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Abstract

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) have been used in
many real-world applications. They are often a standard recipe for building state-of-the-art
solutions to machine learning and data mining problems. However, training and prediction
are very expensive computationally for large and high dimensional problems. This article
presents an efficient and open source software toolkit called ThunderGBM which exploits
the high-performance Graphics Processing Units (GPUs) for GBDTs and RFs. Thun-
derGBM supports classification, regression and ranking, and can run on single or multiple
GPUs of a machine. Our experimental results show that ThunderGBM outperforms the ex-
isting libraries while producing similar models, and can handle high dimensional problems
where existing GPU-based libraries fail. Documentation, examples, and more details about
ThunderGBM are available at https://github.com/xtra-computing/thundergbm.
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1. Introduction

Gradient Boosting Decision Trees (GBDTs) and Random Forests (RFs) are widely used in
advertising systems, spam filtering, sales prediction, medical data analysis, and image label-
ing (Chen and Guestrin, 2016; Goodman et al., 2016; Nowozin et al., 2013). GBDTs1 have
won many awards in recent Kaggle data science competitions. However, training GBDTs
is often very time-consuming, especially for large and high dimensional problems. GPUs
have been used to accelerate many real-world applications (Dittamo and Cisternino, 2008),
due to their abundant computing cores and high memory bandwidth. In this article, we
propose a GPU-based software tool called ThunderGBM to improve the efficiency of GB-
DTs. ThunderGBM supports binary and multi-class classification, regression and ranking.
ThunderGBM supports the Python interface, and can run on single or multiple GPUs of
a machine. Experimental results show that ThunderGBM is faster than XGBoost, Light-
GBM (Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018), while producing similar
models on the data sets tested. Moreover, ThunderGBM can handle high dimensional prob-

1. For ease of presentation, we use “GBDTs” rather than mentioning both GBDTs and RFs.
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Figure 1: Overview of training and prediction in ThunderGBM.

lems where those existing libraries fail. The key reason for the improvement is that existing
libraries are CPU-oriented and use the GPU to accelerate only a part of GBDTs and/or re-
quire additional cost and data structures to support both CPU and GPU implementations,
whereas ThunderGBM is GPU-oriented and maximizes GPU usage.

2. Overview and Design of ThunderGBM

Figure 1 shows the overview and software abstraction of ThunderGBM. The training algo-
rithms for different tasks (i.e., classification, regression and ranking) are built on top of a
generic tree construction module. This software abstraction allows us to concentrate on op-
timizing the performance of tree constructions. Different tasks only require different ways of
computing the derivatives of the loss functions. Notably, the multi-class classification task
requires training k trees where k is the number of classes (Bengio et al., 2010; Chen and
Guestrin, 2016), while regression and ranking only require training one tree per iteration.
The prediction module is relatively simple, and is essentially computing predicted values
by concurrent tree traversal and aggregating the predicted values of the trees on GPUs.
Here, we focus on the training on a single GPU. More details about using multiple GPUs
and the prediction are in the Appendix A. We develop a series of optimizations for the
training. For each module that leverages GPU accelerations, we propose efficient parallel
algorithmic design as well as effective GPU-aware optimizations. The techniques are used
to support two major components in ThunderGBM: (i) computing the gradients and second
order derivatives, and (ii) tree construction.

2.1 Computing the Gradients and Second Order Derivatives on GPUs

Denoting yi and ŷi the true and predicted target value of the i-th training instance, the
gradients and second order derivatives are computed using the predicted values and the
true values by gi = ∂l(yi, ŷi)/∂ŷi and hi = ∂2l(yi, ŷi)/∂ŷ

2
i . The gradient and second order

derivative of the loss function are denoted by gi and hi, respectively; l(yi, ŷi) denotes the
loss function. ThunderGBM supports common loss functions such as mean squared error,
cross-entropy and pairwise loss (De Boer et al., 2005; Cao et al., 2007; Lin et al., 2014).
More details on loss functions and derivatives are in the Appendix D. Computing gi and hi
requires the predicted value ŷi of the i-th training instance, ThunderGBM computes ŷi based
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on the intermediate training results. This is because the training instances are recursively
divided into new nodes and are located in the leaf nodes at the end of training each tree.
The idea of obtaining the predicted values efficiently is also used in LightGBM. To exploit
the massive parallelism of GPUs, we create a sufficient number of threads to efficiently use
the GPU resources. Each GPU thread keeps pulling an instance and computes its g and h.

2.2 Tree Construction on GPUs

Tree construction is a key component and time consuming in the GBDT training. We adopt
and extend novel optimizations in our previous work (Wen et al., 2018, 2019) to improve
the performance of ThunderGBM. Tree construction contains two key steps: (i) producing
the split point candidates, and (ii) finding the best split for each node.

