ᵀ[ϕ(xt)− ϕ(x̄i)+ϕ(x̄j)

2 ]

‖ϕ(x̄i)− ϕ(x̄j)‖

=
ϕ(x̄i)

ᵀϕ(xt)− ϕ(x̄j)
ᵀϕ(xt)− ϕ(x̄i)

ᵀϕ(x̄i)−ϕ(x̄j)ᵀϕ(x̄j)
2

‖ϕ(x̄i)− ϕ(x̄j)‖

=
β

|β|
·
K(x̄i,xt)− K(x̄j ,xt)− K(x̄i,x̄i)−K(x̄j ,x̄j)

2√
K(x̄i, x̄i) + K(x̄j , x̄j)− 2K(x̄i, x̄j)

(10)
We can rewrite the distance computation functions for

the original space (i.e., Equation 4) and for the space induced
by kernels in a uniform way as follows.

dt =
β

|β|
· f(xt) (11)

where f(xt) =
(x̄i−x̄j)ᵀ(xt−

x̄i+x̄j
2 )

‖x̄i−x̄j‖ when the distance
is computed in the original data space, and f(xt) =
K(x̄i,xt)−K(x̄j ,xt)−

K(x̄i,x̄i)−K(x̄j ,x̄j)

2√
K(x̄i,x̄i)+K(x̄j ,x̄j)−2K(x̄i,x̄j)

when the distance is com-

puted in the data space induced by the kernel function
K(·, ·). Note that f(xt) can be computed purely based on
the training instances of problem Pij , i.e., Di ∪ Dj , and the
kernel function.

3.4 Sub-metrics computed directly from data

Here, we present two sub-metrics computed directly from
the meta information of the training data to measure the
difficulty of a multi-class problem.

3.4.1 Unevenness degree

The intuition of this sub-metric is that the problem with
more balanced data tends to be easier to solve. Formally, the
unevenness degree is defined as Unv(PB) = |Do|

2·|Do′ |
+ |Do′ |

2·|Do| .
If the binary problem PB is even, i.e., two classes have the
same number of instances, Unv(PB) equals 1. The more
uneven the problem is, the larger the value of Unv(PB). The
unevenness degrees of the |B| binary problems produced by
the decomposition method are averaged, and the average
value is used as the unevenness degree sub-metric to measure
the multi-class problem under the decomposition method.

3.4.2 Relative size of the solution space

Suppose we have |Do| and |Do′ | training instances in the
two classes of the binary problem, respectively, and all
the training instances are linearly independent. Then, the
training instances form a linear system with (|Do| + |Do′ |)
equations, and each equation has n variables where n is
the data dimensionality. Then, the dimension of the solution
space [24] is max(0, n−|Do|−|Do′ |). Here, we use the relative
size of the solution space defined as |Do|+|Do′ |n . The larger
the relative size of the solution space, the easier the binary
problem. The key intuition is that the larger the relative
size of solution space means the smaller feasible regions, and
hence it is easier to find a solution for the binary problem, due
to the smaller search space. For small-scale data, the relative
size of solution space is negligible, and thus we exclude this
sub-metric for small-scale data sets. More explanation can be
found in the first paragraph of Section 4.

3.4.3 Summary of the sub-metrics

The relationship of the difficulty index and the sub-metrics
is summarized below. (i) The larger the distributions diverge,
the easier the problem is. Hence, the difficulty index is
smaller. (ii) The larger the overlapping region, the harder the
problem is. So, the overlapping region has positive influence
on the difficulty index. (iii) If the problem is more even, the
problem is easier and the difficulty index of the problem
is smaller. (iv) The smaller the relative size of the solution
space, the harder the problem is. Hence, the difficulty index
is larger.

The whole process of D-Chooser making a decision is
summarized in Algorithm 3. For each of the decomposition
methods, we first use it to decompose the multi-class problem
into a number of binary problems (Line 3). Then, for each
binary problem, we construct distance distributions and
compute the four sub-metrics (Lines 6 to 11). Finally, we
compute the difficulty index and return the decomposition
method with the minimum difficulty index (Lines 12 and 13).
The time complexity of D-chooser is O(K|D|n). When dealing
with large-scale and high-dimensional data, due to the
sparsity of data, we can use techniques for processing
sparse data such as sparse matrix compression and principle
component analysis to further accelerate D-chooser. High
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Algorithm 3: Choose the best decomposition
method

Input: problem P , decomp. methodsM, weight
vector ω

Output: the best decomposition method
1 I ← 0 //initialize difficulty index for each method
2 foreach m inM do
3 P1,P2, ...,P|B| ←Decompose(P , m)
4 zm ← 0 //initialize difficulty index
5 for i← 1 to |B| do
6 Do, Do′ ← GroupInstance(Pi)
7 go(u), go′(u)← ConstructDist(Do, Do′ )

//Alg. 1
8 zm1 ← zm1 +CompDvg(go(u), go′(u)) //Alg. 2
9 zm2 ← zm2 + CompRegn(go(u), go′(u)) //Eq.

