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ABSTRACT
In recent years, many data mining practitioners have treated deep

neural networks (DNNs) as a standard recipe of creating the state-of-

the-art solutions. As a result, models like Support Vector Machines

(SVMs) have been overlooked. While the results from DNNs are

encouraging, DNNs also come with their huge number of param-

eters in the model and overheads in long training/inference time.

SVMs have excellent properties such as convexity, good generality

and efficiency. In this paper, we propose techniques to enhance

SVMs with an automatic pipeline which exploits the context of the

learning problem. The pipeline consists of several components in-

cluding data aware subproblem construction, feature customization,

data balancing among subproblems with augmentation, and kernel

hyper-parameter tuner. Comprehensive experiments show that our

proposed solution is more efficient, while producing better results

than the other SVM based approaches. Additionally, we conduct a

case study of our proposed solution on a popular sentiment analy-

sis problem—the aspect term sentiment analysis (ATSA) task. The

study shows that our SVM based solution can achieve competitive

predictive accuracy to DNN (and even majority of the BERT) based

approaches. Furthermore, our solution is about 40 times faster in

inference and has 100 times fewer parameters than the models

using BERT. Our findings can encourage more research work on

conventional machine learning techniques which may be a good

alternative for smaller model size and faster training/inference.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification.

KEYWORDS
Support Vector Machines, Machine Learning, Sentiment Analysis

ACM Reference Format:
Zeyi Wen

†
, Zhishang Zhou

§
, Hanfeng Liu

‡
, Bingsheng He

‡
, Xia Li

♯
, Jian

Chen
§
. 2021. Enhancing SVMs with Problem Context Aware Pipeline. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singapore.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467291

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08.

https://doi.org/10.1145/3447548.3467291

1 INTRODUCTION
Deep neural networks (DNNs) have achieved great success in many

areas including image processing and text mining. While the popu-

larity of DNNs and the promising results are encouraging, DNNs

also come with their huge number of parameters in the model and

overheads in training/inference time. In comparison, Support Vec-

tor Machines (SVMs) have excellent properties such as convexity,

good generality and efficiency, but SVMs have been overlooked in

recent years. SVMs may be a model to satisfy applications with

stricter requirements of model sizes and training/inference time.

In this paper, we develop techniques to enhance the performance

of SVMs by exploiting a pipeline which uses the context of the learn-

ing problem. Unlike neural networks where the number of learnable

parameters can be easily adjusted (e.g., adding more layers or neu-

rons) for different problems, the number of learnable parameters

for SVMs cannot be easily increased. For example, the dimension

of the weight vector in the prime form of SVMs, and the number of

Lagrange multipliers in the dual form of SVMs cannot be changed

for a problem [29]. Our proposed solution demonstrates that equip-

ping SVMs with an automatic pipeline to exploit the context of a

learning problem can improve performance. The pipeline optimizes

the important operations such as subproblem construction, feature

customization, augmentation for data balancing, and tuning SVM

kernel hyper-parameters. Moreover, the pipeline is powered by

forward and backward propagation techniques to guide the SVM

training and other important operations within the pipeline.

The training of SVMswith problem context aware pipeline works

as follows. First, the learning problem is divided into multiple sub-

problems based on similarity among the training instances, and

then an SVM classifier is dedicated to each subproblem. As a result,

each SVM classifier can be specifically optimized to better fit the

subproblem. Second, the automatic feature customization is per-

formed for each base SVM classifier during the training. As the class

distribution in the subproblems tends to be unbalanced, we augment

the data by exploiting data of other subproblems. Third, a hyper-

parameter tuner is dedicated to optimize the hyper-parameters of

SVMs, so that the kernel and the regularization hyper-parameters

are automatically tuned for each SVM classifier. Finally, the er-

ror/loss produced by the SVM classifiers is backward propagated

to further optimize the pipeline until the termination condition is

met. We formulate the learning problem of SVMs with the problem

context aware pipeline, and theoretically prove that the SVMs with

the pipeline are better than the single SVM based approach.

We conduct experiments to evaluate our proposed solution in

comparison with existing SVMs on several data sets. The results

show that our solution is more efficient, while producing better re-

sults than the other SVM based approaches. Moreover, we perform

https://doi.org/10.1145/3447548.3467291
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a case study on a popular customer review analysis problem—the

aspect term sentiment analysis (ATSA) task. The ATSA task [11]

aims to identify the polarity (e.g., positive, negative, neutral) of

each aspect (e.g., food and service) rather than the polarity of the

whole review. The finer granularity of analysis in ATSA brings new

challenges in building the classifier for sentiment analysis, and the

traditional SVM based approaches are unlikely to be promising [11].

We demonstrate that our SVM based approach can achieve com-

petitive predictive accuracy to DNN based approaches, and even

outperforms majority of the BERT based approaches in the ATSA

task. Our theoretical analysis also shows that the training time com-

plexity of our solution is lower than the DNN based approaches.

Hence, our solution can train models efficiently on multi-core CPUs,

and can be much faster using GPUs. In comparison, the DNN based

methods heavily rely on special hardware such as GPUs and TPUs.

To summarize, we make the following major contributions in this

paper.

• We formulate the learning problem of SVMs with problem

context aware pipeline. We prove that our solution is theo-

retically better than the single SVM based approach, and can

automatically consider the context of a learning problem for

achieving better predictive accuracy.