Step (i): ThunderGBM supports two ways of producing the split point candidates: one
based on enumeration and the other based on histograms. The former approach requires
the feature values of the training instances to be sorted in each tree node, such that it
can enumerate all the distinct feature values quickly to serve as the split point candidates.
However, the number of split point candidates may be huge for large data sets. The latter
approach considers only a fixed number of split point candidates for each feature, and each
feature is associated with a histogram containing the statistics of the training instances.
Each bin of the histogram contains the values of the accumulated gradients and second
order derivatives for all the training instances located in the bin. When using histogram-
based training, the data is binned into integer-valued bins, which avoids having to sort the
samples at each node, thus leading to significant speed improvement. In ThunderGBM,
each histogram is built in two phases. Firstly, a partial histogram is built on the thread
block level using shared memory, because a thread block only has accesses to a proportion of
gradients and the second order derivatives. Secondly, all the partial histograms of a feature
are accumulated to construct the final histogram. ThunderGBM automatically chooses the
split point candidate producing strategy based on the data set density, i.e., histograms-based
approach for dense data sets and enumeration-based approach for the others. The density
is measured by total # of feature values

# of instances×# of dimensions . If the ratio is larger than a threshold, we choose
the histogram-based approach; we choose the enumeration-based approach otherwise.

Step (ii): Finding the best split is to look for the split point candidate with the largest
gain. The gain (Chen and Guestrin, 2016) of each split point candidate is computed by

gain = 1
2

[
G2

L

HL+λ +
G2

R

HR+λ −
(GL+GR)2

HL+HR+λ

]
, where GL and GR (resp. HL and HR) denote the sum

of gi (resp. hi) of all the instances in the resulting left and right nodes, respectively; λ is
a regularization constant. In ThunderGBM, one GPU thread is dedicated to computing
the gain of each split point candidate. The split point candidate with the largest gain
is selected as the best split point for the node, which can be computed efficiently by a
parallel reduction on GPUs. Once the best split point is obtained, the training instances
in a node are divided into two child nodes. For producing the split point candidates by
enumeration, ThunderGBM adopts the novel order preserving data partitioning techniques
on GPUs proposed in our previous work (Wen et al., 2018), i.e., the feature values of the
child nodes can be sorted more efficiently. For producing the split point candidates using
histograms, each GPU thread determines which child node an instance should go to based
on the best split. ThunderGBM repeats the two steps until a termination condition is met.

3



Wen, Liu, Shi, Li, He and Chen

data set on two cpus (sec) on the gpu (sec) speedup (on cpus) speedup (on gpu)

name card. dim. xgb lgbm cat xgb lgbm cat ours xgb lgbm cat xgb lgbm cat

higgs (reg) 11M 28 44.6 22.0 67.9 9.9 12.3 10.1 6.6 6.8 3.3 10.3 1.5 1.9 1.5
log1p (reg) 16K 4M oom 189 oom oom 261 oom 25.6 n.a. 7.4 n.a. n.a. 10.2 n.a.
cifar10 (clf) 50K 3K 521 lerr lerr 124 lerr lerr 81.5 6.4 n.a. n.a. 1.5 n.a. n.a.
news20 (clf) 16K 62K 287 15.4 oom 109 16.5 oom 5.8 49 2.7 n.a. 18.8 2.8 n.a.
yahoo (rnk) 473K 700 18.8 11 n.a. 2.4 29.4 n.a. 2.4 7.8 4.6 n.a. 1.0 12.3 n.a.

Table 1: Comparison with XGBoost, LightGBM and CatBoost.

3. Experimental Studies

We conducted experiments on a Linux workstation with two Xeon E5-2640 v4 10 core CPUs,
256GB memory and a Tesla P100 GPU of 12GB memory. The tree depth is set to 6 and
the number of trees is 40. More results on experiments and descriptions about the data sets
can be found in the Appendix C. Five data sets are used here, and regression, classification
and ranking are marked with “reg”, “clf” and “rnk”, respectively. We used the versions of
XGBoost, LightGBM and CatBoost on 21 Jul 2019.

The results are shown in Table 1, where “oom” stands for “out of memory”, “lerr”
stands for “large training error” and “n.a.” stands for “not applicable”. When the existing
libraries are running on CPUs, ThunderGBM is 6.4 to 10x times, 2.7 to 7.4 times, and
10.3 times faster than XGBoost, LightGBM and CatBoost, respectively. When running on
GPUs, ThunderGBM is 1 to 10x times, 1.9 to 10 times, and 1.5 times faster than XGBoost,
LightGBM and CatBoost, respectively. Moreover, ThunderGBM can handle high dimen-
sional problems (e.g., log1p) where the existing libraries fail or run slowly. ThunderGBM
also has smaller or comparable errors to the existing libraries (cf. the Appendix C).

4. Conclusion

In this article, we present ThunderGBM which supports classification, regression and rank-
ing. ThunderGBM uses the same input command line options and configuration files as
XGBoost, and supports the Python interface (e.g., scikit-learn). Our experimental results
show that ThunderGBM outperforms the existing libraries while producing similar models,
and can handle high dimensional problems where the existing libraries sometimes fail.
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Appendix A. Multiple GPU Support and Parallel Prediction Algorithm

ThunderGBM supports multiple GPUs and parallel prediction. Next, we elaborate the
details for these two functionalities.

