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Abstract
Gradient Boosted Decision Trees (GBDTs) are classical machine
learning algorithms widely employed in recommendation systems,
database queries, etc. Due to the extensive memory access involved
in histogram-based GBDT training methods, high-bandwidth GPUs
have beenwidely adopted to accelerate the training. However, when
handling millions of feature data, it requires significant memory
to store the training data and histograms, posing challenges for
training on limited GPUmemories. In this paper, we develop a GPU-
based GBDT framework named ScalaGBM, aiming to accelerate
high-dimensional data training with less memory usage. We first
employ a CSR-like data format and CSR-based histogram construc-
tion to reduce the memory occupation of the training data. Then,
we reorganize the training workflow with a double buffer struc-
ture to reduce the overall memory consumption for the histogram.
Finally, we develop multi-dimensional parallel histogram construc-
tion and global optimal split point reduction to speed up the training
process. Experimental results demonstrate that ScalaGBM handles
real-world datasets with over 100 million instances of 50 million
features with a single commercial GPU while existing GBDT frame-
works all run into out-of-memory errors. Meanwhile, ScalaGBM
achieves a maximum speedup of 39× over state-of-the-art GBDT
counterparts without sacrificing the training quality. The code is
available at https://github.com/Xtra-Computing/thundergbm.

CCS Concepts
•Computingmethodologies→ Parallel algorithms; Boosting;
• Information systems→ Data mining.
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1 Introduction
Gradient Boosted Decision Trees (GBDTs) are classical machine
learning algorithms that combine the predictions of multiple de-
cision trees, each one correcting the errors of its predecessor. In
recent years, GBDTs have gained significant attention due to their
superior performance in various tasks such as regression, classifi-
cation, and query optimizations [7, 12, 27, 30, 32–34]. According to
a survey from Kaggle in 2022, 34.7% of respondents used GBDTs in
the competitions [4, 18–20, 24].

The increasing demand for robust and efficient GBDTmodels has
led to the development of several optimized frameworks, such as
XGBoost [3], LightGBM [17], and CatBoost [26]. These works have
been widely adopted in both academic [10, 31, 35] and industrial
settings [28, 41] due to their effectiveness. To capitalize on the high
memory bandwidth and processing capabilities of graphics process-
ing units (GPUs), these works have also integrated GPU acceleration
into the training processes. Specifically, ThunderGBM [38] has been
designed to harness the power of GPUs for training GBDTs.

The histogram-based approach is the major method for training
GBDTs, prompting significant efforts to accelerate this technique [8,
14, 29]. It relies on constructing histograms for each feature to find
the optimal split feature and value for tree nodes, simplifying the
process of finding the best splits during tree building. And the
histogram-based method typically builds the tree layer by layer,
known as a layer-wise manner. Specifically, the instances on each
node are used to build gradient accumulation histograms. Then, it
computes the gain of bins in histograms and finds the feature and
value with the optimal gain as the node splitting criterion.

The data dimension of modern applications has been signifi-
cantly expanding [6]. For instance, e-commerce datasets contain
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Figure 1: GPU memory consumption on high-dimensional
datasets. The feature numbers are in parentheses. We esti-
mate the GPU memory consumption when OOM happens.

the interactions of millions of customers, and disease understand-
ing requires the analysis of millions of genetic variants; the data
dimension has even reached tens of millions in datasets from com-
petitions [16, 40]. However, existing GPU-based GBDT frameworks
are typically designed for low-dimensional data inputs [3, 17, 26, 38]
that can not support data dimensions in millions due to limited
GPU memory [37]. Figure 1 depicts the GPU memory usage by
various frameworks when training trees with a depth of 6 (or 64
leaves) on datasets with millions of features using a GPU with 48GB
memory. Among all these existing frameworks, only XGBoost can
train on datasets that do not exceed the feature dimension of kdda,
which has 20,216,830 features. For datasets with feature dimensions
exceeding those of kdda, all existing GPU-based frameworks en-
counter out-of-memory (OOM) failures. We estimate the memory
requirements of the frameworks that encounter OOM based on
their data management mechanism and plot them in the figure.

We find that significant GPUmemory usage in Figure 1 is primar-
ily attributed to the substantialmemory usage of training input
data and the significantmemory usage of the histograms, both
of which are caused by the scaled dimension of input data. Firstly,
existing works generally use dense or structured sparse formats
to store the input data in GPU memory, which can lead to high
memory usage due to the extreme sparsity of high-dimensional
data, causing redundancy with many zero elements. Secondly, the
scaling up of the dimension of data raises the requirement of stor-
ing millions of histograms per tree node, making it impractical to
keep all histograms for a layer in GPU memory, especially with
deeper trees. Although using more machines or more GPUs can mit-
igate the issues of memory consumption, the problem of inefficient
memory utilization on a single GPU remains unresolved.