• We propose a series of techniques to power the problem

context aware pipeline, including data aware subproblem

construction, feature customization for each subproblem,

data augmentation to tackle data unbalancing among the

subproblems, and automatic kernel and regularization pa-

rameter tuning.

• We experimentally demonstrate that our proposed solution

is more efficient, while producing better results than the

other SVM based approaches. Our case study on the ATSA

task shows that our SVM based solution can achieve com-

petitive predictive accuracy to DNN (and even BERT) based

approaches. Our solution is fast to train due to much lower

time complexity. The efficiency on inference is about 40 times

faster and the trained model has 100 times fewer parameters

than the models using BERT.

2 OUR PROPOSED SOLUTION
In this section, we present the details of our proposed SVM solution

equipped with a problem context aware pipeline. The key idea of

our solution is to incorporate more information from a learning

problem into the training process. First, our proposed solution di-

vides the learning problem into multiple subproblems based on

similarity of the training instances, such that a subproblem can

be well addressed by an SVM classifier specifically optimized for

it. This process trains more SVM classifiers to perform finer gran-

ularity optimization, instead of using only one SVM classifier as

many of the previous SVM based approaches do [11, 28]. Second,

we enable the training process to automatically tune the kernel and

regularization hyper-parameters (e.g., kernel type and the kernel

hyper-parameters), rather than manually setting them. We theoret-

ically prove that our proposed solution is better than the one SVM

based approaches. However, the SVMs with the problem context

aware pipeline comes with previously unseen challenges, including

the need of tackling data unbalancing issues among subproblems,
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Figure 1: The pipeline of SVM training for a subproblem

and feature customization for each individual SVM. To tackle those

challenges, we propose a series of novel techniques to ensure the

model quality. We elaborate the whole training process in greater

details in the rest of this section.

Overview of our solution: Figure 1 gives a high-level overview
of our proposed pipeline. First, we construct subproblems by clus-

tering to group the training data into non-overlapping subsets,

so that similar training instances are grouped together. For each

subproblem, an SVM classifier is trained and optimized on the cor-

responding subset of training data. Specifically, we perform feature

selection on the raw features to build the customized set of features

for the subproblem. Then, the selected features form a feature vector

for each training instance (cf. Figure 1 center). Meanwhile, we have

a hyper-plane space identifier for setting proper hyper-parameters

for SVMs (i.e., identifying a space for the separating hyper-plane).

After that, the feature vectors and the hyper-parameters together

are fed to the SVM trainer to learn an SVM classifier. The loss/error

of the classifier is computed and backpropogated to improve the fea-

ture selector, hyper-plane space identifier and SVM trainer. There-

fore, the SVM classifier trained in this process is well-tuned and

customized for the subproblem, as the features, hyper-parameters

and the parameters of the SVM classifier are thoroughly learned

automatically. Finally, those SVM classifiers together form the final

classifier for the problem.

2.1 Problem Formulation
We formulate SVMs with problem context aware pipeline as the

“SVM-CAP” learning problem here. LetT andV denote the training

data set and the validation data set, respectively. The training set

and validation set are further clustered into k subsets denoted by

T 1, . . . ,T k
and V1, . . . ,Vk

, respectively. The learnable hyper-

parameters include: F which is a set of features; H which is the

candidate SVM kernel types; Λ which contains the kernel hyper-

parameters and the regularization constant of SVMs; and k which

is the number of subproblems/subsets. Thus, the learnable hyper-

parameters space can be defined as Θ = F × H × Λ. Then, the
learning problem is to minimize the following objective function:

arg min

k ∈N+,θ i ∈Θ

k∑
i=1

|Vi |

|V|
L(θ i ,T i ,Vi )



where L(θ i ,T i ,Vi ) denotes the loss of the i-th SVM on Vi
, θ i =

{ f i ,hi , λi }, f i denotes the features used in the i-th SVM, hi is the
used SVM kernel type, λi denotes the corresponding kernel hyper-

parameters,
|Vi |
|V |

is the weight of the i-th SVM and N+ is the set of

positive natural numbers.

Optimization on the SVM-CAP problem: The idea of the gradi-

ent based approaches can be used to solve the SVM-CAP prob-

lem. More specifically, the derivative of the learning problem over

θ i is
k∑
i=1

|Vi |
|V |

·
∂L(θ i ,Ti ,Vi )

∂θ i
. Since θ i = { f i ,hi , λi }, the deriva-

tive can be written as

k∑
i=1

|Vi |
|V |

· (
∂L(θ i ,Ti ,Vi )

∂f i ·hi ·λi +
∂L(θ i ,Ti ,Vi )

∂hi ·f i ·λi +

∂L(θ i ,Ti ,Vi )

∂λi ·f i ·hi ). As Θ = F × H × Λ has discrete and conditional

variables (e.g., the degree d in Λ is discrete and is used only for

the polynomial kernel), there is no closed form for computing

the gradients. In our solution, we use the sequential model-based

optimization with Tree Parzen Estimator and Expected Improve-

ment [2] to solve the SVM-CAP problem. This method can solve

optimization problems where the search space is noncontinuous

and conditional variables exist.

2.1.1 The Generalization Bound of Our Proposed Solution. Fun-
damentally, our solution tackles a learning problem with multiple

SVMs, while themainstream SVMbased solutions use one SVM [28].

