
Journal of Machine Learning Research 19 (2018) 1-16 Submitted 12/17; Revised 6/18; Published 7/18

ThunderSVM: A Fast SVM Library on GPUs and CPUs

Zeyi Wen† wenzy@comp.nus.edu.sg

Jiashuai Shi†‡ shijiashuai@gmail.com

Qinbin Li† liqinbin1998@gmail.com

Bingsheng He† hebs@comp.nus.edu.sg

Jian Chen‡ ellachen@scut.edu.cn
†School of Computing, National University of Singapore, 117418, Singapore
‡School of Software Engineering, South China University of Technology, Guangzhou, 510006, China

Editor: Alexandre Gramfort

Abstract

Support Vector Machines (SVMs) are classic supervised learning models for classification,
regression and distribution estimation. A survey conducted by Kaggle in 2017 shows that
26% of the data mining and machine learning practitioners are users of SVMs. However,
SVM training and prediction are very expensive computationally for large and complex
problems. This paper presents an efficient and open source SVM software toolkit called
ThunderSVM which exploits the high-performance of Graphics Processing Units (GPUs)
and multi-core CPUs. ThunderSVM supports all the functionalities—including classifica-
tion (SVC), regression (SVR) and one-class SVMs—of LibSVM and uses identical command
line options, such that existing LibSVM users can easily apply our toolkit. ThunderSVM
can be used through multiple language interfaces including C/C++, Python, R and MAT-
LAB. Our experimental results show that ThunderSVM is generally an order of magnitude
faster than LibSVM while producing identical SVMs. In addition to the high efficiency, we
design our convex optimization solver in a general way such that SVC, SVR, and one-class
SVMs share the same solver for the ease of maintenance. Documentation, examples, and
more about ThunderSVM are available at https://github.com/zeyiwen/thundersvm.

Keywords: SVMs, GPUs, multi-core CPUs, efficiency, multiple interfaces

1. Introduction

Support Vector Machines (SVMs) have been widely used in many applications including
document classification (D’Orazio et al., 2014), image classification (Pasolli et al., 2014),
blood pressure estimation (Kachuee et al., 2015), disease detection (Bodnar and Salathé,
2013), and outlier detection (Roth, 2006). A survey conducted by Kaggle in 2017 shows that
26% of the data science practitioners use SVMs to solve their problems (Thomas, 2017).
The open-source project LibSVM which supports classification (SVC), regression (SVR)
and one-class SVMs has been widely used in many applications. LibSVM was developed in
2000 (Chang and Lin, 2011), and has been maintained since then. Despite the advantages
of SVMs, SVM training and prediction are very expensive for large and complex problems.

Graphics Processing Units (GPUs) have been used to accelerate the solutions of many
real-world applications (Dittamo and Cisternino, 2008), due to the abundant computing

c©2018 Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He and Jian Chen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v19/17-740.html.

https://github.com/zeyiwen/thundersvm
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/17-740.html

Wen, Shi, Li, He and Chen

parallel SMO solver

C-SVMs

support vectors

C-SVC training
one-class

svm training

ᷧ-SVR
training

ᶟ-SVC training

ᶟ-SVR
training

SVM training
SVC classifier

parallel decision
value computation

one-class SVMs SVR predictor

SVM prediction

cross-validation

multi-class
SVC training

yes no

Figure 1: Overview of training and prediction

cores and high memory bandwidth of GPUs. In this paper, we introduce a toolkit named
ThunderSVM which exploits GPUs and multi-core CPUs. The mission of our toolkit is to
help users easily and efficiently apply SVMs to solve problems. It is worthy to point out
that one way to train SVMs faster is to use kernel approximations. ThunderSVM aims to
find an exact solution. ThunderSVM supports all the functionalities of LibSVM including
SVC, SVR and one-class SVMs. We use the same command line input options as LibSVM,
such that existing LibSVM users are able to easily switch to ThunderSVM. Moreover,
ThunderSVM supports multiple interfaces such as C/C++, Python, R and MATLAB.
ThunderSVM can run on Linux, Windows or Macintosh operating systems with or without
GPUs. Empirical results show ThunderSVM is generally 10 times faster than LibSVM in
all the functionalities. The full version of ThunderSVM, which is released under Apache
License 2.0, can be found on GitHub at https://github.com/zeyiwen/thundersvm. The
GitHub repository of ThunderSVM has attracted 700 stars and 85 forks as of July 24, 2018.

2. Overview and Design of ThunderSVM

Like LibSVM, ThunderSVM supports one-class SVMs, C-SVMs and ν-SVMs where C rep-
resents the regularization constant and ν represents the parameter controlling the training
error. Both C-SVMs and ν-SVMs are used for classification and regression.

Figure 1 shows the overview of ThunderSVM which has many functionalities: one-class
SVMs for distribution estimation, C-SVC and ν-SVC for SVM classification, and ε-SVR and
ν-SVR for SVM regression. The training algorithms for those SVMs are built on top of a
generic parallel SMO solver which is for solving quadratic optimization problems. Notably,
the SVM training for regression (such as ε-SVR and ν-SVR) and the multi-class SVM
training can be converted into the training of an SVM classifier. The prediction module
is relatively simple, because the prediction is the same for one-class SVMs, C-SVMs and
ν-SVMs. The prediction is essentially computing predicted values based on support vectors.
ThunderSVM also contains the cross-validation functionality.