To improve memory efficiency in GBDT training with high-
dimensional inputs, we propose ScalaGBM, a memory-efficient
GPU-based framework. In summary, we make the following contri-
butions in ScalaGBM:
• We develop a CSR-like format and a CSR-based histogram con-
struction method to reduce GPU memory consumption of train-
ing input data with high-dimension.
• We restructure the GBDT training flow by reordering and double
buffering to further reduce the GPUmemory usage of histograms.
• We invent a multi-dimensional parallel histogram construction
and a global optimal split point reduction mechanism to further
accelerate the training of high-dimensional data.
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Figure 2: Histogram-based split point finding on one node.

• Experiments show that with 48GB of GPU memory, ScalaGBM
can train high-dimensional data that existing GPU-based GBDT
systems cannot handle and achieves up to 39x speedup over state-
of-the-art GBDT frameworks without compromising quality.

2 Background and Related Work
2.1 Histogram-based GBDT Training
The histogram-based method is one of the most commonly used
techniques for training and has significantly improved the perfor-
mance of GBDTs [3]. It constructs a histogram for each feature
at every node of the tree and evaluates the split point of the tree
node based on the bins in histograms. In a histogram, the feature
values are divided into a fixed number of bins, each covering a
specific value range. The partitioning of bins can be determined
based on the data distribution or hyperparameter setting [9, 11].
When training GBDTs, the efficiency and effectiveness of the model
largely depend on how the split points of leaf nodes in the decision
trees are determined.

2.1.1 Split Point Finding. In the histogram-based method, a his-
togram is constructed for each feature. Each bin in the histogram
represents an aggregation of gradients andHessians for all instances
whose feature values fall within that bin’s range. The bin bound-
aries serve as candidate split points, and the gain (loss changes) is
calculated for each possible split point. The bin boundary with the
optimal gain is then selected as the split point. The partitioning of
bins is performed once during the initialization phase and remains
fixed during training. Histograms are built for all features of the
current node whenever a split point is needed. Figure 2 gives an
example of the split point finding in the histogram-based method.
It first constructs a histogram for each feature using the instances
at the current node, and finally, the boundary value of the second
bin in the first histogram is used as the split point.

2.1.2 Subtraction Technique. The histogram-based trainingmethod
is often accompanied by the subtraction technique to further im-
prove the efficiency of finding split points. It leverages the fact that
the sum of gradients and Hessians of instances is a constant for
a given node. When evaluating split points for child nodes that
have a common parent, instead of computing the sum of gradients
and Hessians for both child nodes, we can calculate the sums for
one node (e.g., the left) which has fewer instances and subtract
these from the sums of the parent node to obtain the sums for the
other node (e.g., the right). This technique can half the computation



ScalaGBM: Memory Efficient GBDT Training for High-Dimensional Data on GPU KDD ’25, August 3–7, 2025, Toronto, ON, Canada.
Traditional Node Splitting Evaluation Flow

CB DA CB DA

PP

CB DA

Subtract

Construct histograms of 
half nodes (A and C) 

Subtract

Subtract to get the 
others (B and D)

Preprocessing for 
gain computation 

for all nodes

Compute gain 
for all nodes

Get split points 
with best gain 
for all nodes

Figure 3: Layer-wise node histogram construction and split
point evaluation flow with subtraction technique.

cost at least. Figure 3 shows the subtraction technique in the layer-
wise method. The solid orange boxes represent nodes for which
histograms need to be constructed and stored. We can obtain the
histogram for node B by subtracting the histogram for node A from
the histogram of their parent node.

2.2 GPU-based GBDT Training
Because of the training efficiency requirement, many efficient GBDT
training frameworks are implemented targeting both CPU and
GPU platform [1, 3, 5, 8, 13–15, 17, 21–23, 25, 26, 29, 36, 38, 39] with
optimizations of different aspects of the training process. Due to the
significant performance advantage of GPU-based GBDT training, in
this paper, we only focus on GPU-based GBDT training frameworks.

Table 1 summarizes the mainstream GPU-based GBDT train-
ing frameworks with their different efficiency optimizations for
the training process. XGBoost [3] implemented a histogram-based
training approach on GPUs. It performs multi-level parallel com-
putation for constructing histograms and evaluating split points at
both the data and feature levels. Additionally, it leverages shared
memory to alleviate the impact of irregular memory access patterns.
LightGBM [17] and CatBoost [26] support similar histogram-based
approaches on GPUs with optimized memory access. Mitchell et
al. [23] presented a CUDA version of XGBoost. They proposed
two parallel methods to build shallow trees and deep trees respec-
tively, achieving a speedup of 3 to 6 times compared to the CPU.
ThunderGBM [36, 38, 39] utilizes run-length encoding compression,
two-stage histogram building, and reuse of intermediate results
to improve the training efficiency, achieving 10x speedup. Sketch-
Boost [13] is a GPU-based GBDT system focusing on multioutput
problems. It uses approximation approaches to reduce the com-
putational complexity without sacrificing accuracy. Shi et al. [29]
proposed low-precision gradients to speed up histogram construc-
tion and reduce communication costs.

3 Memory Issues for High-Dimensional Data
Existing frameworks store all training data in GPU memory for
efficiency. Therefore, when data scales to high dimensions, as shown
in Figure 1, the inefficient GPU memory usage for the input data
and histograms leads to the failure of training GBDTs on GPUs.

