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Abstract—Recently, many researchers have been working on improving other traditional machine learning algorithms (besides deep
learning) using high-performance hardware such as Graphics Processing Units (GPUs). The recent success of machine learning is not
only due to more effective algorithms, but also more efficient systems and implementations. In this paper, we propose a novel and
efficient solution to multi-class SVMs with probabilistic output (MP-SVMs) accelerated by GPUs. MP-SVMs are an important technique
for many pattern recognition applications. However, MP-SVMs are very time-consuming to use, because using an MP-SVM classifier
requires training many binary SVMs and performing probability estimation by combining results of all the binary SVMs. GPUs have
much higher computation capability than CPUs and are potentially excellent hardware to accelerate MP-SVMs. Still, two key
challenges for efficient GPU accelerations for MP-SVM are: (i) many kernel values are repeatedly computed as a binary SVM classifier
is trained iteratively, resulting in repeated accesses to the high latency GPU memory; (ii) performing training or estimating probability in
a highly parallel way requires a much larger memory footprint than the GPU memory.
To overcome the challenges, we propose a solution called GMP-SVM which exploits two-level (i.e., binary SVM level and MP-SVM
level) optimization for training MP-SVMs and high parallelism for estimating probability. GMP-SVM reduces high latency memory
accesses and memory consumption through batch processing, kernel value reusing and sharing, and support vector sharing.
Experimental results show that GMP-SVM outperforms the GPU baseline by two to five times, and LibSVM with OpenMP by an order
of magnitude. Also, GMP-SVM produces the same SVM classifier as LibSVM.

Index Terms—Machine Learning, Multi-class probabilistic SVMs, Graphics Processing Units.
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1 INTRODUCTION

The development of more effective algorithms and of more
efficient algorithms are the two key factors to the success of
machine learning in the big data era. There is no doubt that
high-performance hardware such as Graphics Processing
Units plays an important role in the success. Recently, many
researchers are rethinking about improving other traditional
machine learning algorithms (besides deep learning) using
the high-performance hardware [1], [2]. In this paper, we
propose a novel and efficient solution to multi-class SVMs
with probabilistic output (MP-SVMs) accelerated by GPUs.
MP-SVMs have important applications in pattern recog-
nition tasks such as medical image retrieval and image
classification [3], [4], [5].

The most common implementation of MP-SVMs is
through pairwise coupling (a.k.a. one-against-one), because
the pairwise coupling method outperforms other meth-
ods [6]. LibSVM [7], an open source user friendly toolkit,
is such implementation and has made the use of MP-SVM
easier. However, a key barrier that hinders the wide use
of MP-SVMs is its high training and probability estima-
tion1 cost, since an MP-SVM classifier consists of many
binary SVMs. Those costs can be prohibitively high for ever
increasingly large datasets. As we can see from Table 1,

1. “Probability estimation” and “prediction” are used interchange-
ably in this paper depending on which terminology is more natural in
the context.

LibSVM without OpenMP takes about one hour on training
an MP-SVM classifier for the MNIST dataset and another
hour on estimating probability. For MNIST8M—a bigger
dataset, LibSVM needs a few days to process. Even enabling
OpenMP for LibSVM on a workstation with 20 CPU cores,
handling MNIST8M still takes a long time (i.e., 22 hours
on training). More details on this experimental setup can
be found in Section 4. Encourged by the recent success of
GPUs in machine learning, we investigate whether and how
we can improve the performance of MP-SVM using GPU
accelerations.

GPUs have much higher computation capability than
CPUs and are potentially excellent hardware to accelerate
MP-SVMs. A naive approach of using GPUs is to train
the binary SVMs on the GPU one by one, and to estimate
probability for multiple instances using one binary SVM at
a time. The naive approach has a relatively small memory
footprint which fits into the GPU. We call this approach the
GPU baseline. Our experimental results (cf. Table 1) show
that the GPU baseline is about three times faster in training
and ten times faster in estimating probability than LibSVM
with OpenMP. However, the GPU baseline is still inefficient
(e.g., around ten hours in training for MNIST8M), because
it severely underutilizes the GPU hardware. Two key chal-
lenges are: (i) many kernel values are repeatedly computed
as a binary SVM classifier is trained iteratively, resulting
in repeated accesses to the high latency GPU memory; (ii)
performing training or estimating probability in a highly
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TABLE 1: Elapsed time (sec) comparison among LibSVM, and GPU based algorithms

Dataset LibSVM without OpenMP LibSVM with OpenMP GPU baseline our CPU version of GMP-SVM our GMP-SVM
training prediction training prediction training prediction training prediction training prediction

CIFAR-10 22,523 19,090 4,659 3,074 1,200.22 212.5 495.65 74.29 220.7 29.3
MNIST 3,847.96 3,113.16 429.1 245.7 100.83 30.46 96.55 12.04 34.1 4.62

MNIST8M 810,794 1.2x106 78,856 79,840 35,390 2,945.87 32,470.37 9,973.41 7,134.12 927.06

parallel way requires a much larger memory footprint than
the GPU memory.

To address the challenges, we propose a highly efficient
parallel solution called “GMP-SVM” which exploits two-
level optimization for training MP-SVMs and high paral-
lelism for estimating probability. GMP-SVM reduces high la-
tency memory accesses and memory consumption through
batch processing, kernel value reusing and sharing, and sup-
port vector sharing. In the binary SVM level, we compute
kernel values in batches with the consideration of reusing
kernel values via a GPU buffer. In the MP-SVM level, we
develop techniques to concurrently train multiple binary
SVMs with kernel value sharing among the binary SVMs.
When estimating probability, GMP-SVM concurrently com-
putes the probabilities for multiple instances using multiple
binary SVMs with support vector and kernel value sharing
among the SVMs. GMP-SVM can train MP-SVMs for MNIST
in only 34 seconds and estimate probability almost instantly
(cf. Table 1); in the MNIST8M dataset, GMP-SVM finishes
training within two hours and estimating probability in 16
minutes. To investigate the significance of GPUs, we also
compare GMP-SVM with our multi-threaded CPU version
of GMP-SVM, the results show that GMP-SVM achieves
about three times speedup over its CPU counterpart.

In summary, our key contributions in this paper are
as follows. First, we design a highly efficient GPU solu-
tion (i.e., GMP-SVM) for training MP-SVMs and perform-
ing probability estimation. Our solution reduces repeated
computation and addresses resource underutilization of
the GPU baseline. GMP-SVM is integrated into the open-
source project on GitHub at https://github.com/zeyiwen/
thundersvm. The project has attracted 680+ stars and 80+
forks as of 24 Jun 2018. Second, we conduct comprehensive
experiments to study the efficiency of GMP-SVM. Experi-
mental results show that GMP-SVM outperforms the GPU
baseline by two to five times, and LibSVM with OpenMP by
an order of magnitude. Additionally, GMP-SVM produces
the same SVMs as LibSVM. Note that, GMP-SVM is three
to ten times faster than its CPU-based counterpart, which
demonstrates the efficiency of our algorithmic design and
the effectiveness of GPU accelerations.