(9)
10 zm3 ← zm3 + CompUnevenness(Do,Do′ )

//§ 3.4.1
11 zm4 ← zm4 + CompSoltnSpace(Do,Do′ )

//§ 3.4.2

12 zm ← zm

|B| , Im ← ωᵀzm

13 return arg minm∈M(Im)

TABLE 2: Data set information.

data set # classes # training ins. # test ins. dim.
acoustic 3 78,823 10,000 48
connect-4 3 54,045 13,512 126
letter 26 15,000 5,000 16
pendigits 10 7,494 3,498 16
poker 10 25,010 1M 10
sector 105 6,412 3,207 55,197
sensorless 11 48,509 10,000 48
svmguide 6 300 312 10
usps 10 7,291 2,007 256

performance computing can be easily implemented in D-
chooser as the difficulty index is computed based on numbers
of binary problems.

4 EXPERIMENTAL STUDIES

In this section, we study the efficiency and predictive accu-
racy of our proposed D-Chooser equipped with the difficulty
index. The experiments were conducted on a workstation
running Linux with 2 Xeon E5-2640v4 10 core CPUs, 256GB
main memory and a Titan X Pascal GPU of 12GB memory.
We used nine data sets from the LibSVM website. Both
of the training and test sets are publicly available on the
website. The information of the data sets is shown in Table 2.
The data sets include different types of data. For example,
acoustic is applied to vehicle classification which includes
the acoustic signals sensed by the sensors; connect-4 has all
legal 8-ply positions in Connect Four game and is used to
predict if the first player wins, loses or gets a draw in the
game; letter consists images of 26 English letters; usps and
pendigits are used in handwriting recognition; poker is used to
classify the poker hands; sector collects the texts on corporate
web pages and is applied for text classification; sensorless
extracts features from electric current drive signals; data
in svmguide are from an application on traffic light signals.

TABLE 3: Whether D-Chooser chooses best decomposition.

data set
Chooses decomposition correctly?

SVMs
with RBF

linear
SVMs

logistic
regression

naive
Bayes

acoustic 80.00% (7) 70.07% (3) 70.27% (7) 66.97% (3)
connect-4 83.78% (3) 75.67% (3) 75.78% (3) 63.12% (7)
letter 98.06% (3) 84.55% (3) 84.26% (3) 64.12% (7)
pendigits 98.03% (3) 94.40% (3) 95.60% (3) 82.25% (3)
poker 57.54% (3) 50.30% (7) 50.12% (3) 50.12% (3)
sector 94.61% (7) 94.23% (3) 94.11% (3) 84.10% (3)
sensorless 99.88% (3) 91.89% (3) 92.34% (3) 73.36% (3)
svmguide 66.35% (3) 59.94% (3) 72.44% (3) 63.14% (3)
usps 96.12% (7) 93.03% (3) 93.57% (3) 77.13% (3)

All types of data were transformed into LIBSVM format
and more details can be found on the LIBSVM website.
D-Chooser was implemented in C++. We used common
multi-class classifiers including linear and non-linear SVMs,
logistic regression and Gaussian naive Bayes from scikit-
learn [7]. We used the scikit-learn implementation of ECOC
where the codebook is randomly generated. Since only the
mainstream decomposition methods (i.e., one-vs-all, one-vs-
one and ECOC) have been implemented in popular libraries
such as scikit-learn, WEKA and LibSVM, in this paper, we
focus on these three mainstream decomposition methods
and use the same strategy for the ECOC codeword. The non-
linear SVMs ran on GPUs due to its higher computation
cost, and the other algorithms ran on CPUs. As SVMs
and logistic regression have hyper-parameters, we applied
Bayesian optimization [25] to find the best hyper-parameters
under each decomposition method. Bayesian optimization
is a strategy for global optimization of functions. It aims to
optimize expensive-to-evaluate functions. The regularization
constant C of the classifiers was chosen from 2−3 to 212, and
γ of the RBF kernel was chosen from 2−15 to 26. The sub-
metrics are normalized using the sigmoid function, such that
their values are always between 0 and 1. The normalization
is used to avoid one sub-metric dominating the overall
difficulty index. For the small-scale data set, we exclude
the relative size of the solution space because this sub-
metric should be small for such data set while the sigmoid
normalization produces a relatively large value (e.g., a value
that is extremely closed to 0.50). The weight vector ω is set
to (-1, 1, 1, -1). The intuitions of this weight vector is that the
larger the distributions diverge, the easier the problem; the
larger the overlapping region, the harder the problem; the
problem is more even, the problem is easier; the smaller the
relative size of the solution space, the harder the problem.