3.1 Extreme Memory Usage of Input Data
In each iteration, input data is used to construct histograms for
each node. For low-dimensional data, dense format storage in GPU

Table 1: Comparison of GPU-based GBDT frameworks.

Feature XGBoost LightGBM CatBoost ThunderGBM ScalaGBM
Sparse
support ✓ × × × ✓

Gradient
Quantization × ✓ × × ×

Exclusive feature
bundling × ✓ ✓ × ×

Histogram storage
optimization × × × × ✓

Full GPU
implementation ✓ × × ✓ ✓

memory is preferred due to sequential memory access, which
speeds up histogram construction. Despite some overhead, the
high bandwidth utilization of dense formats offers better overall
time efficiency compared with the sparse format. However, for high-
dimensional data with even less than 0.1% non-zero elements, dense
formats can lead to significant redundant memory use. LightGBM,
CatBoost, and ThunderGBM all use the dense format. Although
LightGBM and CatBoost reduce the feature dimension through
exclusive feature bundling (EFB) and dynamically select the data
type to save memory, substantial memory consumption persists.
The memory required to store input data in dense format can be
calculated using the following formula:

𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 = 𝑁 × 𝐷 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 (1)

where 𝑁 represents the number of instances, and 𝐷 denotes the
number of features used in the input data. 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 represents
the number of bytes to store each element. The memory require-
ment is a linear function to the number of instances and number of
features. kddb in Figure 1 has 19,264,097 instances and 29,890,095
features. With EFB, LightGBM utilizes only 6561 features for train-
ing, however, the required memory size is around 117.7GB even if
8-bit datatype is used, which is impractical to store on a single GPU.
Different from LightGBM and CatBoost, XGBoost adopts structured
sparse formats like ELLPACK [2] to reduce memory consumption
for sparse data. However, ELLPACK is sensitive to the maximum
number of existing features and consumes substantial memory.
Thus, none of the above formats are ideal for high-dimensional
data on GPUs.

3.2 Significant Memory Usage of Histograms
Layer-wise GBDT training is the most widely adopted one, such
as XGBoost, CatBoost, and ThunderGBM. The large number of
features in high-dimensional data makes histogram memory usage
significant. Since histograms are needed for each feature, memory
consumption on a tree node is proportional to the feature dimension.
As shown in Figure 3, in traditional training workflow, histogram
construction and split point evaluation are separate processes, with
split point evaluation starting only after all histograms for the layer
are constructed and stored. The following formula computes the
minimum memory cost for histograms in the layer 𝑙 :

ℎ𝑖𝑠𝑡_𝑠𝑖𝑧𝑒𝑙 = 2𝑙 × 𝐵 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 (2)

where 2𝑙 represents the number of nodes in layer 𝑙 , 𝐵 is the to-
tal number of bins across all feature histograms at a node, and
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 is the number of bytes per bin. As tree depth 𝑙 increases,
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memory requirements grow exponentially. Additionally, using the
subtraction technique to accelerate histogram construction requires
additional memory for storing parent node histograms. Thus, the
total memory needed for layer 𝑙 with the subtraction technique is
calculated as follows:

𝑡𝑜𝑡𝑎𝑙_ℎ𝑖𝑠𝑡_𝑠𝑖𝑧𝑒𝑙 = 3 × 2𝑙−1 × 𝐵 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 (3)

As an instance, XGBoost stores 29,996,908 histogram bins per node
on the kddb dataset, with each bin using 64 bits for first and second-
order derivatives separately. Storing histograms for node splitting
in layer 5 requires about 21.5GB. Besides that, due to other GPU
memory for input data and split point evaluation, XGBoost fails to
train on the kddb dataset with a 48GB GPU.

4 ScalaGBM Overview
To address the above issues, we design a GPU-based GBDT frame-
work named ScalaGBM aiming to accelerate training with high-
dimensional data with more efficient memory usage. Figure 4 out-
lines the training process of ScalaGBM.

First, during the initialization phase, the histogram bin bound-
aries are generated based on the compressed sparse row (CSR)
format input data. Then, we map the input data to histogram bin
indices and store them in a CSR-like format. During training, we
only keep bin indices in CSR-like format in GPU memory,
reducing the storage needed for input data. In the training phase,
we construct histograms for each node based on the CSR-like bin
indices and integrate the histogram construction with the
split point evaluation, avoiding the storage of all histograms for
one layer. Additionally, we employ a double buffer structure to
maintain a single histogram array, optimize memory usage with the
subtraction technique. After evaluating split points for all nodes
in a layer, we update the tree structure and partition the instances.
The above process is repeated until the predefined depth is reached.

We implement both the initialization and training process on the
GPU. To avoid frequent memory allocations for histogram storage
during training. We pre-allocate the maximum required memory
during the initialization phase. To optimize training efficiency, we
design multi-dimensional parallel histogram construction to
optimize histogram construction and develop global optimal split
point reduction to optimize split point evaluation.

In the following sections, we present the detailed memory opti-
mization techniques and system implementations.