The remainder of this paper is structured as follows. We
present preliminaries on multi-class probabilistic SVMs in
Section 2. Then we elaborate our implementation for multi-
class probabilistic SVMs on GPUs in detail in Section 3. A
comprehensive experimental study is provided in Section 4.
After that, we discuss the related work in Section 5. Finally,
we conclude the paper in Section 6.

2 PRELIMINARIES

In this section, we first present details of SVMs, Sequential
Minimal Optimization (SMO) [8] for training SVMs, and

converting the output of SVMs into probability. Then, we
discuss MP-SVMs, and present key features of GPUs.

2.1 Support Vector Machines (SVMs)
Here, we discuss the basis form of SVMs [9] which are used
for binary classification problems. This type of SVMs is also
called binary SVMs which is the building block of MP-SVMs
as we will see later in this section. Formally, an instance xi

is attached with an integer yi ∈ {+1,−1} as its label. A
positive (negative) instance is an instance with the label of
+1 (−1). Given a set X of n training instances, the goal of
the SVM training is to find a hyperplane that separates the
positive and the negative training instances in the feature
space induced by the kernel function with the maximum
margin and meanwhile, with the minimum misclassification
error on the training instances.

The SVM training is equivalent to solving the following
optimization problem:

argmin
w, ξ, b

1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi
ξi ≥ 0, ∀i ∈ {1, ..., n}

(1)

where w is the normal vector of the hyperplane, C is
the penalty parameter, ξ is the slack variables to tolerant
some training examples falling in the wrong side of the
hyperplane, and b is the bias of the hyperplane. The form
of the optimization problem (1) is call the primal form of the
SVM training.

To handle nonlinearly separable data, the above op-
timization problem is solved in dual form shown below
where mapping functions can be easily applied.

max .
α

n∑
i=1

αi −
1

2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ {1, ..., n},
n∑

i=1

yiαi = 0

(2)

where αi denotes the weight of xi; Q denotes an n × n
matrix [Qi,j ] and Qi,j = yiyjK(xi,xj), and K(xi,xj) is
a kernel value computed from a kernel function; C is for
regularization. The kernel values of all the training instances
form a kernel matrix [10]. The most common kernel functions
are listed as follows.

• Gaussian: K(xi,xj) = exp(−γ||xi − xj ||2)
• Linear: K(xi,xj) = xi · xj

• Polynomial: K(xi,xj) = (axi · xj + r)d

• Sigmoid: K(xi,xj) = tanh(axi · xj + r)

where γ, a, r and d are hyper-parameters of the kernel
functions. The purpose of the kernel function is to implicitly
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map the training data from their original data space to a
higher dimensional data space. The mapping function ϕ(·)
is implicit, because the mapping is embedded into the kernel
function in the quadratic programming problem in the form
of K(xi,xj) = ϕ(xi) ·ϕ(xj). When training SVMs, we only
need to specify the kernel function rather than specifying
the mapping function ϕ(x). When the training data is not
linearly separable, practitioners often use kernel functions
for mapping the training data to a higher dimensional data
space.

2.1.1 The Sequential Minimal Optimization (SMO) algo-
rithm

Platt [8] proposed the SMO algorithm for SVM training (i.e.,
solving the quadratic programming problem 2). SMO is sim-
ply a straightforward subspace-ascent algorithm restricted
to two-dimensional subspaces [11], where subproblems are
solved optimally. In SMO, a training instance xi is asso-
ciated with an optimality indicator fi which is defined as
follows.

fi =
n∑

j=1

αjyjK(xi,xj)− yi (3)

Training the binary SVM with SMO is to repeat the follow-
ing three steps until the optimality condition is met.

Step 1: Find two training instances, denoted by xu and
xl, which have the maximum and minimum optimality
indicators, respectively. The indexes of the two instances,
denoted by u and l, can be computed as follows.

u = argmin
i
{fi|i ∈ Iu} (4)

and

l = argmax
i
{ (fu − fi)

2

ηi
|fu < fi, i ∈ Il} (5)

where ηi = K(xu,xu) +K(xi,xi)− 2K(xu,xi); fu and fl
are computed using Equation (3); Iu and Il are defined as
follows.

Iu = I1 ∪ I2 ∪ I3,
Il = I1 ∪ I4 ∪ I5

and
I1 = {i|xi ∈ X , 0 < αi < C},

I2 = {i|xi ∈ X , yi = +1, αi = 0},
I3 = {i|xi ∈ X , yi = −1, αi = C},
I4 = {i|xi ∈ X , yi = +1, αi = C},
I5 = {i|xi ∈ X , yi = −1, αi = 0}.

A natural interpretation for these five sets is as follows. I1
contains all the free support vectors; I2 and I5 include all
the non-support vectors; I3 and I4 include all the on-bound
support vectors.

Step 2: Improve the weights of xu and xl, denoted by
αu and αl, by updating them as follows.

α′l = αl +
yl(fu − fl)

η
(6)

and
α′u = αu + ylyu(αl − α′l) (7)

where η = K(xu,xu)+K(xl,xl)−2K(xu,xl). To guaran-
tee the update is valid, when α′u or α′l exceeds the domain
of [0, C], α′u and α′l are adjusted into the domain.

Step 3: Update the optimality indicators of all instances.
fi is updated to f ′i using the following formula:

f ′i =fi + (α′u − αu)yuK(xu,xi)

+ (α′l − αl)ylK(xl,xi)
(8)

SMO repeats the above steps until the following condi-
tion is met.

fu = min{fi|i ∈ Iu} ≥ fmax (9)

where fmax is computed as follows.

fmax = max{fi|i ∈ Il} (10)

The two selected instances in Step 1 together form a working
set. SMO is simple and efficient, and therefore is widely used
in LibSVM and many other SVM implementations [12], [13].
After the optimality condition is reached, the SVM can be
used for prediction. The decision value of an instance xi,
denoted by vi, is computed as follows.

vi =
n∑

j=1

yjαjK(xj ,xi) + b (11)

where b is the bias of the hyperplane of the trained SVM. If
vi is greater or equal to 0, then the predicted class label is
+1. Otherwise, the predicted class label is −1.

Algorithm 1 summarizes the whole training process
using SMO. In Algorithm 1, Ku and Kl correspond to the
uth and the lth rows of the kernel matrix, respectively.

Algorithm 1: SVM training use the SMO algorithm
Input: a training set X of n instances with labels y
Output: a weight vector α

1 for i← 1 to n do /* initialize α and f */
2 αi ← 0, fi ← −yi
3 repeat
4 search for fu and u using Equation (4);
5 compute kernel values Ku /* uth row */
6 search for fl and l using Equation (5);
7 compute kernel values Kl /* lth row */
8 update αu and αl using Equations (6) and (7);
9 update f using Equation (8);

10 search for fmax using Equation (10);
11 until fu ≥ fmax

2.1.2 Computing probability
To convert the decision value vi (cf. Equation 11) from a
binary SVM to a probability, Platt [14] proposed to use a
sigmoid function. The sigmoid is fitted to the SVM output,
which ideally is a monotonic function of the probability.
The intuition is that given vi > vi′ ≥ 0, the probability
of xi being a positive instance (i.e., with +1 label) should
be greater than that of xi′ being a positive instance. This is
because the instance xi is further away from the hyperplane
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Fig. 1: Overview of MP-SVM Training

than xi′ . Formally, the probability of an instance xi being a
positive instance is defined as follows.