4.1 Predictive accuracy of D-Chooser
Table 3 shows whether D-Chooser chooses the best decompo-
sition method for a data set. The value in each cell of the table
is the best accuracy among all the decomposition methods,
(3) indicates that D-Chooser selects the best decomposition
correctly and (7) indicates it makes a mistake. As we can see
from the results, in the 9×4 classification problems (i.e., 9 data
sets on 4 classification algorithms totalling to 36), D-Chooser
achieves 80.56% accuracy (i.e., 29 out of 36) in choosing the
best decomposition method. D-Chooser even achieves 8/9
accuracy when the classifier is logistic regression. In a further
investigation on the data sets where D-Chooser makes
mistakes, we find that the effectiveness between the best
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decomposition method and the one chosen by D-Chooser is
almost the same. For example, D-Chooser predicts ECOC to
be the best decomposition method for non-linear SVMs on
acoustic, and the corresponding classifier has an accuracy of
78.99% which is very close to the best decomposition method
(i.e., one-vs-one) resulting in an accuracy of 80.00%. For
the data sets the accuracies prominently differ, D-Chooser
can select the best decomposition method accurately (cf.
Figure 1). This indicates that D-Chooser is robust and
can help practitioners choose near optimal decomposition
methods.

To provide full information to the results shown in Table 3,
we also report the best accuracy of the classifier with the
best hyper-parameter(s) corresponding to the decomposition
method in Tables 4 and 6. Table 4 shows the results of
the best accuracy of one-vs-all, one-vs-one and ECOC on
each classifier of each data set. Table 6 shows the best
hyper-parameter(s) for each classifier on each data set. The
results confirm that no decomposition method is more
effective than the other decomposition methods, and the
difference on accuracy is distinct in some data sets. Table 5
summarizes the values of difficulty index of each decom-
position method. Note that the sub-metrics distribution
divergence and overlapping region are dependent on the
distribution which is constructed in the problem space. As
SVMs with RBF, linear classifiers and Gaussian naive Bayes
solve the problems in different data spaces, the difficulty
indices of these classifiers are different from each other (cf.
Section 3.3.4). Linear classifiers including linear SVMs and
logistic regression solve the problems in the original data
space. SVMs with RBF and Gaussian naive Bayes solve the
problems by mapping the data to the feature space. The
derivation for the problem space of Gaussian naive Bayes is
elaborated in Appendix B. From Table 4 and 5, the ratio of
cases where the second smallest difficulty index corresponds
to the second best performance is 50.00% and the ratio of
cases where the largest difficulty index corresponds to the
worst performance is 55.56%. The ratios 50.00% and 55.56%
are higher than the ratio of randomly choosing the second or
third best decomposition which is 33.33%. This indicates that
the performance rank is correlated to the difficulty index rank.
The drops of predictive accuracy compared with 80.56% may
result from the sigmoid normalization. When the original
values are large, the normalized values are similar. Therefore,
the subtle difference between the normalized sub-metrics
of the second and third best decomposition methods may
lead to the accuracy difference. For example, in Table 5,
when linear classifiers were trained with data set sensorless,
the difficulty index for the best decomposition method is
-0.41. The difficulty indices of the second and third best
decomposition method are -0.25 and -0.21 which are closed to
each other. We aim to find a more appropriate normalization
method to improve the difficulty index in the future work.

Existing libraries have default decomposition methods
associated with them. For example, LibSVM uses the one-vs-
one decomposition by default. Here, we study the overall
effectiveness if an user always insists using a particular
decomposition method (e.g., the default method of a library).
From Table 4, the probability of OVO, OVA and ECOC to
be the best decomposition method is 58.33% (21/36), 30.56%
(11/36) and 27.78% (10/36) respectively. None of them is
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Fig. 5: Comparison of OVO, OVA, ECOC and D-chooser

higher than the accuracy of D-chooser which is 80.56%
in selecting the best decomposition method. We illustrate
the accuracy in Figure 5(a). Figure 5(b) shows the average
classification accuracy—the average accuracy over the 36
classification problems. In the figure, OVO, OVA and ECOC
stand for one-vs-one, one-vs-all and error-correcting output
codes, respectively. The classification assisted by D-Chooser
achieves the highest average accuracy (i.e., 78.61%), while
classifications using a fixed decomposition method have
a lower average accuracy. OVO, OVA and ECOC achieve
76.31%, 74.35%, 65.13% average classification accuracy, re-
spectively. A classifier with D-chooser can achieve 2.30%
higher classification accuracy than OVO in all tested data
sets on average, which is quite remarkable in practice.

4.2 Efficiency of D-Chooser

Next, we report the elapsed time of D-Chooser, in comparison
with the average elapsed time of verifying the effectiveness
of a decomposition method. Table 7 shows the elapsed
time of D-Chooser for choosing the best decomposition
method, in comparison with the average time of verifying a
decomposition method.

Here we summarize the key findings from the exper-
iments first. The time of D-Chooser is much less than
the time of searching for the best decomposition method.
For example, the searching for the best decomposition of
SVMs with the RBF kernel for the letter data set took about
23 hours on OVA and ECOC (which can be avoided, as
OVA or ECOC is not the best), while the time taken by D-
Chooser was only 0.71 seconds. Instead of examining all
the decomposition methods, D-Chooser performs relatively
lightweight data-driven sub-metric calculation. The best
decomposition method is found by D-Chooser using various
sub-metrics such as distribution divergence and overlapping
regions (cf. Section 3). In summary, D-Chooser is much faster
than verifying a decomposition method. This demonstrates
that D-Chooser is light-weight.