5 Memory Consumption Optimization
5.1 CSR-like Data Storage
In the histogram-based GBDT training, the actual data used for
training is the histogram bin index data. It is generated from the
original input data and stores the index of the histogram bin cor-
responding to each feature value of each instance. When building
the histogram, we can use this index array to determine where the
gradient pairs are accumulated. The original feature values are no
longer necessary for the training. To reduce memory costs, we use a
CSR-like format to store the bin information on the GPU. It consists
of two arrays. The first is the bin mapper array which stores the
global bin indices corresponding to non-zero feature values, and the
second is the row pointer array which stores the starting position
of each instance in the bin mapper array. The memory computation
can be calculated as follows:

𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 = (𝑛𝑛𝑧 + 𝑁 + 1) × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 (4)

where 𝑛𝑛𝑧 is the number of non-zero elements. It is more memory-
friendly for storing high-dimensional sparse data. The traditional
bin indices in the bin mapper array are independent in different
feature histograms, which means the bin index in different feature
histograms can overlap[38]. If the bin mapper array stores such bin
indices, an instance may have multiple identical bin indices from
different feature histograms. At that point, we need an additional
𝑛𝑛𝑧 size array to identify which histogram each bin index belongs to
during histogram construction. This not only increases the number
of memory accesses during histogram construction but also doubles
the storage for the input data. Therefore, we use the global index in
the bin mapper array, where each feature has its own index range.
For example, the index range for the bins of the first feature is from
1 to 𝑛, and for the second feature, it is from 𝑛 + 1 to 2𝑛, and so on.
Indexes are cumulative, and there is no overlap between indices for
different features. It can help save 𝑛𝑛𝑧 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 space, which is
around 6GB on the kdd12 dataset.

5.2 CSR-based Histogram Construction
We need to build histograms from the CSR-like data storage. Since
the CSR-like format only stores non-zero elements and each in-
stance may have a different number of non-zero elements, we can-
not determine the instance ID using array indexing. Therefore,
when building histograms for each node, we need to use the row
pointer array to obtain the range of each instance in the bin mapper
array. Algorithm 1 illustrates the histogram construction.

In Algorithm 1, 𝑟𝑜𝑤𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 stores the starting position of the
bin index of each instance, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑇𝑜𝐵𝑖𝑛𝐼𝑑 holds the global his-
togram bin indices for each instance, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑃𝑎𝑖𝑟 has first- and
second-order gradient values for each instance. We use a double
loop to traverse the non-zero elements. In the outer loop, we first
obtain the index of the training instance, the gradient values of the
instances, and the start and end positions of its bin indices in the
bin mapper array. Then, in the inner loop, we iterate through each
global bin index of each instance to obtain the accumulated posi-
tion of the gradient pair. Finally, we use atomic addition to sum the
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Algorithm 1: CSR-based Histogram Construction
Input: Row pointer array 𝑟𝑜𝑤𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 ,

Feature to bin ID array 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑇𝑜𝐵𝑖𝑛𝐼𝑑 ,
Instance gradient pair array 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑃𝑎𝑖𝑟 ,
Total number of instances 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡

Output: Histogram array histogram
1 for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥 ← 1 to 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 do
2 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑟𝑜𝑤𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 [𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥 ];
3 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ← 𝑟𝑜𝑤𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 [𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥 + 1];
4 𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑃𝑎𝑖𝑟 [𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑛𝑑𝑒𝑥 ];

// scan non-zero elements

5 for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 to 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 do
// The global bin index

6 𝑏𝑖𝑛𝐼𝑛𝑑𝑒𝑥 ← featureToBinId[𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ];
7 𝑑𝑒𝑠𝑡 ← ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚[𝑏𝑖𝑛𝐼𝑛𝑑𝑒𝑥 ];
8 if 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑎𝑖𝑟 .𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ≠ 0 then

// Atomic operation

9 Add(𝑑𝑒𝑠𝑡 .𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑠𝑜𝑢𝑟𝑐𝑒.𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ) ;
10 if 𝑠𝑜𝑢𝑟𝑐𝑒𝑃𝑎𝑖𝑟 .ℎ𝑒𝑠𝑠𝑖𝑎𝑛 ≠ 0 then

// Atomic operation

11 Add(𝑑𝑒𝑠𝑡 .ℎ𝑒𝑠𝑠𝑖𝑎𝑛, 𝑠𝑜𝑢𝑟𝑐𝑒.ℎ𝑒𝑠𝑠𝑖𝑎𝑛) ;

gradient pairs in each histogram bin. As we can see, this histogram
construction method does not require the original feature values
or their corresponding feature IDs that are generally required by
other frameworks.

5.3 Reorganization of Training Flow
After completing the histogram construction, we need to consider
the efficient histogram storage. There is no need to store all the
histogram data for the entire tree layer without the subtraction
technique since histograms for different nodes are independent. We
reorganize the histogram construction and split point evaluation
phases, executing them in a loop. After evaluating a node’s split
point, its histogram data becomes obsolete, allowing us to reuse
its memory to build histograms for the next node. No matter how
deep the tree is, only the histograms for one node need to be stored.
The required memory is:

ℎ𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 = 𝐵 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 (5)

The tree depth no longer affects memory consumption.