P (yi = 1|xi) =
1

1 + exp(Avi +B)
(12)

where vi is computed by Equation (11), and the parameter
A and B can be obtained by maximizing the following log
likelihood.

max .
A,B

F =
n∑

i=1

tilog(P (yi = 1|xi))

− (1− ti)log(1− P (yi = 1|xi))

where ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1,

(13)

N+ denotes the number of positive training instances (i.e.,
yi = +1), and N− denotes the number of negative training
instances (i.e., yi = −1). Newton’s method with back-
tracking is a commonly used approach to solve the above
optimization problem [15] and is implemented in LibSVM.

2.2 Multi-class SVMs with probabilistic output (MP-
SVMs)
In what follows, we present the training and prediction
processes of MP-SVMs.

2.2.1 Training MP-SVMs
MP-SVMs are commonly implemented via pairwise cou-
pling (also used in LibSVM) which has shown superiority
over other methods [6]. During training MP-SVMs, many bi-
nary SVMs are trained using SMO and then their predicted
values on the training instances are used to train the sigmoid
function (cf. Equations 12 and 13) discussed above.

Figure 1 gives an overview of training MP-SVMs. Given
the training dataset, the dataset is first decomposed into
multiple subsets of two classes (i.e., binary problems). A bi-
nary problem (s, t) consists of all the instances of class s and

t. There are
k(k − 1)

2
binary SVM classifiers in total, where

k is the number of classes in the dataset. After training the
binary SVM classifiers, the predicted values of SVMs,t on
the binary problem (s, t) are used to train the corresponding
sigmoid function to produce the binary probabilistic SVM.

Finally, the trained SVMs and the sigmoid functions are
saved, such that they can be used to predict the probability
values of unseen data.

2.2.2 Prediction using MP-SVMs

When estimating probability, MP-SVMs first estimate local
probability using binary SVMs with probability output and
then estimate multi-class probability using all the local
probabilities. More specifically, once we have the binary
SVMs with probability output—also called a local probability
estimator, the probabilities from all the local probability
estimators for each instance are combined to obtain the
multi-class probability. Suppose the dataset has k classes.
Let us denote rst to be the probability estimate of instance xi

(i.e., the local probability computed by Equation 12), where
s and t denote the sth class and tth class, respectively. Multi-
class probability estimation for an instance is formulated as
follows.

min .
p

k∑
s=1

∑
t:t 6=s

(rtsps − rstpt)2

subject to
k∑

i=s

ps = 1 and rts = (1− rst)

(14)

where ps represents the probability of instance xi belonging
to the class s. The above problem is a convex quadratic
problem with a linear equality constraint, and the problem
can be solved by Gaussian elimination [16].

Figure 2 shows an overview of the prediction process of
MP-SVMs. Given the testing data (which usually consist of

unseen data during training), the
k(k − 1)

2
binary SVMs are

used to predict the decision values of each instance. The pre-
dicted decision value by SVMs,t is plugged into the trained
sigmoid function, Sigmoids,t (cf. Equation 12), to obtain the
probability of the instance belonging to class s. The probabil-

ity values predicted by the
k(k − 1)

2
sigmoid functions are

combined by solving optimization problem (14) to obtain
the final multi-class probability.

Example 1. Suppose we have three classes (i.e., yi ∈ {1, 2, 3})
in total in a given problem, and three SVM classifiers with
probabilistic output have been trained. The three SVM classifiers
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are denoted by SVM1,2, SVM1,3 and SVM2,3, respectively. Given
an unseen instance xi, the predicted probability of xi belonging
to class 1 is 0.8 by SVM1,2; that belonging to class 3 is 0.4 by
SVM1,3; that belonging to class 2 is 0.4 by SVM2,3. The three
probability values are plugged into the optimization problem (14).
After solving the optimization problem (14), we obtain the proba-
bility of xi belonging to class 1, 2 and 3 to be 0.85, 0.05 and 0.1,
respectively.

2.3 Graphics Processing Units
A GPU contains a large number of (e.g., thousands of) cores
which are grouped into streaming multiprocessors (SMs).
In the NVIDIA Compute Unified Device Architecture (CUDA),
GPU threads are grouped into blocks which are also called
thread blocks. Each thread block is executed in an SM. At
any timestamp, an SM can only execute instructions of one
thread block. Moreover, GPUs can run multiple programs
(i.e., multiple CUDA kernel functions) concurrently, if the
GPU has sufficient resources.

Compared with main memory, GPUs have relatively
small memory (e.g., 12 GB memory in Tesla P100—a high-
end GPU). The memory is called GPU global memory.
Accessing the GPU global memory is much more expensive
than computation, so we should avoid accessing the GPU
global memory as much as possible. The data transfer
between CPUs and GPUs is through PCI-e which is one
order of magnitude slower than accessing the GPU global
memory. Therefore, we should make full use of the GPU
memory to efficiently handle large datasets, and reduce data
transferring between CPUs and GPUs. In this paper, we
address the limitation of GPU memory and take advantage
of GPU massive computing capability.

3 OUR SOLUTIONS TO MP-SVMS

In this section, we first discuss the challenges and the
design rationale, and then propose a GPU baseline for multi-
class SVMs with probabilistic output (MP-SVMs for short).
Finally, we elaborate our highly efficient solution to MP-
SVMs.

3.1 Challenges and design rationale
In the following, we discuss the challenges of accelerating
the training and prediction algorithms for MP-SVMs, and
present the design rationale of our algorithms.

3.1.1 Challenges

The key challenges of developing efficient MP-SVM algo-
rithms are in two aspects: (i) efficiently access the kernel
matrix and (ii) training many binary SVMs concurrently or
estimating probability using many SVMs concurrently on
GPUs.

First, the size of kernel matrix in the optimization prob-
lem of SVMs is quadratic in the number of training instances
and is usually unable to be stored in memory. Therefore,
the optimization problem cannot be solved at once. The
SMO algorithm removes the constraint of having to store
the whole kernel matrix in memory by decomposing the
original problem to many subproblems. In each subproblem,
only two rows of the kernel matrix need to be accessed.
SMO has been proven being efficient on CPUs [17]. How-
ever, SMO needs to be redesigned to work efficiently on
GPUs, because calculating two rows of kernel matrix for
many times results in (i) lots of small read/write operations
and (ii) many repeated kernel value computation, which
dramatically slows down the SVM training process.

Second, training MP-SVMs requires training many bi-
nary SVMs, and estimating probability requires considering
the results of many binary SVMs. There is a clear tradeoff on
the parallel efficiency and memory consumption. Training
the binary SVMs or estimating probability using binary
SVMs sequentially underutilizes the GPU resources, while
training all the binary SVMs concurrently or estimating
probability using all the binary SVMs concurrently requires
much larger memory footprint than the GPU memory.