A.1 Training on Multiple GPUs

One of the key limitations of GPUs is that the global memory size is relatively small (e.g.,
12GB) compared with the size of main memory. A machine nowadays can have multiple
GPUs, and commonly can host two to four GPUs. ThunderGBM can leverage multiple
GPUs to train models on larger data sets that can fit into multiple GPUs. It supports a
simple and effective approach for GBDT training on multiple GPUs. In particular, we parti-
tion the training data by features to handle large data sets (i.e., column based partitioning).
There are two advantages of the feature based partitioning. First, both enumeration based
and histogram based techniques for split point candidate production are natively supported.
Producing the split point candidates of a feature requires accessing all the values of the fea-
ture. Storing all the feature values of a feature in one GPU helps perform finding the split
points more communication efficiently. Second, the GPUs do not need to exchange the
partial histograms in order to find the approximate split points, since all the feature values
of a feature are stored locally and the GPU can build the whole histogram. Hence, the
GPUs only need to exchange the local best split point candidates in order to obtain the
global best split point candidates for the tree nodes. This reduces the communication cost
from O(n× d× b) to O(n× d), where n is the number of tree nodes needed to split, d is the
number of features in the training data set and b is the number of bins of the histograms.
The intuition is that a histogram is replaced by a local best split point when communicating
to other GPUs.

A.2 The Parallel Prediction Algorithm

The prediction module in ThunderGBM is relatively simple, because the prediction mainly
involves tree traversal. ThunderGBM supports different types of tasks including classifica-
tion, regression and ranking. These tasks are designed in a unified prediction algorithm:
traversing the decision trees to obtain the predicted value of an input instance. In Thun-
derGBM, a GPU thread is dedicated to the prediction of an instance by traversing all the
decision trees. Hence, the number of GPU threads equals to the number of instances that
we want to predict. For fast feature value lookup, we store the instances in a dense form
when the shared memory is sufficient to store the instances for prediction. Thus, given the
dense storage of the instances, we can decide which child to go to in a constant time for an
instance. If storing the instances for prediction in a dense form requires more memory than
the shared memory, the prediction is performed on the training instances in their original
(i.e., sparse) form.
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Appendix B. Other design and implementation details

B.1 Compression techniques

In ThunderGBM, we use run-length encoding (RLE) to compress the feature values, such
that the same feature values are treated as one value when computing the gain of a split
point. We have noticed that the SpareBin technique, which is also a compression technique,
is used in libraries such as LightGBM (Ke et al., 2017). However, SparseBin is different
from our RLE compression technique. SparseBin avoids storing empty bins for a “sparse”
histogram. SparseBin is efficient for histograms with many empty bins (i.e., bins not having
any instance). In comparison, RLE avoids storing repeated feature values, and is more
effective for our data layouts produced by the feature-based data partitioning.

B.2 Sparsity-aware

XGBoost uses the sparsity-aware technique to handle missing values more efficiently (Chen
and Guestrin, 2016). Essentially, the missing values can go to the left child node or right
child node depending on which node results in better loss reduction. In ThunderGBM,
we also exploit this sparsity-awareness to handling the missing values. Moreover, we have
developed the sparsity-aware technique for histogram building. Our approach can adapt
to different degrees of sparsity. The key idea is that when the problem is sparse and high
dimensional, we use the sorting based technique to construct the histograms. After sorting,
our RLE compression is able to significantly reduce the data footprint. When the problem
is not sparse and high dimensional, we use the locking-based histogram building technique
to build the histograms of each non-root node. The histograms of the root nodes are
constructed by the parallel reduction, as all the feature values are sorted by default and the
histograms of the root nodes can be constructed in a lock free manner.

B.3 High dimensional data

For handling high dimensional problems, LightGBM uses “feature bundling” to reduce the
dimensionality of the problem. The key idea is that correlated features are combined to-
gether. The technique to tackle high dimensional problems in ThunderGBM is different
from that of LightGBM. ThunderGBM does not try to reduce the dimensionality of the
problem and thus we train the models without losing the model quality. Instead, Thun-
derGBM exploits efficient histogram construction for high dimensional data based on stable
sort. The key steps are as follow. In step one, we sort the feature values of each dimen-
sion. Then, in step two, the gradient and the second order derivative of the instances with
the same feature are accumulated together to form a bin. After the accumulation, the
histograms are constructed.

B.4 Key differences of ThunderGBM over the existing libraries

The key reason for the speedup achieved by ThunderGBM is that existing libraries are CPU-
oriented and use the GPU to accelerate only a part of GBDTs and/or require additional cost
and data structures to support both CPU and GPU implementations. In comparison, Thun-
derGBM is GPU-oriented and we perform in-depth optimization to maximize the usage of
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data set cardinality dimension

covetype 581012 54
e2006 16087 150361
higgs 1.1x107 28
ins 13184290 35
log1p 16087 4272228
news20 19954 1355191
real-sim 72201 20958
susy 5x106 18

Table 2: Information of data sets used in the experiments.