Here we theoretically demonstrate that our solution leads to a better

generalization bound.

Theorem 2.1 (Margin bound for multi-class classifica-

tion with multiple multi-class SVMs). Let X denotes the in-
put space and Y = {1, 2, . . . ,k} denotes the output space, where
k > 2. Let K : X × X → R be a positive definite symmetric
(PDS) kernel and Φ : X → H be a feature mapping associated to
K . Assume that there exists r > 0 such that K(x, x) ≤ r2 for all
x ∈ X. We define the piecewise kernel-based hypothesis space as
¯HK ,p = {(x,y) ∈ X × Y → w̄y · Φ(x) :

¯W = (w̄1, . . . , w̄k )
⊤, w̄l =

ConditionalOptimal(w̄
1,l , . . . , w̄c ,l ) for all l ∈ {1, 2, . . . ,k} where

ConditionalOptimal() represents a piecewise function defined on a
sequence of intervals consisting of x ∈ X satisfying specific condition

and c denotes the number of pieces, | | ¯W | |H,p = (
k∑
l=1

| |w̄l | |
p
H
)1/p ≤

(
k∑
l=1

| |w̄∗,l | |
p
H
)1/p ≤ Λ̄ for any p ≥ 1 where | |w̄ | |H =

√
w̄T w̄ and

| |w̄∗,l | |H =max{| |w̄
1,l | |H, . . . , | |w̄c ,l | |H}. Then, for any δ > 0, with

probability at least 1−δ , the following multi-class classification gener-
alization bounds of multiple multi-class SVM holds for all h ∈ ¯HK ,p .

R(h) ≤
1

m

m∑
i=1

¯ξi + 4k

√
r2Λ̄2

m
+

√
loд 1

δ
2m
, (1)

where ¯ξi =max{1 − [w̄yi · Φ(xi ) −maxy′,yi w̄y′ · Φ(xi )], 0} for all
i ∈ {1, 2, . . . ,m}.

The proof of the above theorem is provided in the Appendix.

Compared with existing generalization bound of single SVM R(h) ≤

1

m

m∑
i=1

ξi +4k
√

r 2Λ2

m +

√
loд 1

δ
2m [18], our bound shown in (1) is tighter

since
¯ξ ≤ ξ and Λ̄ ≤ Λ. This result shows that SVMs with the

problem context aware pipeline can improve the model quality,

which is particularly true for our case study on the ATSA task where

a single SVM classifier is insufficient to fit the whole sentiment

analysis problem.

2.2 Subproblem Construction, Data
Augmentation and Feature Customization

Here, we elaborate the key components of the problem context

aware pipeline, which aims to make efficient use of more informa-

tion of a problem in the model building process.

2.2.1 Subproblem construction. As we have discussed earlier in

this section, using a single SVM classifier to deal with a complex

problem may lead to poor predictive accuracy, due to the limited

model capacity of one SVM classifier. In our proposed solution, we

first divide a problem into subproblems, where each subproblem

contains training instances sharing similar information (e.g., similar

semantics for text mining problems like the ATSA task). Hence, our

solution is able to use more SVMs to handle complex problems, and

each SVM classifier is specifically trained for a subproblem.

The subproblem construction is important for complex problems

such as the ATSA task. The key intuition is that an aspect may be

described using different aspect terms. For instance, aspect terms

including “manager”, “staff” and “chef” may be used to rate the

“personnel” aspect of a restaurant. Moreover, similar aspect terms

tend to be described by similar adjectives. For example, adjectives

including “delicious” and “yummy”may be used to describe the food

aspect, while “expensive” and “pricy” may be used to describe the

price aspect. When performing sentiment analysis for the price as-

pect, “delicious” and “yummy” are noise. By clustering aspect terms

into subproblems, our solution is able to learn knowledge of similar

aspect terms and exclude noise from the irrelevant adjectives.

2.2.2 Data Augmentation. A key challenge raises from clustering

the training data into subproblems is that the data of a subproblem

is likely to be unbalanced (e.g., more positive reviews than neutral

reviews) which may downgrade the quality of the SVM classifiers.

To make each subproblem balanced, we augment the data by up-

sampling. First, we use the largest class as a reference (e.g., positive

class). Then, we aim to increase the number of training instances

for the other classes (e.g., neutral and negative classes) until the

other classes have the same number of training instances as the

referenced class. For increasing the number of training instances of

a class (e.g., negative class), we randomly select a subproblem (ex-

cept the current subproblem) and then randomly choose a training

instance of the class (e.g., negative class) in selected subproblem.

The sampling process is repeated until all the classes have the

same number of training instances. In our solution, whether to use

sampling is a learnable parameter for each subproblem.