3.1.2 Design rationale

In this paper, we aim to design an efficient GPU accelerated
solution to MP-SVM by balancing memory consumption
and the level of parallelism. To address the challenge of
efficiently access the kernel matrix, we propose to select
a larger working set, and reuse kernel values through a
GPU memory buffer. We compute a number of rows of the
kernel matrix in a batch, reuse the rows that are stored in
the GPU memory buffer, and solve multiple subproblems
in that batch. Thus, our algorithm avoids performing a
large number of small read/write operations and reduce
repeated kernel value computation. To address the challenge
of concurrently training many binary SVMs or estimating
probability using many SVMs on GPUs, we propose kernel
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value and support vector sharing technique among the
binary SVMs to reduce the memory usage.

In the following, we start with the naive solution (GPU
baseline), and then present the design of our solution called
“GMP-SVM” in more details.

3.2 The GPU baseline
Recall that MP-SVMs consist of multiple binary SVMs. A
naive approach is to train the binary SVMs on the GPU one
by one, and to estimate probability for multiple instances us-
ing one binary SVM at a time. The GPU baseline consists of
three phrases: Phase (i) training binary SVM classifiers one
by one using SMO, Phase (ii) adapting each SVM classifier
to a local probability estimator (cf. Equations 12 and 13),
and Phase (iii) estimating probabilities by combining the
results from all the local probability estimators (cf. solving
problem 14).

Phase (i): When training a binary SVM, Step 1 and Step
3 of SMO can be done in parallel, while Step 2 cannot be
parallelized because the two weights are dependent (cf. Sec-
tion 2.1). Step 1 is essentially searching for the minimum or
maximum value from an array, and can be done in parallel
on GPUs using parallel reduction [18], where each thread
compares two elements and discards the larger/smaller one
until only one element is left in the array. Step 3 can also be
done in parallel, where each thread updates an optimality
indicator using Equation (8).

Phase (ii): Converting a binary SVM classifier to a local
probability estimator is to learn the parameters A and B
for a sigmoid function based on the training data. Learning
the parameters A and B (cf. Equation (12)) is to solve
Problem (13) using Newton’s method with backtracking.
The major computation of the Newton’s method with back-
tracking is computing the value and the gradients of the
objective function of Problem (13). Computing the value of
the objective function is effectively computing the sum of n
elements, and is done by parallel reduction on GPUs. The
gradients with respected to A and B are computed by:

∂F

∂A
=

n∑
i=1

vi(ti − P (yi = 1|xi))

∂F

∂B
=

n∑
i=1

(ti − P (yi = 1|xi))

The above gradients are also effectively the sum of n ele-
ments, and can also be done by parallel reduction.

Phase (iii): After we have obtained all the local proba-
bility estimator, we can perform the multi-class probability
estimation using those local probability estimators. Here, we
present techniques to (1) compute the decision values in par-
allel, (2) compute multi-class probability of one instance in
parallel, and (3) compute multi-class probability of multiple
instances in parallel.

(1) Compute decision values in parallel: As discussed in
Section 2.2, we need to use the decision values computed
by each binary SVM to estimate local probability (i.e., Equa-

tion (12)). Given n training instances and
k(k − 1)

2
binary

SVMs, we need to compute n × k(k − 1)

2
decision values,

where k is the number of classes.

The training instances are independent and the binary
SVMs are also independent. Theoretically, all the binary
SVMs can be used to predict the decision values simul-
taneously. However, due to the GPU memory limitation,
we compute decision values of multiple training instances
concurrently using one binary SVM at a time. We will
present a better algorithm in the later section with support
vector and kernel value sharing. Given an instance xi, we
allocate a thread block to compute the sum of Equation (11)
and to obtain the decision value vi. In total, we dedicate

n × k(k − 1)

2
thread blocks for computing all the decision

values. If n× k(k − 1)

2
is larger than the maximum number

of blocks that the GPU can support, we divide the blocks
into a few groups and launch one group of blocks at a time.

(2) Compute multi-class probability of one instance in parallel:
We use the method derived by Wu et al. [16] to solve
Problem (14). The multi-class probability p = 〈p1, p2, ..., pk〉
is computed as follows.

p =
Q−1e

eTQ−1e
,

where Qst =

{∑
u:u6=s r

2
us if s = t

−rstrts sf s 6= t

(15)

where e is a k × 1 vector of all ones; s and t denote the sth

class and tth class, respectively; Q is positive semi-definite.
A small value is added to Q when its inversion does not
exist. We propose to use the matrix operation library (i.e.,
cuSparse [19]) to exploit GPUs, as Equation (15) mainly
involves sparse matrix operations.

(3) Compute multi-class probability of multiple instances
in parallel: The above process is for estimating probability
p = 〈p1, p2, ..., pk〉 for one instance. We launch multiple
procedures on GPUs for estimating probability for multiple
instances, to take advantage of GPUs’ high performance.

Problems of the GPU baseline: The GPU baseline is no-
tably more efficient than LibSVM with OpenMP. However,
two key unsolved problems are: (i) many kernel values are
repeatedly computed because an SVM is trained iteratively,
which results in repeated accesses to the high latency GPU
memory; (ii) training one binary SVM (or estimating prob-
ability using one binary SVM) at a time underutilizes the
GPU hardware.

3.3 Our GMP-SVM solution
To reduce repeated memory accesses, kernel value reusing
and sharing can be an effective approach. To improve the
GPU utilization, it is natural to consider training multiple
binary SVMs (and estimating probabilities using multiple
binary SVMs) concurrently. However, reusing kernel values
is tricky, because greedily reusing kernel values may result
in local optimization on the working set. Sharing kernel
values among binary SVMs requires organizing the kernel
values properly. Training many binary SVMs (or estimating
probability using multiple binary SVMs) at a time requires
a much larger memory footprint than the GPU memory.

To address the challenges, we develop a novel solution
called GMP-SVM (“G” stands for “GPU”) with two-level
optimization for training MP-SVMs and high parallelism
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for estimating probability. GMP-SVM reduces high latency
memory accesses and memory consumption through batch
processing, kernel value reusing and sharing, and support
vector sharing. In the binary SVM level, we use a larger
working set of violating instances than the SMO solver
does (i.e., SMO selects two instances), such that we can
amortize the data access overhead on GPU memory and
solve SMO subproblems in a batch. We (i) precompute all
the kernel values for the violating instances in a batch to
achieve cheaper cost per kernel value, (ii) store the kernel
values to a GPU buffer which stores all the kernel values in
the working set, and (iii) optimize the SVM on the working
set with an approach to reduce the negative effect of local
optimization on the working set. In the MP-SVM level, we
concurrently train multiple binary SVMs with kernel value
sharing among the binary SVMs. When estimating proba-
bilities, GMP-SVM concurrently computes the probabilities
for multiple instances using multiple binary SVMs with
support vector and kernel value sharing. With the two level
optimization for training and support vector and kernel
value sharing for estimating probability, we address the
memory access and GPU utilization problems of the GPU
baseline.