the GPU. Specifically, we exploit (i) high dimensional data histogram building technique,
(ii) feature-based data partitioning and (iii) library optimization purely for GPUs. The
intuitions of the techniques are as follows. First, our proposed high dimensional data his-
togram building technique is for addressing the large memory consumption issue. Existing
libraries reserve GPU memory for d histograms, one histogram for each feature. As a result,
the libraries (e.g., XGBoost) run out of memory for high dimensional data (e.g., “log1p”
and “news20”) on our workstation. In comparison, our technique does not require reserving
memory for the d histograms. ThunderGBM constructs the histograms based on sorting,
and hence can build the histograms more memory efficiently. Essentially, each unique fea-
ture value becomes a bin for high dimensional problems. Second, the feature-based data
partitioning allows a block to only build a histogram for the corresponding feature, without
the need to consider the histograms of other features. Hence, the communication cost is
lower than the instance-based data partitioning. The additional advantage of the feature-
based data partitioning is that the RLE compression can be used to avoid storing repeated
feature values. Thus, our approach is more memory efficient. Third, our library is specif-
ically dedicated to GPUs. As a result, we can perform optimization for GPUs to a fuller
extent compared with the other libraries. For example, XGBoost requires the construction
of “DMatrix” which is helpful for their CPU based implementation, but can become an
efficiency bottleneck for their GPU implementation. In comparison, ThunderGBM stores
the training and prediction data in the simple yet efficient manner using arrays, such that
the data can be efficiently transferred to and accessed on GPUs.

Appendix C. Additional experimental results

Experimental setup. We used six more publicly available data sets as shown in Table 2, and
higgs and log1p have been used in our main text. The data sets were downloaded from the
LibSVM website. The data sets cover a wide range of the cardinality and dimensionality.
The experiments were conducted on the same workstation running Linux with two Xeon
E5-2640v4 10 core CPUs, 256GB main memory and one Tesla Pascal P100 GPU of 12GB
memory. Each program was compiled with the -O3 option. ThunderGBM was implemented
in CUDA-C. The default tree depth is 6 and the number of trees is 40. We used the
default values provided by the libraries for the other hyper-parameters (e.g., learning rate).
The total time measured in all the experiments includes the time of data transfer via
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data set on two cpus on the gpu

name card. dim. xgb lgbm cat xgb lgbm cat ours

higgs 11M 28 44.6±1.2 22.0±2.4 67.9±1.5 9.9±0.1 12.3±0.3 10.1±0.3 6.6±0.3
log1p 16K 4M oom 189±2.1 oom oom 261±3.6 oom 25.6±0.3
cifar10 50K 3K 521±1.4 lerr lerr 124±1.4 lerr lerr 81.5±0.2
news20 16K 62K 287±1.5 15.4±0.1 oom 109±1.8 16.5±0.2 oom 5.8±0.1
yahoo 473K 700 18.8±0.3 11.0±1.5 n.a. 2.4±0.2 29.4±0.1 n.a. 2.4±0.1

Table 3: Comparison with XGBoost, LightGBM and CatBoost.

PCI-e bus. Although ThunderGBM supports other loss functions, the loss function in
our experiments for all the libraries (including ThunderGBM) is the mean squared error:
l(yi, ŷi) =

∑
i (yi − ŷi)2.

Outline. We first present the overall performance of ThunderGBM over the three li-
braries on the GPU, and then we study the impact of varying tree depth and the number
of trees in ThunderGBM. Following that, we show the results on handling high dimensional
data, training error comparison, and efficiency on training Random Forests. Finally, we
compare the efficiency of prediction and model generality among different libraries.

C.1 Overall performance study

This set of experiments aims to study the improvement of execution time of ThunderGMB
over the existing libraries XGBoost, LightGBM and CatBoost. The time reported in Table 1
is the average execution time of five runs. Here, we also provide the standard deviation of
the libraries on each data set in the five runs. The results are shown in Table 3. As we can
see from the table, the standard deviation of ThunderGBM is quite small.

C.1.1 Execution time comparison on the GPU

We measured the total time (including data transfer from main memory to GPUs via PCI-
e bus) of training all the trees for ThunderGBM, XGBoost, LightGBM and CatBoost.
During training, the split point candidates are found using the histogram based method, as
LightGBM, CatBoost and the GPU version of XGBoost only support producing the split
point candidates using histograms.

The results of the four GPU implementations of GBDTs are shown in Figure 2. The
first observation is that ThunderGBM can handle all the data sets tested efficiently, and
outperforms all the existing libraries. In comparison, XGBoost and CatBoost cannot handle
high dimensional data sets such as e2006, news20 and log1p (marked with “n/a”). This is
because the GPU versions of XGBoost and CatBoost do not make use of data sparsity when
building histograms, which leads to running out of GPU memory. Moreover, XGBoost took
27 seconds to handle real-sim which CatBoost cannot handle. ThunderGBM can handle
real-sim and is significantly faster than XGBoost and LightGBM. The GPU version of
LightGBM is more reliable than XGBoost and CatBoost and can handle all the data sets,
although it is much slower than ThunderGBM on handling the data sets.
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Figure 3: Comparison with XGBoost, LightGBM and CatBoost on CPUs.

C.1.2 Execution time comparison on CPUs

We study the speedup of ThunderGBM on the GPU over XGBoost, LightGBM and Cat-
Boost on CPUs. Note that the number of CPU threads (i.e., 40 threads) in XGBoost is
automatically selected by the XGBoost library. We have also tried XGBoost with 10, 20,
40 and 80 threads, and found that using 40 threads results in the shortest execution time
for XGBoost in the eight data sets. Similarly for CatBoost, the number of CPU threads is
chosen automatically by the libraries. We have noticed that LightGBM has an issue running
tasks in our workstation, when the number of threads is set to 40, which results in signif-
icant downgrade on efficiency. Therefore, we tuned the number of threads for LightGBM,
and found that setting the number of threads to 20 achieves the best efficiency. Hence, we
set the number of threads to 20 for LightGBM in all the experiments.