2.2.3 Feature Customization. After dividing the training data into

subsets by clustering, the next important step for our solution is

to customize features for each subproblem. The intuition is that

the features which are useful in other subproblems may not be

useful for the current subproblem. Our key idea is that we rank the

features based on their relevance to the current subproblem. The

relativity score of a feature f in the i-th subproblem is computed



by the following formula based on chi-squared

chi(f ) =
N (N i

f N
ī
¯f
− N i

¯f
N ī
f )

2

(N i
f + N

ī
f )(N

i
f + N

i
¯f
)(N i

¯f
+ N ī

f )(N
i
¯f
+ N ī

¯f
)
,

where N denotes the total number of training instances in the

whole problem; N i
f denotes the number of training instances that

have nonzero values in the feature f in the i-th subproblem; N i
¯f

denotes the number of training instances that have zero values in

the feature f in the i-th subproblem; N ī
f denotes the number of

training instances that have nonzero values in the feature f but

not in the i-th subproblem; N ī
¯f
is the number of training instances

that neither have nonzero values in the feature f nor belong to the

i-th subproblem.

2.3 Training and Inference
One important property in our solution is that the feature selec-

tor, hyper-plane space identifier and SVM trainer are all learnable

components. They can be improved based on the loss obtained

from the current SVM classifier. Thus, the SVM classifier trained in

our solution is well-tuned for features, hyper-parameters and the

parameters in the SVM classifier. Here we elaborate the details of

training the model including learning to set the hyper-parameters

and training the SVMs.

Learning to Select Features: A learning problem may have many

features for the whole problem. Those features may work well

for one SVM classifier but poorly for another SVM classifier. It is

important that different subproblems use different sets of features,

i.e., feature customization. Hence, we need to find out the best

feature combination among the features for each SVM classifier.

In this paper, our solution ranks the features for all the features,

and chooses the best features for each subproblem. For example,

the SVM sentiment analysis classifier for the first aspect may use

surface features and word similarity features only, while that for

the second aspect may use all the features.

Learning to Set the Hyper-Plane Space: The hyper-parameters of

SVMs have significant influence on the SVM model quality. The

hyper-parameters define the hyper-plane space of the SVMs. In our

solution, the hyper-parameters of SVMs are learned rather than

manually set. We use the sequential model-based optimization [2]

to help select the kernel type and the kernel hyper-parameters

for each SVM classifier. The key idea is that we use the history

of the hyper-parameters to train a machine learning model which

guides the search for the best kernel and its corresponding hyper-

parameters. Moreover, our solution also learns to decide whether to

use sampling to balance the training instances for the SVMs. After

each training instance is represented as a feature vector and the

hyper-parameters of the SVMs are set, we train an SVM classifier

for each subproblem using ThunderSVM [28].

Inference: Given a test instance xt with the label yt , our solution
first assigns xt to the corresponding SVM classifier whose center

of the subset of training data is the most similar to yt . Then the

relevant features are selected using the techniques presented in

Section 2.2.3, and a label (e.g., positive) is predicted by the SVM

classifier.

Table 1: Details of data sets from the LibSVMWebsite

data sets

cardinality

dimensions #classes

training set test set

a7a 16,100 16,461 123 2

cod-rna 59,535 271,617 8 2

letter 10,500 5,000 16 26

pendigits 7,494 3,498 16 10

2.4 Time Complexity Analysis for Training
The SVM based solutions generally have lower time complexity

than the DNN based solutions. To provide a more concrete example

of the time complexity analysis, we provide the time complexity

analysis for our proposed solution on the ATSA task, in comparison

with a representative solution HAPN [13] which is based on DNNs

and achieves high predictive accuracy on ATSA. We denote α as the

average sentence length, n as the number of training instances, d
as the number of dimensions of the training instances, and t as the
training rounds (e.g., the number of epochs). For the deep learning

based model (i.e., HAPN), the most time consuming operations are

matrix multiplications on Bi-GRU and hierarchical attention [13].

Hence, the time complexity for HAPN is O(t · n · α · d3), where the

matrix multiplication takes O(d3) for each training instance.

In comparison, the time complexity of SVMs is O(t · n · d) for
the SVM training using the Sequential Minimal Optimization al-

gorithm [9]. As we can see, the SVM based solution has a much

lower time complexity than the DNN based solution. Note that

the number of rounds t and the dimension of training instances in

SVMs and neural networks may be different. However, this time

complexity analysis provides insights of the training cost of SVMs

and neural networks.

3 EXPERIMENTAL STUDY
In this section, we present our experimental study for overall evalua-

tion and our case study on theATSA task for sentiment analysis. Our

proposed solution was implemented in Python and the source code

to reproduce our experiments is available in https://github.com/Kurt-

Liuhf/absa-svm. The clustering algorithm used in our experiments

was k-means. The experiments and case study were conducted on

a workstation running Linux with a Xeon E5-2640v4 12 core CPU

and 64GB main memory.

3.1 Overall Evaluation
To perform an overall evaluation for our proposed solution, we

obtained data sets from the LibSVMWebsite. The information of

the data sets is listed in Table 1. We compare our proposed solution

with the single SVM based approach, bagging SVMs and AdaBoost

SVMs, and evaluate both the predictive accuracy and efficiency.