3.3.1 Techniques used in binary SVM level
As we have mentioned in Section 2.1, the SMO algorithm
selects two training instances (which together form a work-
ing set) to improve the current SVM. For the working set,
SMO needs to compute all the related kernel values, i.e.,
two rows of the kernel matrix (an example of kernel matrix
is available in Section 2.1). The kernel values are later used
for adjusting the currently trained SVM. It is known that
the kernel value computation is the bottleneck of the SVM
training algorithm [18], [20] when the data set is large.
Although GPUs can compute a row of the kernel matrix
faster than CPUs, it still takes majority of the training time
according to our experiments in the SMO algorithm. This
is true for high dimensional datasets which are emerging
in many applications. Therefore, we propose techniques to
efficiently compute the kernel values in batches, and to
reuse and share kernel values.

Instead of using a working set of size two, we propose
to use a bigger working set and solve multiple subproblems
of SMO in a batch. We precompute all the kernel values for
the working set and store them in a GPU buffer which is a
preallocated space on the GPU global memory. In each time
we update the working set, q (where q ≥ 2) instances in the
working set will be replaced with q new violating instances,
such that (i) q rows of the kernel matrix can be computed in
one execution to make efficient use of the GPU and reduce
GPU memory accesses, and (ii) the kernel values in the GPU
buffer can be reused (i.e., GPU buffer size is larger than
q). Our experimental results show that when q > 10, the
computation cost per row is often over ten times cheaper
than the cost of computing a row individually, due to the
massive parallelism of GPUs.

It is worthy to point out that solving q/2 subproblems
in a batch is cheaper than solving the same number of
subproblems individually in the original SMO algorithm.
The cheaper computation cost is due to the batch processing
and reuse of the kernel values. One possibility is that solving

the q/2 subproblems in a batch may lead to more training
iterations compared to solving the subproblems in the tradi-
tional way. However, the efficiency of the whole training is
improved in practice, because the cost of the extra training
iterations is much lower than the cost saved in kernel value
computation. Our empirical results in Section 4 will confirm
this.

In the following, we first discuss our approach to select
the q violating instances to refresh the working set. Then, we
provide more details of computing kernel values for the q
instances and store them to a GPU buffer. Last, we present a
technique to reduce the negative effect of local optimization
on the working set.

Selecting q violating instances: Our intuition for updat-
ing the working set is to choose q training instances that
violate the optimality condition (cf. Constrain (9)) the most,
such that the current SVM can be potentially improved
the most [21]. The violation to the optimality condition is
measured by the optimality indicators (i.e., cf. Equation (3)).
Hence, we first sort the training instances based on their
optimality indicators in ascending order. Then, we choose
the top

q

2
training instances whose yiαi can be increased;

and we choose the bottom
q

2
training instances whose yiαi

can be decreased. We consider both yi and αi for each
training instance, because of the constraints

∑
yiαi = 0 and

0 ≤ αi ≤ C in Problem (2). By choosing the working set in
this way, the search space for the α values of the q instances
is large, and as a result the objective value of Problem (2) is
likely to increase the most. After choosing the working set,
we solve the optimization problem formed by this working
set using SMO.

One implementation detail we would like to note here
is that keeping half of the violating instances in the previ-
ous batch leads to faster convergence (i.e., adding only

q

2
violating instances to form a new working set). The reason
may be due to the avoidance of the local optimization on
the working set as we will discuss later.

Maintaining a GPU buffer for kernel values: Before we
solve the optimization problem formed by the q violating
instances, we pre-compute all the kernel values related to
the q instances (i.e., q rows of the kernel matrix). This is
because the q rows of the kernel matrix are repeatedly
used during the optimization. It is important to point out
that the q rows of the kernel values only consume a small
amount of memory, where q is user defined variable and
is usually smaller than 1024 in practice. Computing those
kernel values is essentially matrix multiplication between
the q instances and the rest of the training instances, because
computing a kernel value can be viewed as a dot product of
two vectors [12]. Thus, the kernel value computation here
can be efficiently carried out by the cuSPARSE library [19].

The kernel values computed here are stored in a GPU
buffer on the GPU global memory, as the kernel values will
be repeatedly used by SMO while improving the current
SVM with the updated working set. Note that the SMO in
our algorithm only considers the instances in our working
set, which is different from the original SMO that needs to
consider all the training instances in every iteration. As a
result, one iteration of the SMO in our algorithm is often
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much cheaper than the traditional SMO.
To store the pre-computed kernel values, we allocate a

GPU memory buffer which can store m × q rows of the
kernel matrix (i.e., allow m batches to be stored in the
buffer). The first-in first-out batch replacement strategy is
used when the buffer is full. Although other strategies may
be more effective, we find first-in first-out simple and suffi-
ciently effective in our algorithm. Finding the best strategy
for replacement is out of the scope of this paper.

Reducing the negative effect of local optimization on
the working set: We improve the currently trained SVM
classifier based on the updated working set using SMO.
One approach is to improve the current SVM until no
further progress can be made using the current working set.
However, such an approach results in local optimization on
the working set, i.e., the SVM tends to classify the instances
in the working set accurately but misclassify other instances.
To mitigate the local optimization problem, we terminate the
improvement process earlier and shift to the next working
set for further improvement. Specifically, we propose to use
δ = (fl − fu) to decide when to terminate. Note that δ
indicates how far away the current SVM to the optimal (cf.
Constraint (9)). If δ is large, then we improve the current
SVM by fewer iterations; otherwise, we improve the SVM
by more iterations.

The above techniques significantly improve the effi-
ciency on the binary SVM training, as we will see in the
empirical results in Section 4.

3.3.2 Techniques used in the MP-SVM level

As discussed earlier, we need to train
k(k − 1)

2
binary SVM

classifiers, where k is the number of classes in the training
dataset. An observation is that any two binary SVM clas-
sifiers are independent. Therefore, we can simultaneously
train several binary SVMs. However, due to the limited GPU
memory and streaming multiprocessors, we cannot train all
the binary SVMs at once. When the training dataset is large,
the whole GPU may be occupied by only one binary SVM
training. To allow more binary SVMs to be trained concur-
rently, we limit the number of streaming multiprocessors
(SMs) that each binary SVM can use. Specifically, we use
larger GPU thread blocks, such that the total number of
blocks for a binary SVM is smaller than the number of SMs.

Moreover, we observe that the kernel values among
binary SVMs can be shared. To explain this, let us see an
example shown in Figure 3a where the number of classes
is three (i.e., k = 3) and the class labels are 1, 2 and 3,
respectively. As we can see from the figure, the three binary
SVMs each has an independent kernel matrix, where Ks,t

represents kernel values computed from K(xi,xj) for all xi

and xj in classes s and t, respectively. Figure 3b shows the
potential of sharing kernel values among the three binary
SVMs. The upper left dashed box contains the kernel matrix
for SVM1,2, and the bottom right dashed box contains the
kernel matrix for SVM2,3. The kernel matrix for SVM1,3 is
the four blocks at the corners of the figure; the four blocks
together form the kernel matrix for SVM1,3. As we can see
from the two figures, we reduce the number of blocks from
12 to 9 through sharing. The kernel value sharing technique
is useful in two aspects. First, the technique helps reduce the

SVM1,2

K1,1

K2,1

K1,2

K2,2

SVM1,3

K1,1

K1,3

K3,1

K3,3

SVM2,3

K2,2

K2,3

K3,2

K3,3

(a) Kernel matrices of 3 binary SVMs

K1,1 K1,2

K2,1 K2,2 K2,3

K3,2K3,1

K1,3

K3,3

SVM1,2

SVM2,3

SVM1,3SVM1,3

SVM1,3 SVM1,3

(b) Kernel matrices shared by 3 binary SVMs

Fig. 3: Organizing the kernel matrices of binary SVMs

GPU memory consumption, and hence allows more binary
SVMs to be trained concurrently. Second, the technique
allows our algorithm to compute fewer kernel values, and
hence reduces GPU memory accesses.