The results of the three libraries on CPUs are shown in Figure 3, in comparison with
ThunderGBM running on the GPU. Among the three libraries, LightGBM is more reliable
compared with XGBoost and CatBoost. XGBoost runs out of memory on the log1p data
set, while CatBoost runs out of memory on e2006 and news20 besides log1p. ThunderGBM
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data set covtype e2006 higgs ins log1p news20 real-sim susy

XGBoost-GPU 3.45 oom 129.40 188.29 oom oom 41.42 40.41
XGBoost-CPU 4.66 oom 222.63 215.18 oom oom 118.13 54.50
LightGBM-GPU 0.84 11.98 11.98 9.84 270.92 14.26 3.92 4.49
LightGBM-CPU 0.55 16.60 19.05 16.52 202.44 12.74 3.70 7.45
CatBoost-GPU 5.11 oom 63.56 80.21 oom oom oom 23.15
CatBoost-CPU 6.01 oom 91.62 115.36 oom oom 44.5 34.57
ThunderGBM 0.87 7.37 14.51 30.47 35.57 7.30 2.28 5.60

Table 4: End-to-end efficiency comparison among libraries.

data set
training time accuracy

epsilon higgs svhn epsilon higgs svhn

XGBoost-GPU 91.43 8.70 18.69 0.87 0.74 0.93
XGBoost-CPU 403.89 122.92 67.11 0.87 0.74 0.92
LightGBM-GPU 50.96 14.30 27.57 0.87 0.74 0.90
LightGBM-CPU 70.40 18.20 30.96 0.87 0.74 0.90
CatBoost-GPU 18.35 19.14 12.18 0.84 0.71 0.82
CatBoost-CPU 34.70 82.18 17.67 0.84 0.71 0.82
ThunderGBM 35.10 6.91 10.07 0.87 0.73 0.93

Table 5: Efficiency and predictive accuracy on binary classification.

is faster than or achieves competitive efficiency on all the data sets. For the real-sim data
set, ThunderGBM achieves 10x times speedup over XGBoost and CatBoost.

C.1.3 End-to-end efficiency comparison among libraries

To compare the end-to-end efficiency of different libraries, we use the “fit” function pro-
vided in the Python scikit-learn interface by all the four libraries. We measured the total
time for executing the “fit” function. Table 4 gives the results. As we can see from the
results, ThunderGBM is significantly faster than XGBoost and CatBoost. ThunderGBM is
also significantly faster than LightGBM in high dimensional problems and achieves similar
efficiency as LightGBM in low dimensional problems. Another finding in our experiment is
that LightGBM produces very large training error on the ins data set, although LightGBM
is faster than the other libraries on the data set.

C.1.4 Additional results on binary classification and regression

To further investigate the performance of ThunderGBM on binary classification problems,
we provide additional results here on epsilon, higgs and svhn from the LibSVM website.
Table 5 shows the results. As we can see from the results, ThunderGBM is faster than the
other libraries while producing better or similar model quality. We have noticed that the
model quality of CatBoost is worse than the other libraries, when the tree depth and the
number of trees are the same as the other libraries. This is because CatBoost trains the
so-called “oblivious” decision trees.

10
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techniques covtype higgs real-sim susy

memory pooling 46.41% 43.68% 57.11% 71.54%
RLE compression 28.28% 26.49% 2.27% 18.79%
fast histogram building 12.16% 5.47% 13.92% 6.64%

Table 6: Impact of each individual techniques

C.1.5 Impact of individual techniques

We present the results of improvement brought by individual techniques. The main tech-
niques evaluated here include “memory pooling” which is designed to reduce the memory
allocation operations on GPUs, RLE compression and fast histogram building. Other im-
portant techniques (e.g., the GPU-oriented optimization) cannot be easily switched on and
off. Existing libraries are CPU-oriented, while ThunderGBM is GPU-oriented. We im-
plemented a baseline version of ThunderGBM which can individually switch off the use of
memory pooling, the RLE compression and the fast histogram building. The fast histogram
building includes optimizations such as building the histograms of root nodes by parallel
reduction, the composition of histogram bin IDs and histogram starting positions on the
GPU memory, and avoiding locking to the histograms when the gradient or the second order
derivative is zero.

Table 6 shows the impact of enabling memory pooling, RLE compression and histogram
building. The impact of a technique t is computed by

(total training time without t)− (total training time with t)

total training time without t
.

The results show that using memory pooling is important for improving the overall efficiency,
and the RLE compression and fast histogram building also have notable impact on the
overall training efficiency.

C.2 Varying tree depth and the number of trees

In this set of experiments, we study the effect of tree depth and the number of trees. When
we varied the tree depth from 6 to 16, the number of trees was fixed at 40; when we varied
the number of trees from 40 to 1280, the tree depth was fixed at 6. As the existing libraries
run out of memory when handling data sets such as news20 and e2006, we use susy, higgs,
covtype and ins which all the libraries can handle in this set of experiments.