For fair(er) comparison, kernel and regularization hyper-parameter

tuner in our proposed solution was disabled. All the SVM based

approaches on all the data sets used the Radial Basis Function (RBF)

kernel with γ set to 10, and regularization parameterC set to 5. The

results are shown in Tables 2 and 3. As we can see from Table 2, our

proposed solution produces predictive accuracy results (in terms of

accuracy and F1 on the test data sets) which are always on the top



Table 2: Accuracy and macro-F1 comparison with different methods

data sets

accuracy macro-F1

single SVM bagging SVM AdaBoost SVM ours single SVM bagging SVM AdaBoost SVM ours

a7a 81.19 81.03 71.31 82.25 70.41 70.01 70.19 73.32
cod-rna 89.06 89.06 65.88 89.13 87.24 87.24 65.36 87.35
letter 96.39 95.28 77.60 96.48 96.33 95.20 76.91 96.41

pendigits 99.01 99.01 90.13 99.01 99.01 99.01 90.13 99.01

Table 3: Training efficiency of SVM based approaches

data sets

elapsed time (sec)

single SVM bagging SVM AdaBoost SVM ours

a7a 145.90 494.86 1271.30 10.51
cod-rna 85.66 533.85 1041.21 16.41
letter 7.82 56.56 731.78 4.63

pendigits 0.52 3.98 49.94 0.93

Table 4: Details of the Laptop and Restaurant data sets

data set #positive #negative #neutral #total

Laptop

Train 987 866 460 2313

Test 341 128 169 638

Restaurant

Train 2164 807 637 3608

Test 728 196 196 1120

among all the SVM based approaches. In terms of training efficiency

as shown in Table 3, our solution is the fastest in the larger data

sets including a7a, cod-rna and letter. Our solution is 14 to over

100 times faster than other approaches in a7a. This is because our
proposed solution trains a number of small SVMs, instead of a large

SVM classifier which is more computationally expensive. In the

pendigits data set, the single SVM based approach is slightly faster

than ours which is the second fastest approach. This is because the

size of pendigits is small, and further dividing into subproblems

brings extra computation cost.

3.2 Case Study on the ATSA task
To further demonstrate the performance of our proposed solution,

we conduct a case study on the aspect term sentiment analysis

(ATSA) task. We elaborate the setup of the case study next.

Data sets and dictionaries: We conducted our case study us-

ing two popular aspect term sentiment analysis data sets from

SemEval 2014 Task 4: Restaurant and Laptop. The detailed infor-

mation of the two data sets is listed in Table 4, where “#positive”,

“#negative”, “#neutral” and “#total” denote the number of positive

reviews, negative reviews, neutral reviews and the total number of

reviews, respectively. In our case study, we used eight sentiment

lexicons [11]: (1) tweet sentiment lexicons, (2) hashtag sentiment
lexicons and (3) sentiment140, (4) NRC emotion lexicons, (5) Bing
Liu’s lexicons, (6) MPQA subjectivity lexicons, (7) Yelp restaurant
word–aspect association lexicons and (8) Amazon laptop word-aspect
association lexicons. These dictionaries were used for extracting

sentiment lexicon features in Section 2.2.3.

Hyper-parameter settings and baselines: The number of sub-

problems was searched from 1 to 35. The regularization constant,C ,
of the SVMs was selected from 1 to 2

20
. The SVM kernel functions

considered include Radial Basis Function (RBF), polynomial, Sig-

moid and linear kernels. The degree for the polynomial kernel was

searched from 1 to 5. The γ term of the RBF kernel was selected

from 10
−3

to 10 divided by the size of the training data set. Which

features used in the SVM classifier were automatically learned from

the data. We identify the latest solutions to the aspect term senti-

ment analysis problems, including six latest DNN based solutions

without pre-trained models and six latest pre-trained neural models

based on BERT. The two groups of baselines are named “Neural

Model” and “BERT based Model”, respectively, as shown in Table 5.

In our solution, we extracted features including surface features,

parse features, word similarity features, and sentiment lexicon fea-

tures similar to the previous SVM based approach [11]. Those fea-

tures are dependent on the aspect terms within a subproblem (intra-

subproblem), which misses the global review of the problem. To

optimize the representation, we extracted aspect term independent

features (i.e., inter-subproblem features) by considering information

from the other subproblems.

3.2.1 Accuracy and Macro-F1 Comparison. As we can see from

Table 5, our solution outperforms all the DNN based solutions in

the “Neural Model” group. When compared with the “BERT based

Model” group, our solution outperforms half of them and is com-

petitive to other ones. Our SVM based solution which outperforms

all the solutions in the “Neural Model” group is already impres-

sive, because our solution is much simpler while does not exploit

pre-trained models or extra labeled data. The comparison between

“BERT based Model” and our solution is arguably unfair to our

solution, because the SVM model uses little amount of computa-

tion resources and training data. We also compare the Macro-F1

scores among the different methods [23], and the finding is similar.

Moreover, our solution consistently outperforms the existing SVM

based solution [11] by a large margin (cf. Table 5 bottom). Finally,

our solution with multiple SVMs is better than with a single SVM,

which confirms the result of Theorem 2.1. For a sanity check, we

replaced the SVMs used in our proposed method with BERT. The

results are shown in the last row of Table 5, which confirms that

enhancing SVMs with problem aware pipeline tends to bring more

significant improvement than BERT in our proposed method.