5.4 Double Buffering Histogram for Subtraction
When using subtraction to accelerate histogram construction, as
shown in Figure 5, we can build histograms for two nodes simulta-
neously and iterate the process until all leaf nodes are processed.
However, storing the newly constructed histogram data as parent
histograms presents a challenge. The traditional method allocates
two arrays, one to store the parent node histograms and the other
to store the child node histograms. The size of the child node his-
togram array is twice the size of the parent node histogram array.
To make full use of the parent node array, we pre-allocate the max-
imum space needed for the parent node array and use a double
buffering method to write the child node histograms to the parent
node array to reduce memory consumption.

CB DA CB DA

PP

CB DA

Subtract

Construct histograms 
for node A

Subtract A to get
the histogram of B

Preprocessing for 
gain computation 

for A and B

Compute gain 
for A and B

Repeat

New Node Splitting Evaluation Flow

Get split points 
with best gain 
for A and B

Figure 5: Histogram construction and node split point evalu-
ation flow in ScalaGBM. It iterates the flow till all leaves of a
layer are processed.
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Building 
histogram 
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New histogram Parent histogram

Figure 6: Use a double buffer structure to write histogram
data back to the parent histogram array.

Figure 6 illustrates the idea of the double buffer structure to build
and store histograms for layer 1 and layer 2 when the tree depth is
5. At this maximum depth, we need to store histograms for up to
eight nodes from the third layer as parent histograms. Therefore,
we predefine a node histogram array with a length of 8 as the parent
array. Each box in the figure represents all histograms for a node.
Blue boxes represent the histograms to be built and stored, while
green boxes show the histograms currently in the parent node array.
Blue arrows indicate dependencies in subtraction-based histogram
construction, with child nodes pointing to parent nodes. Orange
arrows highlight where new data is written into the parent node
array. We divide the parent node array into two halves: the first four
are in one buffer, while the remaining four are in another buffer.
When building histograms for layer 1, we obtain the parent node
histograms from the first half buffer and write the data into the
second half. When building histograms for layer 2, we read the
parent node data from the second half buffer and write the data
into the first half. The system uses the parity of the current tree
depth to determine which buffer to write back.

When training a treewith depth 𝐿, this double buffering structure
can reduce the required histogrammemory usage in the subtraction
technique from 3 × 2𝐿−2 × 𝐵 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 to 2𝐿−2 × 𝐵 × 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 .

6 Efficient Framework Implementation
Existing frameworks encounter long initialization processes when
training GBDTs on high-dimensional data [17, 26]. To avoid it,
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we implement ScalaGBM that can run fully on the GPU. For the
initialization phase, we parallelize the histogram bin partitioning
and the generation of CSR-like input data on the GPU and allocate
the memory for histogram storage.

6.1 Parallel Histogram Construction
We parallelize the Algorithm 1 on the GPU. One simple parallel
approach is to execute the outermost loop in parallel. However,
this may lead to load imbalances because the number of non-zero
elements in each instance often varies, resulting in some threads
in the same warp waiting for a long time. Additionally, as the tree
depth increases, the number of instances per node decreases, and
only parallelizing the outermost loop may not fully unleash the par-
allel potential of the GPU. Therefore, to better leverage the parallel
power, we use multi-dimensional parallel histogram construction
to make parallelization of both the inner and outer loops, taking ad-
vantage of the fact that the GPU can perform parallel computation
across multiple dimensions. Specifically, we associate the CUDA
block structure with instances, using one or more blocks to process
each instance. We organize blocks using a two-dimensional grid of
blocks. The first dimension represents the number of instances for
histogram construction, and the second dimension represents how
many blocks are needed for each instance. The calculation formula
for the second dimension is as follows:

𝑛_𝑏𝑙𝑜𝑐𝑘 =𝑚𝑖𝑛{⌈𝑛𝑛𝑧 ÷ 𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒

⌉,𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘} (6)

where 𝑛_𝑏𝑙𝑜𝑐𝑘 stands for the number of blocks for each instance.
𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the instance number used to construct the histogram,
and 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 is a predefined thread number in one block. We
calculate the average feature number and divide it by the number
of threads in a block to determine the required block numbers.
Rounding up is used to ensure that the number is never zero. We
predefine𝑚𝑎𝑥_𝑏𝑙𝑜𝑐𝑘 to represent the maximum number of blocks
that can be used by each instance and choose the smaller one.

6.2 Global Optimal Split Point Reduction
After completing the histogram construction for each candidate
split point, we need to obtain the split point with the maximum gain
for a given node. The traditional method typically calculates gains
of split points and evaluates them to determine the local optimal
split points for each feature. Then it aggregates all local optimal split
points to get the global best one. To reduce unnecessary storage
of local optimal split points and accelerate this process, we treat
candidate split points in different features as a collective entity,
traversing to compute their gains using a fixed number of blocks and
employing a global reduction approach instead of local reduction
for a node to obtain the optimal split point.