More specifically, for SVMs with the RBF kernel, the time
of D-Chooser for making a decision is negligible compared
with that of searching. With the help of D-Chooser, users
can avoid performing hyper-parameter searches on the
unpromising decomposition methods, and the time saved for
the users is remarkable. For linear SVMs, logistic regression
and Gaussian naive Bayes, the elapsed time of D-Chooser is
often a few times smaller than that of the searching for the
best decomposition method. This demonstrates D-Chooser is
efficient in various settings. In summary, D-Chooser is several
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TABLE 4: Best test accuracy of each decomposition method.

data set
the best test accuracy of each decomposition method (%)

SVMs with RBF linear SVMs logistic regression naive Bayes
OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC

acoustic 79.91 80.00 78.99 69.85 69.82 70.07 70.27 70.22 67.02 54.55 47.35 66.97
connect-4 83.78 65.26 65.26 75.67 75.60 75.25 75.78 75.70 75.30 57.62 52.26 63.12
letter 98.02 98.06 97.70 69.96 84.55 43.00 72.26 84.26 43.24 64.12 64.04 43.12
pendigits 97.94 97.94 98.03 87.66 94.40 73.10 89.97 95.60 79.22 82.08 82.25 61.32
poker 57.54 57.16 56.00 50.14 50.30 50.10 50.12 50.12 50.12 50.12 50.12 50.12
sector 94.61 91.83 94.14 94.23 91.92 94.23 93.70 91.43 94.11 51.26 78.20 84.10
sensorless 99.88 99.88 99.80 74.49 91.89 44.24 75.98 92.34 42.49 72.57 73.36 25.26
svmguide 65.39 66.35 40.71 56.42 59.94 18.59 65.71 72.44 44.55 62.18 63.14 48.72
usps 95.32 95.42 96.12 91.68 93.03 88.84 91.78 93.57 88.84 54.06 77.13 61.29

TABLE 5: Difficulty index of each decomposition method.

data set
Difficulty index of each decomposition method

SVMs with RBF linear classifiers naive Bayes
OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC

acoustic -0.18 -0.11 -0.25 -0.18 -0.11 -0.25 -0.10 -0.03 -0.15
connect-4 0.16 0.23 0.26 0.16 0.23 0.26 0.18 0.25 0.28
letter -0.33 -0.47 -0.15 -0.31 -0.47 -0.15 -0.33 -0.47 -0.15
pendigits -0.50 -0.50 -0.72 -0.40 -0.49 -0.47 -0.39 -0.49 -0.43
poker -0.21 0.03 0.07 0.08 0.22 0.23 0.08 0.12 0.23
sector -0.50 -0.47 -0.58 -0.49 -0.47 -0.55 -0.49 -0.47 -0.55
sensorless -0.21 -0.41 -0.25 -0.21 -0.41 -0.25 -0.17 -0.41 -0.20
svmguide 1.12 0.91 1.02 1.12 0.91 1.02 1.12 0.91 1.02
usps -0.46 -0.48 -0.42 -0.44 -0.48 -0.42 -0.45 -0.48 -0.41

orders of magnitude faster than verifying a decomposition
method. This demonstrates that D-Chooser is light-weight.

It is important to point out that when considering three
decomposition methods (i.e., OVA, OVO and ECOC), D-
Chooser can help avoid performing hyper-parameter search
operations for two decomposition methods. Concretely,
suppose OVO is the best decomposition for the letter data set.
Then, the hyper-parameter search operations on OVA and
ECOC are not necessary, because we do not use OVA and
ECOC and their corresponding best hyper-parameter(s) to
train a model anyway. In comparison, the hyper-parameter
search for OVO is useful, since we will use OVO and the
corresponding best hyper-parameter(s) for training the final
classifier to tackle the letter multi-class problem.

Table 9 shows the results of the elapsed time of each
hyper-parameter search operation, and the sum of the time
of three hyper-parameter search operations forms the time of
searching for the best decomposition method. For example,
in order to select the best decomposition method for SVMs
with the RBF kernel in the letter data set, we need to perform
a hyper-parameter search to obtain the best accuracy of
each decomposition method. As we can see from the table,
performing three hyper-parameter search operations for the
OVA, OVO, and ECOC decomposition take 1658.86, 4095.23,
and 81248.08 seconds, respectively. Therefore, the total time is
1658.86+4095.23+81248.08=87002.17 seconds for searching the
best decomposition method for SVMs with the RBF kernel
in the letter data set. As we have shown in Table 7, the
elapsed time for verifying a decomposition method is much
longer than the prediction time of D-Chooser. I.e., D-Chooser
can help practitioners avoid performing grid searches on
OVA and ECOC in the letter data set (saving about 82906.94
seconds), since OVO is the best decomposition and there
is no need to find the best hyper-parameters for OVA and
ECOC. Note that the time reported for D-Chooser in Table 7
includes the time for finding centroids. The avoidance of
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Fig. 6: Effect of decomposition.

examining all the decomposition methods makes D-Chooser
more efficient.