Analysis with Visualization: In order to have a deeper un-

derstanding of our solutions, we also performed visualization and

looked into the SVM classifiers. As we can see from the top of

Figure 2, our SVM base classifiers are able to accurately classify

the three classes denoted by dark blue dots, light blue dots and



Table 5: Accuracy and Macro-F1 comparison

Models

Restaurant Laptop

Acc Macro-F1 Acc Macro-F1

BERT based Model

LCF-ATEPC [31] 90.18 85.88 82.29 79.84
LCF-BERT [32] 87.14 81.74 82.45 79.59

BERT-SPC [23] 84.46 76.98 78.99 75.03
SDGCN-BERT [33] 83.57 76.47 81.35 78.34
AEN-BERT [23] 83.12 73.76 79.93 76.31
BERT-PT [30] 84.95 76.96 78.07 75.08

Neural Model

HAPN [13] 82.23 - 77.27 -

IMN [7] 83.89 75.66 75.36 72.02
BILSTM-ATT-G [4] 81.11 72.19 75.44 70.52

RAM [3] 80.23 70.80 74.49 71.35

LSTM+SynATT+TarRep [6] 80.63 71.32 71.94 69.23

PF-CNN [8] 79.20 - 70.06 -

SVM-based Model

existing SVM approach [11] 82.23 73.75 72.27 65.60

ours (single SVM) 78.57 63.78 72.26 67.61

ours (multiple SVMs) 86.79 78.81 80.25 77.07
Replaced SVMs with BERT ours (multiple BERTs) 75.98 61.0 62.69 61.0

neg- but the staff was so horrible to us

pos- not only the food outstanding , but the little perks were great

pos- the bagets have an outstanding taste with a terrific texture

neg- the menu is very limited - i think we counted 4 entrees

pos- they are often crowded on weekends but efficient and accurate with their service

Figure 2: Visualization of the SVM classifier boundaries (top) and important words used for inference (bottom)

circles. The bottom part of Figure 2 shows the importance (mea-

sured by the weight vector) of words used in making a prediction

for an aspect term highlighted in yellow. The darker the color, the

more important the word is. These results show that the intra- and

inter-subproblem features work well and the result is intuitive to

interpret. Moreover, we have found that about 80% of the SVM

classifiers used data augmentation (cf. Section 2.2).

3.2.2 Effect of the Number of Subproblems, Inference Efficiency
and Model Size Comparison. Here, we first study the effect of the

number of subproblems on the elapsed time and predictive accuracy.

Then, we present inference efficiency and model size comparison.

Effect on varying the number of subproblems: Figure 3a

and 3b show the effect of varying the number of subproblems (i.e.,k)
on accuracy and the elapsed time. As we can see from the figure, the

elapsed time for training decreases as the number of subproblems

increases. This is because the training cost of each SVM classifier

is lower when the subproblem size is smaller. The accuracy tends

to increase as the number of subproblems increases. The accuracy

hits the highest score when the number of subproblems is 20 for

Restaurant and 30 for Laptop, respectively.
Inference efficiency: Figure 3c shows the batch inference ef-

ficiency of BERT and our solution on the two data sets. We used

BERT-SPC [23] as an example to study the inference efficiency, as

BERT-SPC is open-source and easy-to-use. The batch size used in

the experiments was 16 which leads to the best efficiency for BERT

on both of the data sets according to our experiments. As we can see

from the figure, the efficiency of our solution is over 40 times better

than BERT. This is an important property of our solution which
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Figure 3: Effect of # of subproblems and the inference efficiency

produces competitive predictive accuracy to BERT based solutions,

while our solution is an order of magnitude faster in inference.

The trained model size: We also calculated the number of

parameters in the final trained models. We have found that our

solution leads to a much smaller number of parameters than the

other models. Specifically, our solution only requires thousands of

parameters, while HAPN [13] requires over 2 million parameters

and BERT-SPC [23] even requires about 110 million parameters.

4 RELATEDWORK
Here we review work on SVMs and aspect term sentiment analysis.

4.1 Ensemble SVMs
A common way to improve machine learning algorithms is to use

ensemble models [22, 27]. Many existing studies tried to use en-

semble models to improve SVMs. There are two main approaches

of ensembling SVMs: bagging and boosting [17]. To improve the

classification performance of the SVMs, an ensemble SVM model

with bagging was proposed by Kim et al. [10]. Each base SVM is

trained independently with the randomly chosen training instances

by a bootstrap technique. Then, the trained classifiers are used

altogether to make a collective decision based on techniques such

as the majority voting. Mordelet and Vert [19] proposed a bagging-

based SVM ensemble model to improve the model performance.

The algorithm iteratively trains multiple binary classifiers to dis-

criminate the known positive instances from random subsamples

of the unlabeled set, and prediction is the average of the classifiers.

Li, Wang and Sung [15] presented a model named AdaBoostSVM

which uses SVMs as weak learners in AdaBoost. AdaBoostSVM can

adaptively adjust the kernel parameters in SVMs, instead of using

a fixed one. Another ensemble SVM with AdaBoost was proposed

by the same authors [16], which demonstrates better generality

than SVMs on imbalanced classification problems. We compared

our solution with bagging and AdaBoost SVMs in our experiments.

4.2 Aspect term sentiment analysis (ATSA)
Aspect term sentiment analysis (ATSA) is a fine-grained sentiment

classification task [20]. The key to solving this task highly depends

on the extraction of semantic relatedness between aspect terms and

their corresponding context. Traditional machine learning meth-

ods, including rule based methods and SVM based methods [11],

are based on a set of linguistically inspired lexical, semantic and

sentiment lexicon features. A series of studies based on DNNs have

been dedicated to solving the ATSA task. TD-LSTM [24] adopts

a forward and a backward LSTM to model the left and the right

contexts of the aspect. TNet [14] stacks a proposed CPT module to

fuse the embedding of aspect term into the embedding of whole con-

text words. ATAE-LSTM [26] concatenates aspect embeddings with

context word representations and adopts an attention mechanism

which lets aspect participate in. TNet-ATT [25] proposes an in-

cremental approach to automatically extract attention supervision

information for neural aspect term sentiment classification models.