6.3 Other framework optimizations
6.3.1 Updating instance position by bin indices. After splitting
nodes within a layer, updating the leaf node for each instance
is essential. This involves determining if an instance goes to the
left or right child node based on the split feature and its value.
Instead of comparing feature values, we compare global bin indices
from the bin mapper array. In CSR-like format, although bin indices
cannot be accessed directly, all bin indices for a given instance are

Table 2: Datasets for performance evaluation

Dataset Cardinality Dimension Density Size
epsilon 400,000 2,000 100% 12GB
real-sim 72,309 20,958 0.24% 87MB
rcv1 677,399 47,236 0.15% 1.2GB
e2006 16,087 150,360 0.82% 485MB
kddb-raw 19,264,097 1,129,522 < 0.1% 2.1GB
news20 19,996 1,355,191 < 0.1% 134MB
url 2,396,130 3,231,961 < 0.1% 3.9GB
log1p 16,087 4,272,227 0.14% 2.2GB
web-trigram 350,000 16,609,143 < 0.1% 24GB
kdda 8,407,752 20,216,830 < 0.1% 2.5GB
kddb 19,264,097 29,890,095 < 0.1% 4.8GB
kdd12 149,639,105 54,686,452 < 0.1% 21GB

sorted in ascending order. So we use a binary search to find the
corresponding bin indices.

6.3.2 Handling possible OOM issues. During the initialization phase,
potential OOM issues may arise in the generation of histogram bins.
If GPU memory is not enough, ScalaGBM generates histogram bins
on the CPU and transfers the results to GPU memory via PCIe. In
the training phase, if the GPU memory cannot accommodate all
feature histograms for one node during the histogram construction.
ScalaGBM iteratively constructs histograms and evaluates the local
optimal split point for one feature at a time. This process is iterated
to complete the construction of histograms for all features on a
node, along with the evaluation of split points.

7 Experimental Study
In this section, we empirically evaluate ScalaGBM against existing
GBDT frameworks in terms of training time, GPU memory usage,
and result quality. We also compare performance across different
feature dimensions, tree depths, and dataset densities.

7.1 Experimental Setup
Platforms. All the experiments have been conducted on a plat-
form running Rocky Linux 8.8 with dual Intel(R) Xeon(R) Platinum
8373C 36-core CPUs (144 threads in total), 512GB of RAM, and an
NVIDIA RTX A6000 GPU of 48GB VRAM. All the source codes
were compiled by GNU G++ compiler version 11.4, Clang++ com-
piler version 12.0.1 and 16.0.6, and NVCC compiler version 11.7.
The NVIDIA GPU driver version is 530.30.02. We implemented our
GBDT framework based on CUDA C++, Thrust, and CUB.
Datasets. We conducted experiments on 12 publicly available high-
dimensional datasets1. Table 2 presents information about the
datasets sorted by their feature dimensions. We used the e2006
and log1p datasets for regression tasks and the remaining datasets
for binary classification tasks.
Baselines. We used the latest C++ version of all baselines. Specifi-
cally, XGBoost version 2925ceb and ThunderGBM version 5062a3a,
as the major baselines. We also compared ScalaGBM with Light-
GBM (version 5dfe716) and CatBoost (version 32b5faf). All frame-
works were set to use histogram-based methods to build trees. Since
training on GPUs is faster than on CPUs [38, 39], all training was
1http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
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Table 3: End-to-end training time (seconds) comparison among XGBoost, LightGBM, CatBoost, ThunderGBM, and ScalaGBM.

Dataset epsilon real-sim rcv1 e2006 kddb-raw news20 url log1p web-trigram kdda kddb kdd12
XGBoost 14.60 1.49 4.52 2.66 22.50 17.94 50.30 36.39 OOM 280.04 OOM OOM
LightGBM 34.05 36.67 67.15 24.07 21.17 322.94 201.02 1295.59 OOM OOM OOM OOM
CatBoost 3.61 6.44 38.59 19.21 OOM 181.64 OOM 445.39 OOM OOM OOM OOM
ThunderGBM 5.05 2.57 OOM 1.71 OOM OOM OOM OOM OOM OOM OOM OOM
ScalaGBM 3.99 0.57 1.71 0.93 5.08 1.41 3.69 2.09 33.55 7.09 13.57 38.12
Min. speedup 0.90 2.11 2.44 1.84 4.17 12.72 13.63 17.41 N.A. 39.50 N.A. N.A.

Table 4: Average training time (seconds) per tree.