4.3 Benefit of using decomposition

In the literature [26], logistic regression and naive Bayes
can be directly used for multi-class classification without
using the decomposition. Our experimental results in Table 8
show that decomposition almost always achieves higher
accuracies than non-decomposition in the data sets. In Table 8,
directly using logistic regression and naive Bayes for multi-
class classification is denoted as “none” (short for non-
decomposition). We compare the classification accuracies
between decomposition methods and the non-decomposition
method. For example, in the letter data set, using one-vs-one
(OVO) decomposition for logistic regression has 6.58% higher
accuracy than logistic regression with non-decomposition
(cf. Table 8 and Figure 6). Note that in Figure 6 “w/o
decomp.” denotes solving multi-class classification without
decomposition into binary classification problems, and “w/
decomp.” denotes multi-class classification with decomposi-
tion into binary classification problems. This demonstrates
that decomposition methods are very important for multi-
class classification, even for the classifiers that naturally
support multi-class classification. We observed similar trend
on naive Bayes as well. Note that the difference in acoustic
and poker is subtle in the figure, because using decomposition
or not produces similar models for the two data sets and
hence similar predictive accuracy.

4.4 Individual sub-metric

We also measured the accuracy of D-Chooser with difficulty
index using only one sub-metric. The accuracy of D-Chooser
with difficulty index using only relative size of the solution



11

TABLE 6: Classifier best hyper-parameters of one-vs-all, one-vs-one and ECOC.

data set SVMs with RBF (C, γ) linear SVMs (C) logistic regression (C)
OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC

acoustic (476.18, 0.19) (111.14, 0.26) (226.62, 0.29) 2.62 3.78 11.10 1205.88 2589.75 9.15
connect-4 (1.00, 0.50) (0.13, 3.05E-05) (0.13, 3.05E-05) 1.00 0.13 0.13 2958.86 2172.15 2234.33
letter (3221.65, 3.80) (51.13, 3.67) (1361.02, 2.63) 20.57 5.93 4.52 17.57 1108.39 2.03
pendigits (2877.93, 3.05E-05) (141.52, 3.05E-05) (2705.04, 3.05E-05) 1.22 1.58 1909.13 705.16 828.04 2499.13
poker (130.61, 0.002) (1537.17, 0.27) (1119.66, 0.29) 1.27 14.62 0.90 3137.03 3566.97 4001.20
sector (256.00, 3.91E-03 ) (128.00, 0.02 ) (153.60, 0.02) 3.36 16.10 2.44 4087.39 3046.21 31.04
sensorless (14.89, 13.26) (13.58,13.39) (17.50, 15.53) 6.48 24.51 66.17 1110.71 3179.51 3386.81
svmguide (3685.38, 0.36) (3986.27, 0.45) (4089.23, 12.54) 20.86 124.40 2947.41 3525.16 4067.19 3836.24
usps (2164.60, 0.02) (3948.60, 0.02) (252.23, 0.01) 1.98 2.002 2.40 0.54 0.13 28.56

TABLE 7: Efficiency of D-Chooser and verifying a decompo-
sition method (sec).

data set D-Chooser vs verifying a decomposition method
SVMs with RBF linear SVMs logistic regression

acoustic 0.63 vs 1.70x106 1.88 vs 7.24x103 1.88 vs 823.54
connect-4 0.39 vs 3.70x105 0.59 vs 1.72x103 0.59 vs 178.13
letter 0.71 vs 2.90x104 1.45 vs 2.60x103 1.45 vs 480.19
pendigits 0.10 vs 5.02x103 0.24 vs 567.51 0.24 vs 325.11
poker 0.33 vs 5.91x105 0.58 vs 4.34x103 0.58 vs 537.10
sector 1.07x103 vs 6.59x104 27.55 vs 3.79x104 27.55 vs 3.46x104
sensorless 1.50 vs 3.03x104 4.96 vs 1.42x104 4.96 vs 8.11x103
svmguide 0.01 vs 279.40 0.01 vs 206.55 0.01 vs 104.27
usps 0.92 vs 1.30x104 3.86 vs 2.99x103 3.86 vs 7.97x103

TABLE 8: Accuracy comparison between decomposition
methods and non-decomposition method (%).