SDGCN-BERT [33] employs Graph Convolutional Networks over

the attention mechanism to capture the sentiment dependencies

and achieves good predictive accuracy. More recently, large pre-

trained language models (e.g., BERT) are used to tackle the ATSA

task. The related work includes BERT-PT [30] and BERT-ADA [21].

BERT also be used to extract the word embedding. The examples

include AEN-BERT [23] and SDGCN-BERT [33]. Despite their good

accuracy, those models contain a large number of parameters (i.e.,

around 110 million parameters) and are slow in inference.

5 CONCLUSION
In this paper, we have proposed techniques to enhance SVMs with

a pipeline which exploits the context of the learning problem. Ex-

perimental results have shown that our proposed solution is more

efficient, while producing better results than the other SVM based

approaches. With the ATSA task as a case study, we have demon-

strated that different models including those in SVMs and deep

learning have their pros and cons in performance, model size as

well as training/inference time. We have demonstrated that an SVM

based approach with careful design can achieve competitive predic-

tive accuracy to DNN based approaches. Moreover, our SVM based

solution is about 40 times faster in inference and has 100 times

fewer parameters than BERT based models. Our research findings

can encourage more rethinking on algorithm diversity analysis and

evaluation: the community needs to carefully evaluate and design

diversified algorithms and models to study their trade-off.
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A APPENDIX
A.1 Definitions and Theorems
In order to prove Theorem 2.1 in the main text, we first introduce

a few definitions below based on common conventions and two

theorems [18].

Definition A.1 (Margin sh (x,y)). A hypothesis is defined based
on a function h : X × Y → R, the label associated to point x is the
one with the largest score h(x,y), the margin sh (x,y) of the function
h at a labeled instance (x,y) is

sh (x,y) = h(x,y) −max
y′,y

h(x,y′)

Definition A.2 (Margin loss function). For any ρ > 0, the ρ-
margin loss is the function Lρ : R×R→ R+ defined for all y,y′ ∈ R
by Lρ (y,y′) = ℓρ (yy′) with

ℓρ (v) =min

{
1,max(0, 1 −

v

ρ
)

}
=


1, i f v ≤ 0

1 − v
ρ , i f 0 ≤ v ≤ ρ

0, i f ρ ≤ v

It is similar to hing loss where ℓρ (v) decreases linearly from 1 to 0.

Definition A.3 (Empirical margin loss). Given a sample S =
{z1 = (x1,y1), . . . , zm = (xm,ym )} and a hypothesish, the empirical

margin loss is defined by R̂S ,ρ (h) = 1

m

m∑
i=1

ℓρ (sh (xi ,yi )).

Definition A.4 (Empirical Rademacher complexity [1]). We
use H to denote a hypothesis set, and define a loss function L :

Y × Y → R and a set G = {д : (x,y) → L(h(x),y) : h ∈ H}.
Furthermore, we represent G as a family of functions mapping from
Z to [a,b] and S = {z1, . . . , zm } is a fixed sample of sizem with in-
stances inZ. The empirical Rademacher complexity of G with respect

to the sample S is given by ˆℜS (G) = E
σ

[
supд∈G

1

m

m∑
i=1

σiд(zi )

]
,



where σ = (σ1, . . . ,σm )⊤ and σi is a independent uniform random
variable taking value in {−1,+1} with equal probability.

Definition A.5 (Rademacher complexity). Let D be the dis-
tribution from which instances are drawn. For any numberm ≥ 1,
the Rademacher complexity of G is the expectation of the empirical
Rademacher complexity over all the samples of sizem drawn from
D:ℜm (G) = E

S∼Dm
[ ˆℜS (G)], where S ∼ Dm means S consists ofm

instances drawn from D.

With the above definitions, we can introduce the generalization

bound for multi-class classification [12].

TheoremA.1 (Margin bound formulti-class classification).

LetH ⊆ RX×Y be a hypothesis set withY = {1, 2, . . . ,k}. We define
Π(H) = {x → h(x,y) : y ∈ Y,h ∈ H} and ρ > 0. Then, for any
δ > 0, with probability at least 1 − δ , the following multi-class
classification generalization bounds holds for all h ∈ H :

R(h) ≤ R̂S ,ρ (h) +
4k

ρ
ℜm (Π(H)) +

√
loд 1

δ
2m
,

The generalization bound for multi-class classification can be

computed, when considering the kernel based hypotheses in SVMs [5].