Dataset XGBoost Light
GBM CatBoost Thunder

GBM
Scala
GBM

epsilon 0.32 0.24 0.04 0.10 0.09
real-sim 0.03 0.85 0.06 0.05 0.01
rcv1 0.11 1.37 0.20 OOM 0.04
e2006 0.06 0.36 0.10 0.03 0.02
kbbd-raw 0.54 0.34 OOM OOM 0.11
news20 0.44 4.42 0.45 OOM 0.03
url 1.22 3.45 OOM OOM 0.08
log1p 0.84 3.59 0.35 OOM 0.04
kdda 6.80 OOM OOM OOM 0.16

conducted on GPUs. To conduct an end-to-end comparison, all the
statistical time includes model initialization and training time.
Training Parameter Settings. According to the existingwork [39],
We fixed the tree depth at 6, boosting rounds at 40, maximum
histogram bins at 255, learning rate at 1, minimum instances in a leaf
node at 1, minimum sum of instance weight at 1, L2 regularization
weight at 1, minimum split gain at 1, and training device at "CUDA".
Due to an error with 144 CPU threads in CatBoost, it uses 120
threads, while other frameworks use all 144 threads by default. The
remaining training parameters were kept at their default values.
For binary classification tasks, we used logistic regression as the
loss function. For regression tasks, we used mean squared error
(RMSE) as the loss function.

7.2 Training Efficiency Evaluation
7.2.1 Training Time Comparison. Table 3 shows the training time
(in seconds, to two decimal places) for different GBDT frameworks
on 12 high-dimensional datasets.

Compared to existing frameworks, ScalaGBM handles higher-
dimensional data more effectively. XGBoost struggles with data
dimensions in the tens of millions, such as in the web_trigram,
kkb, and kdd12 datasets, due to the large memory demands of
histograms and candidate split points. LightGBM faces similar is-
sues and even has trouble with kdda. CatBoost cannot train on
half of these datasets due to its lack of support for sparse data.
ThunderGBM performs the worst with high-dimensional data, suc-
cessfully training on only three datasets.

As the feature dimensions increase, the efficiency advantage of
ScalaGBM becomes more significant. The bottom of Table 3 illus-
trates the minimum speedup of ScalaGBM relative to others. For
small datasets, the speedup over XGBoost is about 2-3 times, but it
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Figure 7: GPU memory consumption comparison on Nvidia
RTX A6000 of 48GB VRAM.

rises to around 39 times on the kdda dataset as size and dimensions
grow. ScalaGBM is also faster than LightGBM, with a 619 times
speedup on the log1p dataset due to the lengthy CPU initializa-
tion of LightGBM (1151 seconds). In comparison with CatBoost,
ScalaGBM is slightly inferior on the epsilon dataset, primarily be-
cause ScalaGBM is optimized for large-scale sparse datasets, and
epsilon is dense. On other datasets, our training time is significantly
shorter than CatBoost. Compared with ThunderGBM, ScalaGBM
exhibits an average acceleration of 2.36 times, reaching 4.15 times
on real-sim. Table 4 presents the average time for training a single
tree excluding the initialization time, and ScalaGBM consistently
exhibits the shortest training time across the sparse datasets.

Using the same hyperparameters, we also evaluated ScalaGBM
and existing frameworks on two low-dimensional datasets, SUSY
(5 million samples, 18 features) and HIGGS (11 million samples, 28
features). ThunderGBM achieves the highest efficiency, with run-
times of 0.7 seconds and 1.7 seconds, respectively, while ScalaGBM
requires 1.7 seconds and 4 seconds. The training times for all frame-
works are very short. While ScalaGBM focuses on high-dimensional
data, it also performs competitively on low-dimensional data.

7.2.2 GPU Memory Usage Comparison. Figure 7 further analyzes
the GPU memory requirements of each framework. Except for the
epsilon dataset, ScalaGBM has the least GPU memory requirements
on all the other datasets. On the epsilon dataset, the maximummem-
ory requirement of ScalaGBM occurs during the histogram bin gen-
eration phase in the initialization. After that, the maximummemory
usage during training is only 3.34GB. For the kddb dataset, where
other frameworks fail to train due to limited memory, ScalaGBM
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Table 5: Training quality comparison. We use accuracy for bi-
nary classification and RMSE for regression. "N.A." indicates
that the framework cannot work correctly.

Dataset Metric XG
Boost

Light
GBM

Cat
Boost

Thunder
GBM

Scala
GBM

epsilon

ACC

0.8274 0.8311 0.8484 0.8238 0.8267
real-sim 0.9411 0.9587 0.9225 0.9385 0.9430
rcv1 0.9619 0.9738 0.9546 N.A. 0.9618
kbbd-raw N.A. 0.8849 N.A. N.A. 0.8775
news20 0.9102 0.9285 N.A. N.A. 0.9113
url 0.9850 0.9936 N.A. N.A. 0.9861
kdda 0.8745 N.A. N.A. N.A. 0.8759
e2006 RMSE 0.4129 0.4114 N.A. 0.4019 0.4215
log1p 0.4078 0.4081 N.A. N.A. 0.4076

Table 6: Parameter settings, speedup, and results when
ScalaGBM has similar quality to LightGBM.

Dataset Metric Epoch Depth Speedup Result Light
GBM

epsilon

ACC

100 6 3.54 0.8384 0.8311
real-sim 100 10 20.04 0.9598 0.9587
rcv1 100 12 4.25 0.9743 0.9738
kddb-raw 40 13 1.51 0.8818 0.8849
news20 100 10 69.45 0.9280 0.9285
url 100 10 9.81 0.9936 0.9936
e2006 RMSE 10 10 17.83 0.4140 0.4114
log1p 40 6 619.90 0.4076 0.4076

not only successfully trains but also consumes only 13GB of mem-
ory. This implies that ScalaGBM can run such large-scale datasets
even on GPUs with smaller memory.