Adapting binary SVMs to local probability estimators: We
improve the GPU baseline in two aspects: (i) we learn
multiple sigmoid functions concurrently; (ii) we evaluate
multiple possible values for A and B concurrently in the
Newton’s method, instead of evaluating only one possible
value as the GPU baseline. We have enough GPU resources
for these highly parallel operations, thanks to our kernel
value sharing and reusing.

Algorithm 2 summarises the steps of the training algo-
rithm of GMP-SVM. For clarity, we write two for-loops in
the pseudo-code, which in fact are parallelized. In our im-
plementation, we concurrently train multiple binary SVMs
on GPUs (i.e. Lines 3 to 11) and kernel values among the
SVMs are shared during training. The SMO solver with a
second order heuristic [17] is used to improve the SVM in
Line 9. Line 12 denotes a parallel procedure for computing
decision values and will be further discussed next, as the
procedure is also used in probability estimation.

3.3.3 Estimating probability using kernel value sharing
Concurrently estimating probabilities for multiple instances
using multiple binary SVMs requires more memory than the
GPU memory footprint. To enable decision value prediction
using multiple binary SVMs, we propose to share support
vectors between SVMs and to share kernel values while
computing the decision values. The reason behind support
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Algorithm 2: Training MP-SVMs
Input: Training set X of k classes
Output: S of k(k − 1)/2 binary SVM classifiers
/* all instances with label s */

1 for s = 1 to k do
/* all ins. with label t */

2 for t = s+ 1 to k do
3 y, Xs,t ← getIns(X , s, t) /* y are labels

*/
4 α← 0, f ← −y, ws← φ
5 repeat
6 sort(f ) /* sort f ascendingly */
7 vioIns← selectViolatingInstance(q, f )
8 vioKV al← compKernelVal(vioIns,

Xs,t)
9 ws← updateWorkingSet(vioIns,

vioKV al)
10 α← ImproveSVM(α, y, f , ws)

/* use Equation (5) */
11 f ← updateF(α, y, f , Xs,t)
12 until fu ≥ fl

/* use Equation (7) */
13 v ← compDecisionVal(α, Xs,t)

/* solve Problem (9) */
14 A,B ← trainSigmoid(v)
15 S ← S ∪ saveSVM(α, A, B)

vector sharing is that the training datasets of two binary
SVMs may have more than a half of the training instances in
common, and some common training instances may become
support vectors which can be shared between the SVMs.
In fact, without support vector sharing, the same training
instance may be stored in (k− 1) binary SVMs as a support
vector. Our support vector sharing technique reduces the
GPU memory consumption by up to a factor of (k − 1).
Moreover, from Equation (11), we need to compute kernel
values for the instance xi with all the support vectors (i.e.,
training instance with α > 0) of all the binary SVMs.
The kernel values involved in Equation (11) can be shared
among the SVMs if the SVMs share support vectors.

4 EXPERIMENTAL STUDY

In this section, we empirically evaluate the performance
of GMP-SVM. We conducted all of our experiments on a
workstation running Linux with two Xeon E5-2640 v4 10
core CPUs, 256GB main memory and an NVIDIA Tesla
P100 GPU of 12GB memory. Our GMP-SVM solution and
the GPU baseline are implemented in CUDA-C. We also
implemented our GMP-SVM solution in C++ to obtain its
CPU version denoted by CMP-SVM in order to study
the impact of parallel algorithm design on the CPU. Both
CMP-SVM and LibSVM use the two Xeon E5-2640 v4 10
core CPUs, and GMP-SVM mainly uses the NVIDIA Tesla
P100 GPU. The code is available at https://github.com/
zeyiwen/thundersvm. We used Gaussian kernel and hyper-
parameters C and γ for the kernel on each dataset are the
same as the existing studies [18], [20], [22]. We compare
GMP-SVM with our GPU baseline, our CPU version of
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Fig. 4: Training time speedup of GMP-SVM over other MP-
SVM implementations

GMP-SVM, LibSVM (with and without OpenMP). Table 2
gives the details of the datasets which are publicly avail-
able (e.g., LibSVM website). The first four datasets have
two classes, and are used for studying the effectiveness of
our techniques used in binary SVM level. The remaining
five datasets are used for studying the whole GMP-SVM
solution. For a sanity check, we also compare GMP-SVM
with GTSVM [20], OHD-SVM [23] and GPUSVM [12] which
are arguably the state-of-the-art GPU library for multi-class
SVMs and binary SVMs, respectively, although OHD-SVM
only supports binary SVMs and GTSVM does not support
MP-SVMs and cannot be extended to train MP-SVMs (more
discussion in Section 5).

4.1 Efficiency and MP-SVM classifier comparison
We study the performance of our GMP-SVM, the GPU
baseline, our CMP-SVM and LibSVM. We set the GPU buffer
size to 1024 (i.e., store 1024 rows of the kernel matrix),
and q to 512 for GMP-SVM. LibSVM with OpenMP uses
40 threads, which achieves the best performance. The GPU
baseline uses 4GB of GPU memory for kernel value caching.
Our CMP-SVM also uses 40 CPU threads, which achieves
the best efficiency.

Efficiency comparison: Figure 4 shows the speedup on
training of GMP-SVM over other implementations includ-
ing the GPU baseline, CMP-SVM and LibSVM. As we can
see from the results, GMP-SVM consistently outperforms
LibSVM without OpenMP by one to two orders of magni-
tude, LibSVM with OpenMP by 10x times, and the GPU
baseline by two to five times. For example, when training
MP-SVMs for MNIST8M, GMP-SVM only takes two hours,
while the GPU baseline takes about ten hours. Another
observation on the datasets with 2 classes is that GMP-
SVM is the same as the GPU baseline when estimating
probability. This is because only one SVM classifier exists
and GMP-SVM cannot benefit from concurrently running
multiple binary SVMs for prediction. Finally, when compar-
ing our algorithm implemented for GPUs and CPUs, we can
observe that GMP-SVM consistent outperforms CMP-SVM
by three to ten times. This demonstrates the importance of
using GPUs for our MP-SVM solution. Better GPUs such as
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TABLE 2: Dataset information and parameters

Dataset Adult RCV1 Real-sim Webdata CIFAR-10 Connect-4 MNIST MNIST8M News20
# of classes 2 2 2 2 10 3 10 10 20
cardinality 32,561 20,242 72,309 49,749 50,000 67,557 60,000 8,100,000 15,935
dimension 123 47,236 20,958 300 3,072 126 780 784 62,061