Theorem A.2 (Margin bound for multi-class classification

with kernel-based hypotheses). LetK : X×X → R be a positive
definite symmetric (PDS) kernel and let Φ : X → H be a mapping
related to K . Assume that there exists r > 0 such that K(x, x) ≤ r2

for all x ∈ X. We define the kernel-based hypothesis space asHK ,p =

{(x,y) ∈ X × Y → wy · Φ(x) : W = (w1, . . . ,wk )
⊤, | |W | |H,p =

(
k∑
l=1

| |wl | |
p
H
)1/p =

(
k∑
l=1

(
√
wl ×wl )

p
)

1/p
≤ Λ for any p ≥ 1 and Λ >

0 is the upper bound of the norm of the above hypothesis set}. Given
ρ > 0, then for any δ > 0, with probability at least 1 − δ , R(h) ≤

R̂S ,ρ (h) + 4k

√
r 2Λ2/ρ2

m +

√
loд 1

δ
2m holds for all h ∈ HK ,p .

According to Theorem A.2, the generalization bound for multi-

class kernel SVMs can be rewritten as follow.

R(h) ≤
1

m

m∑
i=1

ξi + 4k

√
r2Λ2

m
+

√
loд 1

δ
2m
,

where ρ = 1 and R̂S ,ρ (h) in Theorem A.2 can be expressed using

hinge loss with ξi =max{1−[wyi ·Φ(xi )−maxy′,yiwy′ ·Φ(xi )], 0}.

B PROOF OF THEOREM 2.1
Given the definitions and theorems above, we can now prove The-

orem 2.1 as follow.

Proof. Let S = (z1, . . . , zm ) denote a sample of sizem. For all l ∈

{1, 2, ...,k}, the inequality | |w̄l | |H ≤ (
∑k
l=1

| |w̄l | |
p
H
)1/p = | | ¯W | |H,p

always holds. Since | | ¯W | |H,p ≤ (
∑k
l=1

| |w̄∗,l | |
p
H
)1/p ≤ Λ̄ where Λ̄ >

0, w̄∗,l = max{w̄
1,l , w̄2,l , ..., w̄c ,l } and c is the number of chunks,

we have | |w̄l | |H ≤ Λ̄ for all l ∈ {1, 2, ...,k}. The representation of

w̄l is as follows.

w̄l =


w̄

1,l , if all x meets condition 1

w̄
2,l , if all x meets condition 2

. . .

w̄c ,l , if all x meets condition c

where w̄i ,l corresponds to the weight vector of the i-th multi-class

SVM, and is determined by the corresponding sample set Si =
{z : x meets condition i} for all i ∈ {1, 2, ..., c}. Concretely, Si can
denote a samplewhere all the instances in the i-th subproblem of the

ATSA task. If the constraint “if all x meets condition i” is satisfied,
then w̄l equals to w̄i ,l (e.g., Si belongs to the i-th subproblem and

the i-th multi-class SVM is responsible for the subproblem).

According to Theorem A.1, the key step of the proof lies in

bounding the termℜm (Π( ¯HK ,p )). We have

ℜm (Π( ¯HK ,p )) =
1

m
E

S∼Dm ,σ

[
sup
y∈Y

| | ¯W | |<Λ̄

〈
w̄y ,

m∑
i=1

σiΦ(xi )
〉]

≤
1

m
E

S∼Dm ,σ

[
sup
y∈Y

| | ¯W | |<Λ̄

| |w̄y | |H

�������� m∑
i=1

σiΦ(xi )
��������
H

]

≤
Λ̄

m
E

S∼Dm ,σ

[�������� m∑
i=1

σiΦ(xi )
��������
H

]
≤

Λ̄

m

[
E

S∼Dm ,σ

[�������� m∑
i=1

σiΦ(xi )
��������2
H

] ]1/2

≤
Λ̄

m

[
E

S∼Dm ,σ

[ m∑
i=1

| |Φ(xi ) | |2H

] ]1/2

≤
Λ̄
√
mr 2

m

□

B.1 Tighter Bound than Multi-class
Classification with Single SVM

We can represent the weight vectorwl in the multi-class classifica-

tion with single SVM in the piecewise form as follows.

wl =


w

1,l , if all x meets condition 1

w
2,l , if all x meets condition 2

. . .

wc ,l , if all x meets condition c

wherew
1,l = w2,l = ... = wc ,l . We have the inequality | |w̄i ,l | |H ≤

||wi ,l | |H, since w̄i ,l represents the optimal hyperplane with a larger

margin thanwi ,l . Thus, we have | |w̄l | |H ≤ ||wl | |H, and

¯ξi =max{1 − [w̄yi · Φ(xi ) −maxy′,yi w̄y′ · Φ(xi )], 0} ≤ ξi , (2)

for all i ∈ {1, 2, ...,m}. Generally, the hyperplane determined by

the samples would not satisfy the equality that | |w̄l | |H = | |wl | |H.

Since w̄∗,l satisfies | |w̄∗,l | |H = max{| |w̄
1,l | |H, . . . , | |w̄c ,l | |H}, and

| | ¯W | |H,p = (
∑k
l=1

| |w̄l | |
p
H
)1/p ≤ (

∑k
l=1

| |w̄∗,l | |
p
H
)1/p ≤ Λ̄, the fol-

lowing inequality always holds.

| | ¯W | |H,p ≤ Λ̄ ≤ (

k∑
l=1

| |wl | |
p
H
)1/p = | |W | |H,p ≤ Λ. (3)

As Λ̄ ≤ Λ and
¯ξi ≤ ξ and Λ̄ is a lower bound of (

∑k
l=1

| |wl | |
p
H
)1/p ,

therefore our bound shown in Theorem 2.1 is tighter than the bound

shown in Theorem 1.2.
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