2.1 Design of Parallel SVM Training Algorithms

We have developed a series of optimizations for the training. First, ThunderSVM computes
a number of rows of the kernel matrix in a batch, reuses the rows that are stored in the GPU

2

https://github.com/zeyiwen/thundersvm

ThunderSVM: A Fast SVM Library on GPUs and CPUs

memory buffer, and solves multiple subproblems in that batch. Thus, ThunderSVM avoids
performing a large number of small read/write operations to the high latency memory and
reduces repeated kernel value computation. Moreover, we apply GPU shared memory to
accelerate parallel reduction, and use the massive parallelism to update elements of arrays.

For solving each subproblem in the training, we use the SMO algorithm which consists of
three key steps. Step (i): Find two extreme training instances which can potentially improve
the currently trained SVM the most. Step (ii): Improve the two Lagrange multipliers of the
two instances. Step (iii): Update the optimality indicators of all the training instances. We
parallelize Step (i) and (iii). Step (ii) is computationally inexpensive, and we simply execute
it sequentially. In Step (i), our key idea is to apply the parallel reduction (Merrill, 2015)
twice for finding the two extreme training instances. In the parallel reduction, we first load
the whole array from the GPU global memory to shared memory in a coalescent way, and
then reduce the array size by two at each iteration until only one element left. In Step (iii),
we dedicate one thread to update one optimality indicator to use the massive parallelism
mechanism of the GPU. The training is terminated when the optimality condition is met or
the SVMs cannot be further improved. More details about the training and the termination
condition can be found in our Appedix.

For solving the batch of subproblems, we propose techniques to exploit the properties
of the batch of subproblems. First, to reduce access to the high latency memory, the
kernel values needed for the batch are organized together and computed through matrix
multiplication. As a result, we reduce a large number of small read/write operations to the
high latency memory during kernel value computation. We use matrix operations from the
high-performance library cuSparse (Nvidia, 2008) provided by NVIDIA. Second, to reduce
repeated kernel value computation, we store the kernel values in a GPU buffer for efficient
reuse during the optimization for the batch. Regarding the selection of the batch, we make
use of the set of instances with the deepest gradients.

Training SVMs for regression (SVR) or for multi-class classification can be reduced to
training SVMs for binary classification (SVC), as discussed in the previous study (Shevade
et al., 2000). Two SVC training algorithms (C-SVC and ν-SVC) and training algorithm
for one-class SVMs are essentially solving optimization problems using SMO. More details
about the relationship of SVR and SVC, and SMO can be found in the Appendix. The key
task in the SVM training is to parallelize SMO, and the insight has been discussed above.
The parallelism principles are applicable to CPUs.

2.2 Design of the Parallel Prediction Algorithm

Although ThunderSVM supports several algorithms (such as one-class SVMs, classification
and regression), their underlying prediction algorithm is identical: a function based on the
support vectors and their Lagrange multipliers. The function is v =

∑n
i=1 yiαiK(xi,xj) + b

where xj is the instance of interest for prediction; yi and αi are the label and Lagrange
multiplier of the support vector xi, respectively; b is the bias of the SVM hyperplane;
K(·, ·) is the kernel function. In ThunderSVM, we perform the prediction by evaluating
the equation in parallel. First, we conduct a vector to matrix multiplication in parallel to
obtain all the needed kernel values, where the vector is xj and the matrix consists of all the
support vectors. Then, the sum of the equation can be performed using a parallel reduction.

3

Wen, Shi, Li, He and Chen

data set elapsed time (sec)
speedup

name cardinality dimension
ThunderSVM

LibSVM
gpu cpu gpu cpu

mnist8m (svc) 8.1x106 784 7.1x103 3.2x104 8.1x105 114 39.9

rcv1 test (svc) 677399 47236 621 20633 8.3x105 1337 40

epsilon (svc) 400000 2000 1251 26042 1 week+ 483+ 23+

e2006-tfidf (svr) 16087 150360 13.25 343.5 9161 691 25.3

webdata (ocsvm) 49749 300 4.66 16.5 1493 320 90.5

Table 1: Comparison between ThunderSVM with LibSVM

3. Experimental Studies

We compare the efficiency on training SVMs for classification, regression and one-class
SVMs (denoted by “OCSVM”). Five representative data sets are listed in Table 1. We
conducted our experiments on a workstation running Linux with two Xeon E5-2640 v4 10
core CPUs, 256GB main memory and a Tesla P100 GPU of 12GB memory. ThunderSVM
are implemented in CUDA-C and C++ with OpenMP. We used the Gaussian kernel. Five
pairs of hyper-parameters (C, γ) for the data sets are (10, 0.125), (100, 0.125), (0.01, 1),
(256, 0.125), and (64,7.8125) and are the same as the existing studies (Wen et al., 2014,
2018). More experimental evaluation can be found in the Appedix. ThunderSVM when
using GPUs is over 100 times faster than LibSVM. When running on CPUs, it is over 10
times faster than LibSVM. For prediction, ThunderSVM is also 10 to 100 times faster than
LibSVM (Wen et al., 2017b). We varied the hyper-parameters C from 0.01 to 100 and γ
from 0.03 to 10, and ThunderSVM is 10 to 100 times faster than LibSVM.