C 100 100 4 10 10 1 10 1000 4
γ 0.5 0.125 0.5 0.5 0.002 0.3 0.125 0.006 0.5

TABLE 3: Efficiency comparison among LibSVM, GPU baseline, and our GMP-SVM

Dataset
elapsed time (sec)

LibSVM w/o OpenMP LibSVM w/ OpenMP GPU baseline our CMP-SVM our GMP-SVM
train predict train predict train predict train predict train predict

Adult 164.62 75.4 41.81 6.29 4.83 0.29 12.01 1.53 2.43 0.29
RCV1 54.87 80.58 8.38 4.31 2.27 0.16 4.65 1.97 1.01 0.16

Real-sim 986.1 488.49 74.21 25.57 11.58 0.75 20.8 5.83 3.15 0.75
Webdata 734.92 188.27 67.51 12.88 5.13 0.57 18.95 2.77 2.65 0.57
CIFAR-10 22,523 19,090 4,659 3,074 1,200.2 212.5 495.65 89.79 220.7 29.3
Connect-4 1,212.69 539.2 177.9 39.2 21.24 2.17 34.92 6.29 5.84 0.86

MNIST 3,847.96 3,113.16 429.1 245.7 100.83 30.46 96.55 12.04 34.10 4.62
MNIST8M 810,794 1.2x106 78,856 79,840 35,390 2,945.87 32,470.37 1675.24 7,134.12 927.06

News20 237.68 79.37 33.77 14.25 49.15 16.93 83.49 2.83 16.4 0.52
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Fig. 5: Prediction speedup of GMP-SVM over other MP-
SVM implementations

V100 should further improve the efficiency of GMP-SVM,
due to higher memory bandwidth and more cores.

Figure 5 shows the results of speedup on prediction of
GMP-SVM over other probabilistic SVM implementations.
As we can see from the figure, GMP-SVM consistently
outperforms LibSVM without OpenMP by two orders of
magnitude. When OpenMP is used for LibSVM, GMP-SVM
still outperforms it by more than 10 times. GMP-SVM per-
forms similarly with the GPU baseline for the four datasets
(i.e., Adult, RCV1, Real-sim and Webdata) with two classes,
because GMP-SVM is in fact the same as the GPU baseline
when handling binary problems. Therefore, GMP-SVM has
no speedup over the GPU baseline for the first four datasets
shown in Figure 5. When handling multi-class problems
(e.g., datasets MNIST and News20), GMP-SVM is 3 to 30
times faster than the GPU baseline, thanks to the techniques
(e.g., sharing kernel values and training multiple binary
SVMs concurrently) proposed in Section 3.3. In comparison
with CMP-SVM, GMP-SVM achieves 2 to 8 times speedup
thanks to the high parallelism of GPUs.

The detailed elapsed time on both training and predic-
tion of each implementation of each dataset is shown in
Table 3.

Classifier comparison: We should expect to see that
GMP-SVM and LibSVM produce identical SVMs, because
GMP-SVM can be viewed as a highly parallelized version
of LibSVM. We have measured the training error to confirm
if GMP-SVM produces identical results as LibSVM, and
the results are shown in Table 4. As we can see from
the results, the training and prediction errors are identical,
which implies that GMP-SVM and LibSVM produce the
same SVMs. The prediction error is computed using the test
set for the corresponding training problem. When the test
set is not available, we use the training dataset to serve as
the test set. To further confirm the SVMs trained by GMP-
SVM and LibSVM are the same, we also compare the bias of
the trained MP-SVMs, and the results are shown in Column
“bias” of Table 4. Note that we used the bias of the last bi-
nary SVM for the multi-class problems. As we can see from
the results, the biases of SVMs trained by GMP-SVM are
the same to those of LibSVM. Note that existing studies in
machine learning commonly compare the difference of ||w||
of two algorithms. However, it is impossible for kernelized
SVMs, because ||w|| is in an unknown data space. Finally,
we also varied the hyper-parameters C from 0.01 to 100
and γ from 0.03 to 10 on all the datasets, and compared the
training/prediction errors and bias between LibSVM and
GMP-SVM. The results again confirm that GMP-SVM and
LibSVM produce identical classifiers.

4.2 Sensitivity studies

As we have discussed in Section 3.3.1, kernel value compu-
tation takes most of the training time. Here, we investigate
the following two techniques closely related to kernel value
computation. We use four datasets as representatives in this
set of experiments: two for binary SVM training and two for
multi-class SVM training.

Effect of the GPU buffer for kernel values: We study
the effect of the GPU buffer size on the overall training time.
Note that changing the GPU buffer size is effectively varying
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TABLE 4: Final classifier comparison between LibSVM and GMP-SVM

Dataset bias term of the decision function training error prediction error
LibSVM GMP-SVM LibSVM GMP-SVM LibSVM GMP-SVM

Adult -0.510 -0.510 4.4% 4.4% 17.3% 17.3%
RCV1 -0.512 -0.512 0.11% 0.11% 4.2% 4.2%

Real-sim -1.061 -1.061 0.27% 0.27% 0.27% 0.27%
Webdata -0.936 -0.947 0.54% 0.54% 0.56% 0.56%
CIFAR-10 0.0245 0.0245 0.35% 0.35% 0.35% 0.35%
Connect-4 0.233 0.233 4.39% 4.39% 4.39% 4.39%

MNIST 0.360 0.360 0% 0% 10.18% 10.18%
MNIST8M -7.339 -7.339 0% 0% 0% 0%

News20 -0.0016 -0.0016 2.25% 2.25% 15.7% 15.7%
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Fig. 6: Varying buffer size
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Fig. 7: Varying # of violating instances

the size of the working set. As we can see from Figure 6, the
medium size GPU buffer (e.g., bs=512) achieves competitive
outcomes. Generally speaking, larger buffer size leads to
better performance. The reason is that larger buffer allows
more kernel values to be reused. However, when the buffer
size is too big, the working set tends to contain many not
useful training instances, which puts more burden when
improving the current SVMs.

Effect of the number of new violating instances: We
conducted experiments to study the effect of varying q (i.e.,
the number of violating instances). According to the result in
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Fig. 8: Training time of GMP-SVM and GTSVM

Figure 7, q should be about 1/2 of the GPU buffer size. This
is because large q results in flushing out all the kernel values
in the GPU buffer, while small q leads to more expensive
cost per kernel value (i.e., the batch size for the kernel value
computation is too small).

4.3 Comparison with a third party GPU SVM library
For a sanity check, we compare GMP-SVM with two most
recent GPU implementations for SVMs: GTSVM and OHD-
SVM. The two implementations are arguably the state-of-
the-art GPU based SVMs. GTSVM is for multi-class SVM
training and OHD-SVM is for binary SVM training.

4.3.1 Comparison with GTSVM
We first compare GMP-SVM with GTSVM [20] which can
train binary and multi-class SVMs but does not support
MP-SVMs (more discussion in Section 5). Although our
GMP-SVM is mainly for solving MP-SVM problems, GMP-
SVM can be used to train binary and multi-class SVMs.
We compare GTSVM with GMP-SVM regarding the total
elapsed time for training multi-class SVMs. The results are
shown in Figure 8. According to the result, GMP-SVM
consistently outperforms GTSVM often by about five times
on all the nine datasets, thanks to our optimizations when
training (multiple) binary SVMs and kernel value sharing
techniques.