7.3 Model Quality Comparison
Table 5 compares the training quality after 40 epochs of training.
For ease of comparison, we only show results on the datasets where
at least two frameworks can train. The results are conducted on the
test sets. XGBoost and CatBoost fail to predict when the feature
dimensions of the test set differ from those of the training datasets.

ScalaGBM has comparable results to XGBoost. This similarity
is because the tree construction approach of ScalaGBM resembles
that of XGBoost, but slight differences arise due to variations in
histogram bin generation and floating-point computation precision.
Except for the e2006 dataset, our training quality is also better than
ThunderGBM. CatBoost performs better only on the epsilon datasets
and fails to work on most datasets.

LightGBM’s GPU version does not strictly constrain the tree
depth, and as a result, improves the model quality. For example, on
the real-sim dataset, trees of LightGBM can reach a depth of 30. By
increasing tree depth and training rounds, ScalaGBM achieves com-
parable quality in less time. Table 6 shows the parameter settings
and speedup of ScalaGBM compared with LightGBM when results
are similar.
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Figure 8: Time breakdown comparison with XGBoost.

Table 7: GPU memory consumption breakdown (GB).

Breakdown Framework rcv1 news20 url kdda
Training
data

XGBoost 2.22 0.88 2.77 2.08
ScalaGBM 0.19 0.04 1.03 1.14

Histogram XGBoost 3.99 7.06 7.28 9.98
ScalaGBM 0.51 0.83 1.38 2.31

7.4 Training Time Breakdown Comparison
As XGBoost performs better than other existing works , we com-
pare the time spent on each component with XGBoost on Figure 8
to further illustrate why ScalaGBM achieves faster training speeds.
During histogram construction and data updates, ScalaGBM and
XGBoost exhibit similar speed. However, in the split point eval-
uation phase, ScalaGBM is significantly faster than XGBoost. In
XGBoost, the split point evaluation phase accounts for more than
80% of the total training. This is because XGBoost uses 64-bit arith-
metic operations and allocates a block with a fixed 32 threads on
the GPU for each histogram to find the local best one. If the num-
ber of bins in a histogram is less than 32, it will cause a waste of
computing. Instead, ScalaGBM uses the global optimal split point
reduction to avoid this problem.

7.5 GPU Memory Breakdown Comparison
In Table 7, we compare the GPU memory consumption of input
training data and histogram storage between ScalaGBM and XG-
Boost. ScalaGBM consumes less memory than XGBoost in both
parts, particularly in histogram storage. The CSR-like data format
reduces the storage of input data, while the reorganization of the
training flow and the double buffering structure reduce the memory
requirements for histograms.

7.6 Sensitivity Study
This section examines the changes in GPU memory consumption
and training time for ScalaGBM and XGBoost by varying feature
dimensions, tree depth, and dataset density. For feature dimensions,
we fixed the number of instances and varied the feature percentages
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Figure 9: GPU memory usage and training time change with
different feature dimensions, tree depth, and dataset density.

in 10% increments on the url dataset. Following [39], we tested tree
depths from 4 to 10 using the url dataset. For dataset density, we
synthesized datasets with 10,000 instances and 100,000 features,
with densities from 10% to 100%. All experiments ran for 40 epochs.

7.6.1 Varying Feature Dimension. The top of Figure 9 shows the
impact of feature dimensions. Both metrics increase almost linearly
for XGBoost and ScalaGBM as feature dimensions grow, with a
greater impact on XGBoost due to more histogram and candidate
split storage requirements.

7.6.2 Varying Tree Depth. The middle of Figure 9 illustrates the
impact of tree depth on GPU memory and training time. ScalaGBM
consistently uses less GPU memory than XGBoost, with constant
memory usage for depths of 7 or less, as maximum memory us-
age occurs during initialization. the GPU memory consumption of
XGBoost stabilizes beyond a tree depth of 8 due to its predefined
processing of 32 nodes at a time.

7.6.3 Varying Dataset Density. The bottom of Figure 9 indicates
that increasing dataset density leads to linear growth in memory
consumption and training time. ScalaGBM consumes less GPU
memory for densities below 60%, thanks to its sparse data format,
and consistently outperforms XGBoost in training speed due to
better parallelization implementation.

8 Conclusion
In this paper, we first highlighted how the training input data
and histograms significantly impact memory consumption when
training GBDTs on high-dimensional data. Then, we developed
a system named ScalaGBM to support GBDT training for higher
dimensional data and optimize efficiency. To reduce the training
input data storage, we employed a CSR-like data format and used
CSR-based methods for histogram construction. To minimize his-
togram data storage, we reorganized the training process and used
the double buffer to store histograms. Additionally, we optimized
training efficiency by implementing multi-dimensional parallel his-
togram construction and global optimal split point evaluation. Ex-
perimental results demonstrate that ScalaGBM has better support
for high-dimensional data and is faster to train than existing works.
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