C.2.1 Effect of tree depth

Figures 4 to 7 show the efficiency results of varying tree depth. As we can see from the
figures, ThunderGBM outperforms XGBoost on the GPU and is competitive when com-
paring with LightGBM and CatBoost on the GPU. An observation from Figure 6 is that
LightGBM and CatBoost are not stable as they crashed when the tree depth increases in
the ins data set. ThunderGBM consistently outperforms XGBoost. We noticed that Cat-
Boost is the fastest when the tree depth goes beyond 14. However, we have found that
CatBoost produces larger errors than the other libraries. Table 7 shows the differences of
RMSE among different libraries on covtype. The RMSE of CatBoost is much larger than
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Figure 4: Efficiency on the susy data set.
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Figure 5: Efficiency on the higgs data set.

the other libraries, since CatBoost trains the so-called “oblivious” decision trees. We have
observed that LightGBM also produces larger error than XGBoost and ThunderGBM.

depth 6 8 10 12 14 16

XGBoost (GPU) 0.73 0.57 0.41 0.31 0.24 0.21
LightGBM (GPU) 0.73 0.58 0.48 0.39 0.34 0.29
CatBoost (GPU) 0.85 0.78 0.70 0.62 0.56 0.49
ThunderGBM 0.73 0.59 0.44 0.32 0.26 0.23

Table 7: RMSE comparison among libraries.
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Figure 6: Efficiency on the ins data set.
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Figure 7: Efficiency on the covtype data set.
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Figure 8: Efficiency on the susy data set.

data set higgs log1p cifar10 news20 yahoo

XGBoost-GPU 0.18 oom 3.10 2.73 0.06
XGBoost-CPU 0.79 oom 13.0 7.18 0.47
LightGBM-GPU 0.16 6.53 lerr 0.41 0.74
LightGBM-CPU 0.31 4.73 lerr 0.39 0.28
CatBoost-GPU 0.18 oom lerr oom n.a.
CatBoost-CPU 0.84 oom lerr oom n.a.
ThunderGBM 0.11 0.64 2.04 0.15 0.06

Table 8: Average training time per tree.

C.2.2 Effect of the number of trees

We also study the effect of the number of trees on different libraries. The results are
shown in Figures 8 to 11. Similar to that of varying tree depth, the key finding here is
that ThunderGBM outperforms XGBoost and achieves similar efficiency as LightGBM and
CatBoost. Please recall that CatBoost and LightGBM generally produce much larger error
than XGBoost and ThunderGBM (cf. Table 7), which makes them run faster when the
number of trees is above 100. On the ins data set, LightGBM is producing very different
tree models and hence its results on the data set are not shown in Figure 10.

C.2.3 Average training time per tree

We also computed the average training time per tree. The results are shown in Table 8. As
we can see from the results, ThunderGBM is faster than the other libraries.
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Figure 9: Efficiency on the higgs data set.
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Figure 10: Efficiency on the ins data set.

15



Wen, Liu, Shi, Li, He and Chen

40 80
160

320
640

1280

the number of trees

0

5

10

15

20

25

e
la

p
se

d
 t

im
e
 (

se
c)

xgboost-gpu

lightgbm-gpu

catboost-gpu

thundergbm

Figure 11: Efficiency on the covtype data set.

data set XGBoost LightGBM CatBoost ThunderGBM

e2006 9GB 76MB 9GB 76MB
log1p 256GB 0.4GB 256GB 0.4GB
news20 101GB 4.9MB 101GB 4.9MB

Table 9: Memory consumption comparison.

C.3 Handling high dimensional data

Here, we further investigate the memory consumption of ThunderGBM in comparison with
XGBoost, LightGBM and CatBoost on e2006, news20 and log1p. As XGBoost and Cat-
Boost run out of memory for the data sets, we analyze the memory consumption of Thun-
derGBM and the other libraries. The memory for storing the training data sets are shown
in Table 9. XGBoost and CatBoost require much more memory than LightGBM and Thun-
derGBM, because XGBoost and CatBoost use dense data representation while LightGBM
and ThunderGBM use sparse data representation. Although LightGBM is as memory ef-
ficient as ThunderGBM, ThunderGBM is significantly faster than LightGBM on the high
dimensional data sets as shown in Figure 2 and 3.

C.4 Training error comparison

We study the quality of trees learnt by different libraries in this set of experiments. In this
set of experiments, we first investigate the training errors for the data sets listed in the main
text. Then, we study the training errors using more data sets shown in Table 2 beyond the
listed data sets.