data set logistic regression naive Bayes
OVA OVO ECOC none OVA OVO ECOC none

acoustic 70.27 70.22 67.02 69.93 54.55 47.35 66.97 47.35
connect-4 75.78 75.70 75.30 75.76 57.62 52.26 63.12 52.26
letter 72.26 84.26 43.24 77.68 64.12 64.04 43.12 64.04
pendigits 89.97 95.60 79.22 90.68 82.08 82.25 61.32 82.25
poker 50.12 50.12 50.12 50.13 50.12 50.12 50.12 50.12
sector 93.70 91.43 94.11 93.51 51.26 78.20 84.10 78.30
sensorless 75.98 92.34 42.49 84.29 72.57 73.36 25.26 73.36
svmguide 65.71 72.44 44.55 59.29 62.18 63.14 48.72 63.14
usps 91.78 93.57 88.84 92.18 54.06 77.13 61.29 77.13

space, only unevenness degree, only overlapping regions
and only distribution divergence are 50.00%, 66.67%, 66.67%
and 72.22%, respectively. In comparison, D-Chooser with the
difficulty index using all the four sub-metrics achieves an
accuracy of 80.56% as shown in Table 3.

4.5 Effect of the number of centroids k
We varied k from 1 to 20, and measured whether D-Chooser
can make accurate prediction on all the tested data sets.
The prediction accuracy of D-chooser, which is equal to the
number of data sets with correctly chosen decomposition
divided by the total number of data sets tested, is illustrated
in Figure 7. The results for linear SVMs and logistic regression
are combined into one curve because the difficulty index
computed by D-Chooser is the same for both of them. As we
can see from Figure 7, increasing the number of centroids to
represent the training data set has little impact on the overall
accuracy of D-Chooser. Therefore, we recommend using one
centroid per class, since the overall accuracy is excellent.

4.6 Case study
We study two real multi-class classification problems in the
Kaggle platform. We reran the best multi-class solutions on
Kaggle for the problems and examined whether they can be
improved with better decomposition methods.
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Fig. 7: Effect of the number of clusters.

Toxic Comment Classification Challenge
In this problem, practitioners are given a large number of
Wikipedia comments which have been labeled by human
raters for toxic behavior. The types of toxicity include toxic,
severe toxic, obscene, threat, insult and identity hate. The task
is to predict the type of toxicity for each comment in
the test set. The best solution2 that uses multi-class SVM
classifier applies the one-vs-all decomposition method. The
accuracy we reproduced is 96.06% based on the kernel
provided. In comparison, D-Chooser recommends the one-
vs-one decomposition for this problem. The multi-class SVM
classifier we trained achieves accuracy of 97.55%, which is
notably higher than the winning solution.

Personalized Medicine: Redefining Cancer Treatment
In this problem, data mining practitioners are asked to clas-
sify genetic mutations based on clinical evidence described
in text. There are nine different classes a genetic mutation can
be classified on. We reproduced the results of the solution
based on the kernel provided. The multi-class solution3 using
linear SVMs achieves accuracy of 62.57% with the one-vs-all
decomposition. In comparison, the multi-class SVM classifier
we trained has accuracy of 63.45% with the error-correcting
output codes decomposition.

5 RELATED WORK

Multi-class classification problems occur in many real-world
applications [27]. Some algorithms are specifically designed
to solve multi-class problems [28], [29], while other algo-
rithms (e.g., k-NN and logistic regression) naturally can
solve multi-class problems [30]. The multi-class problems
are commonly tackled by extending the binary classification
algorithms. The benefit of this extension is that the extension

2. https://bit.ly/2rVLvFz
3. https://bit.ly/35kI6xC
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TABLE 9: Elapsed time of the hyper-parameter search on each decomposition method for each classifier (sec).

data set
elapsed time of hyper-parameter search

SVMs with RBF linear SVMs logistic regression naive Bayes
OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC OVA OVO ECOC

acoustic 7.73x105 1.18x106 3.02x106 9242.85 5905.76 6569.48 640.18 452.50 1377.95 0.32 0.33 0.31
connect-4 4.09x105 2.31x105 4.63x105 2005.89 1075.06 2067.93 210.83 129.12 194.43 0.40 0.38 0.47
letter 1658.86 4095.23 8.12x104 391.21 584.11 6823.24 501.17 492.07 447.34 0.22 2.18 0.32
pendigits 1348.84 3015.07 1.07x104 441.99 272.14 988.41 327.21 258.24 389.88 0.05 0.24 0.07
poker 8.60x104 7.64x105 9.23x105 3948.03 2969.66 6113.44 419.13 724.94 467.23 3.95 66.46 5.23
sector 5.47x104 1.59x104 1.27x105 1498.22 8.92x104 2.30x104 3945.35 8.21x104 1.78x104 1015.11 9.50x104 1289.35
sensorless 3719.12 6010.71 8.13x104 1.33x104 1714.68 2.76x104 7577.73 1260.42 1.55x104 0.48 1.34 0.60
svmguide 300.59 217.49 320.12 206.50 203.05 210.09 104.70 101.76 106.36 0.01 0.03 0.01
usps 3088.83 3904.28 3.19x104 1342.13 493.97 7141.22 2242.31 759.41 2.09x104 0.29 0.89 0.40

module can be used as a meta algorithm and any binary clas-
sifier can be plugged into the module to solve the multi-class
problems. This benefit is exploited by the popular machine
learning libraries such as scikit-learn [7] and WEKA [8]. The
default decomposition methods in the libraries are used by
many applications in practice [27].