4.3.2 Comparison with OHD-SVM and GPUSVM
OHD-SVM has been proposed recently [23], but it is for
binary SVM training only. Therefore, we compare GMP-
SVM with OHD-SVM using the four datasets which con-
tain only two classes. The results are shown in Figure 9.
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In addition to supporting multi-class probabilistic SVMs,
GMP-SVM consistently outperforms OHD-SVM, thanks to
our optimization on the binary SVM training level.

We also compare GMP-SVM with GPUSVM [12] in Fig-
ure 10. Please note that GPUSVM does not support multi-
class classification and probabilistic output. Hence, we only
use the four datasets which contain only two classes. As
we can see from the figure, GMP-SVM significantly out-
performs GPUSVM in large datasets, and achieves similar
efficiency in small datasets. We have noticed that GPUSVM
uses the dense data representation, which leads to higher
computation cost for large datasets and also requires more
memory to store the training data. This is the key reason
why GPUSVM is much slower than GMP-SVM on the RCV1
dataset.

4.4 Elapsed time on different components of GMP-SVM
For a better understanding of GMP-SVM and identifying
potential improvement of GMP-SVM in the future, we mea-
sure the elapsed time of different components of GMP-SVM
during training and prediction. Please note that the total
elapsed time for GMP-SVM training and prediction is avail-
able in Table 3. Therefore, we only present the percentage of
the total elapsed time of each component.

4.4.1 Time taken on each component in GMP-SVM training
The key components of GMP-SVM training include (i) ker-
nel value computation, (ii) solving the subproblem (i.e.,
solve the optimization problem that consists of instances
in the working set), and (iii) the remaining tasks such
as selecting the working set and updating the optimality
indicators.
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Figure 11 shows the result. As we can see from the
result, kernel value computation tends to dominate the
whole training process, and solving the subproblem is the
second most expensive process. The other tasks consume
roughly 20% of the total training time. This result gives
the insight of GMP-SVM, and the further improvement of
GMP-SVM training should focus on improving kernel value
computation and solving the subproblem.

4.4.2 Time on each component in GMP-SVM prediction
The key components of GMP-SVM prediction include (i)
computing the decision values (cf. Equation 11), (ii) com-
puting the probability values using sigmoid functions (cf.
Equation 12), and (iii) computing the multi-class probability
values (cf. Equation 14).

Figure 12 depicts the results. As we can see from the
figure, computing the decision values dominates the whole
prediction process. In comparison, the cost of solving the
optimization problem (14) using Equation 15 for obtaining
the multi-class probability is negligible. This insight is help-
ful to us and other researchers who want to further improve
GMP-SVM prediction in the future.

5 RELATED WORK

Machine learning has been successful in many applications
in recent years [24], [25], [26], and high-performance com-
puting has played a key role in this success. This study
mainly focuses on improving the efficiency of a machine
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learning algorithm: multi-class probabilistic SVMs. Many
existing studies have been dedicated to training SVMs. In
what follows, we categorize the most relevant related work
into two categories: the studies dedicated to training SVMs
using CPUs and the studies dedicated to training SVMs
using GPUs.

Training SVMs using CPUs: Platt [8] proposed the
SMO algorithm which is simple and efficient, and hence
SMO is used in LibSVM, WEKA [27] and Catanzaro’s al-
gorithm [12]. Other studies in training linear SVMs, such
as Joachims’ algorithm using cutting plane [28] and “Pe-
gasos” [29] cannot handle non-linear kernels and does not
support MP-SVMs. Training SVMs in distributed environ-
ment (e.g., MapReduce SVMs [30] and MPI SVMs [31]) is
inefficient due to the iterative nature of the SVM training
and costly network communication.

Platt [14] proposed binary SVMs with probabilistic out-
put. Wu et al. [16] discussed different approaches to proba-
bility estimates for multi-class SVMs, and they have showed
that the method based on pairwise coupling produces the
best result. As a result, LibSVM implements pairwise cou-
pling for MP-SVMs. A study [32] elaborated the advantages
of one-against-all approach for classification. However, one-
against-all is rarely used for probabilist SVMs in exist-
ing literature. Milgram et al. [33] compared several post-
processing methods for MP-SVMs. They showed that SVMs
estimate better probability than Multi Layer Perceptron
(MLP). Although their techniques (e.g., softmax) can be
used in GMP-SVM, we aim to produce the same SVMs
as LibSVM. Using Milgram et al.’s techniques for post-
processing is out of the scope of this paper.

Training SVMs using GPUs: Catanzaro et al. [12] first
introduced GPUs for training binary SVMs. Wen et al. [18]
proposed GPU based binary SVM cross-validation by pre-
computing the whole kernel matrix which is stored in high-
speed storage (e.g., SSDs). A recent study extended their
algorithm for SVM regression problems [34]. Athanasopou-
los et al. [35] used GPUs to purely accelerate the kernel
matrix computation in the SVM training. These studies are
for training binary SVMs and cannot handle large datasets,
because the size of kernel matrix is quadratic in the number
of instances. For example, processing the MNIST8M dataset
with their algorithms needs 256TB of storage which is
unacceptable for GPUs. Herrero-Lopez et al. [13] used one-
against-all method to solve multi-class problems on GPUs.
However, they represented the training instances in dense
format for the ease of implementation and better memory
alignment. The dense representation makes the above algo-
rithms difficult to handle large but sparse datasets. Another
study [23] compares different GPU SVM implements and
provides some bench mark results, and proposes the OHD-
SVM algorithm. However, the work only focuses on binary
SVMs and no multi-class SVMs or probabilistic SVMs are
presented. Cotter et al. [20] represented training instances
in sparse format (i.e., CSR format [36]), and proposed a
clustering technique to make use of the data sparseness.
We also use CSR format to represent the training data
for handling large but sparse datasets. We call Cotter et
al.’s algorithm GTSVM. GTSVM supports both binary and
multi-class SVMs, but does not support multi-class proba-
bility estimation due to their mathematical modelling. For a

sanity check, we have compared GMP-SVM with GTSVM
and OHD-SVM in Section 4.3. Our results have shown
that GMP-SVM achieves the best performance among the
various implementations.

6 CONCLUSION

In this paper, we have proposed a GPU based solution,
called GMP-SVM, for multi-class SVMs with probabilistic
output (MP-SVMs). The challenges of developing a highly
parallelized GPU based solution for MP-SVMs are (i) re-
peated accesses to the high latency GPU memory, and (ii) the
requirement of much larger memory footprint than the GPU
memory. GMP-SVM reduces high latency memory accesses
and memory consumption through batch processing, kernel
value reusing and sharing, and support vector sharing. Ex-
perimental results have shown that GMP-SVM outperforms
the GPU baseline by two to five times, and LibSVM with
OpenMP by an order of magnitude. Additionally, GMP-
SVM produces the same SVM model as LibSVM. With this
significant performance speedup, we hope to bring MP-
SVM a wider use in pattern recognition applications with
increasing performance requirement.
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