We compare the training errors for the data sets shown in the main text. The results
are shown in Table 10, where “n.a.” stands for “not applicable”. We used RMSE to
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data set
xgboost lightgbm catboost thundergbm measure

name card. dim.

higgs (reg) 11M 28 0.42 0.42 0.43 0.42
rmse

log1p (reg) 16,087 4,272,228 n.a. 0.29 n.a. 0.24

cifar10 (clf) 50,000 3,072 0.83% 2.18% 45.22% 0.82% prediction
error ratenews20 (clf) 15,935 62,061 4.04% 5.68% n.a. 3.78%

yahoo (rnk) 473,134 700 0.882 0.903 n.a. 0.884 ndcg

Table 10: Training result comparison.

data set xgboost lightgbm catboost thundergbm

covtype 0.72 0.64 0.86 0.72
e2006 0.25 0.29 n.a. 0.25
higgs 0.42 0.42 0.43 0.42
ins 38.70 38.70 38.80 38.70
log1p n.a. 0.29 n.a. 0.24
news20 0.49 0.35 n.a. 0.49
real-sim 0.47 0.37 0.52 0.47
susy 0.37 0.37 0.37 0.37

Table 11: RMSE comparison with XGBoost, LightGBM and CatBoost.

measure the regression tasks (marked with “reg”), used prediction error rate to measure
the classification tasks (marked with “clf”), and used NDCG to measure the ranking task
(marked with “rnk”). ThunderGBM obtains better or comparable results to the existing
libraries as we can see from the table.

Next, we study the differences among different libraries using eight data sets in total. We
used RMSE to measure the training error of different models. Table 11 shows the results.
ThunderGBM produces similar RMSE as XGBoost, while CatBoost tends to have higher
training errors.

C.5 Training Random Forests

Only XGBoost and ThunderGBM support RFs. Therefore, we only compare ThunderGBM
with XGBoost in terms of RMSE and execution time. The results are shown in Table 12,
where “lerr” stands for “large error”. ThunderGBM produces similar or better RMSE than
XGBoost on CPUs. XGBoost on GPUs results in large RMSE in some data sets (e.g.,
RMSE is 0.9 on the susy data set). In terms of efficiency, ThunderGBM is 1.5 to 10 times
faster than XGBoost on CPUs. The improvement of ThunderGBM is more notable for
large data sets such as higgs and ins. ThunderGBM is generally faster and more stable
than XGBoost on GPUs as we can see from the results.

C.6 Prediction

We also evaluated the execution time of prediction of our library in comparison with the
existing libraries. Table 13 provides the results of prediction time of ThunderGBM, existing
libraries running on CPUs or running on the GPU. ThunderGBM is faster than XGBoost
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data set
elapsed time (sec) RMSE

xgboost (cpu) xgboost (gpu) thundergbm xgboost thundergbm

covtype 1.97 0.48 1.29 1.09 1.04
higgs 54.61 9.21 6.54 0.46 0.45
ins 52.99 10.47 5.3 38.99 38.98
susy 21.59 lerr 3.16 0.39 0.39

Table 12: Comparison on training Random Forests.

data set covtype e2006 higgs ins log1p news20 real-sim susy

XGBoost-GPU 3.00 oom 125 293 oom oom 1.58 38.39
XGBoost-CPU 3.12 oom 130 300 oom oom 1.55 39.95
LightGBM-GPU 0.10 0.36 2.76 2.78 2.69 0.33 0.02 1.19
LightGBM-CPU 0.10 0.30 2.86 3.47 2.50 0.32 0.02 1.26
CatBoost-GPU 3.52 oom 37.40 52.83 oom oom oom 11.87
CatBoost-CPU 3.56 oom 37.78 53.18 oom oom oom 11.79
ThunderGBM 0.18 0.12 4.18 5.60 0.57 0.07 0.07 1.68

Table 13: Efficiency: prediction time comparison among different libraries.

and CatBoost in prediction, and is faster than LightGBM on high dimensional data. For
the smaller data sets, ThunderGBM achieves similar efficiency as LightGBM. We have
noticed that XGBoost is much slower than other libraries in prediction. We have found
that XGBoost requires construction of “DMatrix” which is very time consuming. The
RMSE of the prediction results are identical to those shown in Table 11.

C.6.1 Model generality comparison

Here we compare the generalization quality of different libraries. We used five data sets
from the LibSVM website where both training and test sets are available. The models were
trained using the training data sets, and the prediction was performed on the test sets. The
results are shown in Table 14. The results show that ThunderGBM has similar generality
quality as the existing libraries.

data set
accuracy rmse

svmguide1 letter mnist YearPredictionMSD eunite2001

XGBoost-GPU 0.96 0.92 0.97 9.59 70.82
XGBoost-CPU 0.97 0.92 0.97 9.61 70.46
LightGBM-GPU 0.97 0.92 0.90 9.61 25.91
LightGBM-CPU 0.97 0.92 0.90 9.61 25.91
CatBoost-GPU 0.97 0.89 0.93 9.28 24.37
CatBoost-CPU 0.97 0.86 0.93 9.43 36.01
ThunderGBM 0.97 0.92 0.96 9.56 24.17

Table 14: Generalization: predictive accuracy comparison on test sets.
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Appendix D. Loss functions of regression, classification and ranking

ThunderGBM supports the following loss functions: mean square error, logistic loss (Collins
et al., 2002), cross-entropy loss (Moher and Gulliver, 1998), pairwise loss and NDCG
loss (Ravikumar et al., 2011). Please note that for providing more information about the loss
functions and to keep consistent with XGBoost, we use a special case of cross-entropy for
logistic regression, and call the corresponding loss “logistic loss” similar to XGBoost (Chen
and Guestrin, 2016).