Extending the binary classification algorithms for multi-
class classification is also known as “decomposition” of
the multi-class classification problems. Some surveys dis-
cussed common decomposition methods—including one-vs-
all, one-vs-one, error-correcting output-coding and hierar-
chical strategies—for the multi-class classification [26], [4].
Hsu and Lin [13] studied the performance of the three main
decomposition methods under the context of SVMs. A study
aims to learn the codebook for ECOC [6] using optimization.
The study indicates that learning the codebook is infeasible
due to the high computation cost. There are also variations of
ECOC in the literature [31]. In this paper, we focus on three
mainstream decomposition methods, and aim to automati-
cally select the best decomposition method given a problem.
The three mainstream decomposition methods including
one-vs-one, one-vs-all and ECOC have been used either in
existing libraries such as LibSVM [9] and ThunderSVM [10],
or in applications such as bird categorization [32], human
activity recognition [33] and visual recognition [34]. We have
described more technical details of the three mainstream
methods in Section 2.

Combining the outputs of the binary classifiers to form
the final result is extensively studied [4]. Experimental study
on combining the prediction result of the binary classifiers
on one-vs-all and one-vs-one schemes is presented in this
reference [11]. They found that voting based methods are
more robust and the choice of the best method is classifier
dependent. We use the majority voting based method for
one-vs-one decomposition and use the maximum decision
value for the one-vs-all decomposition [35].

To the best of our knowledge, little work has been done
to automatic selection of decomposition methods. Some
studies aim to automatically select the best combination
of binary classes using data characteristics [31], [36]. For
example, DECOC [31] first computes the separability of
two classes based on the inter-class distance. Then the
confidence score can be derived using the separability. The
columns in codebook with k highest confidence scores are
selected. ECOC-MDC [36] produces a codebook based on six
measurements of data complexity. Chen et. al. [37] use the
similarity and balance degree to estimate the unclassifiable
rate of a multi-class problem. One-vs-one or one-vs-all is

selected for SVM training according to the unclassifiable rate.
Zhou et. al. [29] proposed to learn an N-class problem rather
than a binary problem at a time. Some work construct an
optimization problem to obtain the best coding matrix [6],
[38]. Zhong et al. [6] proposed joint learning ECOC to
minimize the objective function of the linear classifier and
maximize the distance between two codes of each class. In
LightMC [38], authors use softmax as the decoding strategy
and dynamically optimize the codebook through minimizing
the cross entropy loss.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed D-Chooser, a lightweight
approach for decomposition method selection. D-Chooser
exploits data-aware sub-metrics including distribution diver-
gence, overlapping areas, unevenness degree and relative
size of the solution space to comprehensively measure
the problem. We have conducted extensive experiments to
study D-Chooser. Experimental results show that D-Chooser
achieves competitive accuracy and only needs a few seconds
to choose a decomposition method while verifying the
effectiveness of a decomposition method is much slower.
Case studies on Kaggle competitions have shown that D-
Chooser can choose a better decomposition method than the
winning solutions.

In the future work, we aim to study setting the values
for the weight vector of sub-metrics and investigate the
effectiveness of D-Chooser on imbalanced data. The study
of the importance of different metrics needs much more
labelled data, which will be one of the challenges. The
effect of each sub-metric is problem dependent. Considering
the interaction of the four sub-metrics, simply tuning each
weight may not be sufficient to discover the relationships
among the sub-metrics. Moreover, we plan to study the
ranking quality of different decomposition methods based
on the difficulty index. To achieve a high quality ranking
of decomposition methods, we will explore more classifier-
dependent sub-metrics. For instance, sub-metrics that can
distinguish the problems solved in the same space but using
different classifiers will be considered. We will also study
the feature spaces of more classifiers to facilitate our D-
chooser, as they needs careful theoretical analysis. When
two sub-metric values normalized by sigmoid function
approach 1, the difference between these sub-metrics is subtle.
Therefore to make the sub-metrics more comparable, we
aim to evaluate more normalization methods such as min-
max normalization. The theoretical analysis of excluding the
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relative size of the solution space for small-scale data sets
will be studied.
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APPENDIX A
DERIVATION OF EQUATION (7)

Next, we present the detailed steps of deriving Equation (7)
using the definition of the KL divergence from Nj to Ni.

KL(Ni‖Nj) =

∫
zi(x) log

zi(x)

zj(x)
dx (12)

where x is a continuous variable, zi(x) and zj(x) are the
probability densities at x in the distribution Ni and Nj , re-
spectively. The KL divergence has two important properties:
not negative [39] and not symmetric, i.e., KL(Ni‖Nj) may
not equal to KL(Nj‖Ni). As Ni and Nj follow the Gaussian
distribution, then the probability density function of Ni is
zi(x) = 1√

2πσi
exp(−‖x−µi‖2

2σ2
i

) and similarly the probability

density function of Nj is zj(x) = 1√
2πσj

exp(−‖x−µj‖2
2σ2

j
). The

KL divergence from Nj to Ni can be written as below.