D.1 Mean square error

The mean square error is used in regression in ThunderGBM. The option for the objective
function is “reg:linear” following the convention of XGBoost which is arguably the most
popular library for GBDTs and Random Forests. The goal of the training is the same as
linear regression. The mean square error is defined as follows.

l(yi, ŷi) =
1

2
(yi − ŷi)2

where yi and ŷi are the true target value and the predicted target value of the i-th training
instance, respectively. Then, the gradient and second order derivative are (yi − ŷi) and 1,
respectively.

D.2 Logistic loss

Logistic loss can be used in binary classification or regression for applications with tar-
get values between 0 and 1 (i.e., yi ∈ [0, 1]). The option for the objective function is
“reg:logistic” in ThunderGBM similar to XGBoost. The goal of the training is the same as
logistic regression, and aims to minimize the logistic loss which is defined as follows.

l(yi, ŷi) = −yi log(pi)− (1− yi) log(1− pi)

where pi = 1
1+e−ŷi

. The derivative of the loss function is derived as follows.

∂l(yi, ŷi)

∂ŷi
= −yi ·

1

pi
· p′i − (1− yi) ·

−1

1− pi
· p′i

By substituting the derivative of pi into the above equation, we obtain ∂l(yi,ŷi)
∂ŷi

= pi − yi.
The second order derivative of the loss function is ∂(pi−yi)

∂ŷi
= (1− pi)pi.

D.3 Cross-entropy loss

This loss is similar to logistic loss, but is used in the multi-class classification problems
in ThunderGBM. The option for choosing this objective function is “multi:softmax” or
“multi:softprob”. The “multi:softprob” option has the same objective function as “multi:softmax”,
but the predicted value is a probability instead of a class label. Next, we present the loss
function and derive its derivative. The cross-entropy loss is defined as follows.

l(yi, ŷi) = −
∑
k

yki log(pki ) (1)
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where k is the identifier of the k-th class and i is the identifier of the i-th training instance.
Similar to the logistic loss, to help derive the gradient and second order derivative of the
loss function, we first derive the derivative for the softmax function defined below.

pki =
eŷ

k
i∑K

m=1 e
ŷmi

where K is the total number of classes. For ease of presentation, we ignore the subscript i
which is the identifier of the i-th training instance. Then, we can write the above softmax

function as pk = eŷ
k∑K

m=1 e
ŷm

. The derivative of the function is shown below.

∂pk

∂ŷm
=
∂ eŷ

k∑K
m=1 e

ŷm

∂ŷm

Now, we derive the gradient for the cross-entropy loss.

∂l(y, ŷm)

∂ŷm
= −

∑
k

yk · ∂log(pk)

∂ŷm
= −

∑
k

yk · 1

pk
· ∂p

k

∂ŷm

As
∑

k y
k = 1, so we have ∂l(y,ŷm)

∂ŷm = pm − ym. The second order derivative is ∂2l(y,ŷm)
∂2ŷm

=

pm(1−pm). In our implementation, a common normalization technique is used in computing
pi.

pki =
eŷ

k
i∑K

m=1 e
ŷmi

=
Neŷ

k
i

N
∑K

m=1 e
ŷmi

=
eŷ

k
i +log(N)∑K

m=1 e
ŷmi +log(N)

The term log(N) is computed by log(N) = −max(ŷki ).

D.4 Pairwise loss and NDCG loss

Here, we present the loss functions used for ranking in ThunderGBM. In order to describe
the loss functions, we define the true probability of a pair of training instances with indices
i and j as follows.

Pij =
1

2
(1− Sij)

where Sij = −1 if the i-th training instance is less relevant than the j-th training instance,
Sij = +1 if the i-th training instance is more relevant than the j-th training instance, and
Sij = 0 if the two training instances are the same.

We define the predicted probability of the pair of instances as follows.

P̂ij =
1

1 + e−σ(si−sj)

where σ is a hyper-parameter, and si and sj are the predicted scores of the ranking functions
for the i-th and j-th training instance, respectively.

Following the existing literature (Burges, 2010), ThunderGBM also uses the cross-
entropy loss defined below for ranking problems.

Cij = −Pij log(P̂ij)− (1−Pij) log(1− P̂ij) =
1

2
(1−Sij)σ(si− sj) + log(1 + e−σ(si−sj)) (2)
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The derivatives over si and sj are shown below.

∂C

∂si
= −∂C

∂sj
= σ(

1

2
(1− Sij)−

1

1 + eσ(si−sj)
)

The second order derivative of the loss function (cf. Equation 2) is as follows.

λ′ij =
∂λij
∂si

=
−σ · eσ(si−sj) · σ
(1 + eσ(si−sj))2

· |∆Zij | = −σ2 · |∆Zij | ·
1

1 + eσ(si−sj)
· (1− 1

1 + eσ(si−sj)
)

Then the gradient of the i-th instance is computed as follows.

gi =
∑
{i,j}∈I

λij −
∑
{j,i}∈I

λji

where I is the set of all pairs of the training instances. Similarly, we can compute the second
order derivative for the i-th instance hi = 2 ·

∑
{i,j}∈I λ

′
ij . In ThunderGBM, |∆Zij | equals

to 1 when the objective function is pairwise loss; |∆Zij | equals to the change of NDCG
when the objective function is NDCG loss.
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