KL(Ni‖Nj) =

∫
zi(x) log

zi(x)

zj(x)
dx

= log
σj
σi

+
σ2
i + (µi − µj)2

2σ2
j

− 1

2

(13)

and the KL divergence from Ni to Nj can be written as follows.

KL(Nj‖Ni) =

∫
zj(x)

log zj(x)

log zi(x)
dx

= log
σi
σj

+
σ2
j + (µj − µi)2

2σ2
i

− 1

2

(14)

Derivation of Equations (13) and (14)

Here, we derive the KL divergence of two Gaussian distribu-
tions Ni and Nj . We first derive the equation forKL(Ni‖Nj).
Equation (12) can be rewritten as follows, when Ni and Nj
follow the Gaussian distribution.

KL(Ni‖Nj) =

∫
zi(x) log zi(x)dx−

∫
zi(x) log zj(x)dx

= − ln
√

2πσi −
1

2
− (− ln

√
2πσj−∫

zi(x)x2dx−
∫
zi(x)2xµjdx+

∫
zi(x)µ2

jdx

2σ2
j

)

= − ln
√

2πσi −
1

2
+ ln

√
2πσj

+
σ2
i + µ2

i − 2µiµj + µ2
j

2σ2
j

= ln
σj
σi

+
σ2
i + (µi − µj)2

2σ2
j

− 1

2
(15)

where µ and σ are the mean and variance, respectively.
Similarly, we can derive the equation for KL(Nj‖Ni).

KL(Nj‖Ni) =

∫
zj(x) log zj(x)dx−

∫
zj(x) log zi(x)dx

=− ln
√

2πσj −
1

2
− (− ln

√
2πσi−∫

zj(x)x2dx−
∫
zj(x)2xµidx+

∫
zi(x)µ2

i dx

2σ2
i

)

=− ln
√

2πσj −
1

2
+ ln
√

2πσi

+
σ2
j + µ2

j − 2µiµj + µ2
i

2σ2
i

= ln
σi
σj

+
σ2
j + (µi − µj)2

2σ2
i

− 1

2
(16)

APPENDIX B
PROBLEM SPACE OF GAUSSIAN NAIVE BAYES

Since this paper focuses on decomposition method, we use a
binary problem as an example to demonstrate the problem
space of Gaussian naive Bayes. Naive Bayes constructs the
classifier based on probabilities. Assume that we have an
instance x ∈ Rn. Let p be the probability and the conditional
probability that x belongs to the class Cj is denoted as
p(C = Cj |x) where Cj ∈ {C1, C2}. Naive Bayes assigns
the class with the highest conditional probability to instance
x. Then based on the assumption that each feature of x is
independent, the conditional probability can be computed
using the Bayes’ theorem as follows.

p(C = C1|x) =
p(x|C = C1)p(C = C1)∑

Cj∈{C1, C2} p(x|C = Cj)p(C = Cj)

= S(
n∑
i=1

ln
p(xi|C = C1)

p(xi|C = C2)
+ ln

p(C = C1)

p(C = C2)
) (17)

where S(x) = 1/(1 + e−x) is the sigmoid function and xi is
the i-th element in vector x. Gaussian naive Bayes assumes
that each feature of the instances that belong to the same
class follows Gaussian distribution. Thus the probability of
xi given class Cj (i.e., p(xi|C = Cj)) can be computed using
the probability density function for Gaussian distribution.
Based on the definition of exponential family [40], we use the
canonical decomposition of Gaussian distribution to present
p(xi|C = Cj) as below.

p(xi|C = Cj) = exp(θi,Cj ·ϕi(xi)− F (θi,Cj )) (18)

where θi,Cj
= (θi,Cj ,1, θi,Cj ,2) = (

µi,Cj

σ2
i,Cj

, − 1
2σ2

i,Cj

) and

F (θi,Cj ) = −
θ2
i,Cj,1

4θ2
i,Cj,2

+ 1
2 log(− π

θi,Cj,2
); µi,Cj and σ2

i,Cj
are

the mean and variance of the i-th features in training
instances labeled with class Cj , respectively. The sufficient
statistic ϕi(xi) equals ϕi(xi) = (xi, x

2
i ) [40]. Substituting

Equation (18) into Equation (17), we have

p(C = C1|x) = S(
n∑
i=1

(ωi ·ϕi(xi) + bi)) (19)

where ωi = θi,C1
− θi,C2

and bi = [F (θi,C2
) − F (θi,C1

)] +

ln p(C=C1)
p(C=C2) . Equation (19) implies that when feature xi is

mapped into another space where the mapped feature is
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ϕi(xi) = (xi, x
2
i ), the problem can be solved as a linear

problem using Gaussian naive Bayes. Hence the distance can
be computed by substituting the mapped instance ϕ(x) into
Equation (10).
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