4. Conclusion

In this paper, we present our software tool called “ThunderSVM” which supports all the
functionalities of LibSVM. For ease of usage, ThunderSVM uses identical input command
line options as LibSVM, and supports Python, R and Matlab. Empirical results show that
ThunderSVM is generally 100 times faster than LibSVM in all the functionalities when
GPUs are used. When running purely on CPUs, ThunderSVM is often 10 times faster than
LibSVM. We hope this significant efficiency improvement would help practitioners in the
community quickly solve their problems and enable SVMs to solve more complex problems.

Acknowledgments

This work is supported by a MoE AcRF Tier 1 grant (T1 251RES1610) and Tier 2 grant
(MOE2017-T2-1-122) in Singapore. Prof. Chen is supported by the Guangdong special
branch plans young talent with scientific and technological innovation (No. 2016TQ03X445),
Guangzhou science and technology planning project (No. 2019-03-01-06-3002-0003) and
Guangzhou Tianhe District science and technology planning project (No. 201702YH112).
Bingsheng He and Jian Chen are corresponding authors. We acknowledge NVIDIA for the
hardware donations and thank the anonymous reviewers for their insightful comments.

4

ThunderSVM: A Fast SVM Library on GPUs and CPUs

Appendix A. Formal Definitions of Support Vector Machine Algorithms

In this section, we formally define various SVM based algorithms including classification,
regression and one-class SVMs. Following the name convention in the research community
(and also in LibSVM), we use C-SVC for SVM classification with C as the regularization
constant; we use ν-SVC for SVM classification with ν to control training error. Similarly,
we use C-SVR and ν-SVR for the two types of SVM regression.

A.1 Support Vector Machine Classification

In this subsection, we present a few types of SVM classification algorithms. For consistency,
we adopt the same notation as LibSVM (Chang and Lin, 2011) when appropriate. We also
use different notations from LibSVM in some places where we think the different notations
tend to be more natural.

A.1.1 C-Support Vector Machine Classification (C-SVC)

Formally, an instance xi is attached with an integer yi ∈ {+1,−1} as its label. A positive
(negative) instance is an instance with the label of +1 (−1). Given a set X of n training
instances, the goal of the SVM training is to find a hyperplane that separates the positive
and the negative training instances in the feature space induced by the kernel function
with the maximum margin and meanwhile, with the minimum misclassification error on the
training instances. The SVM training is equivalent to solving the following optimization
problem:

argmin
w, ξ, b

1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi
ξi ≥ 0, ∀i ∈ {1, ..., n}

(1)

where w is the normal vector of the hyperplane, C is the regularization constant, ξ is the
slack variables to tolerant some training instances falling in the wrong side of the hyperplane,
and b is the bias of the hyperplane. The form of the optimization Problem (1) is call the
primal form of the SVM training.

To handle nonlinearly separable data, the above optimization problem is solved in the
dual form shown below where mapping functions can be implicitly applied with lower com-
putation cost.

max .
α

n∑
i=1

αi −
1

2
αTQα

subject to 0 ≤ αi ≤ C,∀i ∈ {1, ..., n},
n∑

i=1

yiαi = 0

(2)

where αi is the Lagrange multiplier and denotes the weight of xi; Q denotes an n × n
matrix [Qi,j] and Qi,j = yiyjK(xi,xj), and K(xi,xj) is a kernel value computed from a
kernel function; C is the same regularization constant as in Problem (1). The kernel values
of all the training instances form a kernel matrix (Weinberger et al., 2004).

5

Wen, Shi, Li, He and Chen

A.1.2 ν-Support Vector Machine Classification (ν-SVC)

The ν-SVMs for classification is proposed by Schölkopf et al. (2000). The hyper-parameter
ν is introduced to control training errors and the number of support vectors. Formally, the
optimization problem of training ν-SVC is shown below.

max .
α

−1

2
αTQα

subject to 0 ≤ αi ≤ 1,∀i ∈ {1, ..., n},

eTα = νn,
n∑

i=1

yiαi = 0

(3)

where e is a vector of all one, and the other notations have the same meaning of those in
C-SVC shown in Problem (2).

A.1.3 Multi-class Support Vector Machine Classification

Multi-class SVM classification is implemented via pairwise coupling (also used in LibSVM)
which has shown superiority over other methods (Hsu and Lin, 2002). During training
multi-class SVMs, many binary SVMs are trained using SMO. Given the training data set,
the data set is first decomposed into multiple subsets of two classes. Then, we obtain a

binary problem (s, t) that consists of all the instances of class s and t. There are
k(k − 1)

2
binary SVM classifiers in total, where k is the number of classes in the data set. After
training the binary SVM classifiers, the predicted values of SVMs,t on the binary problem
(s, t) are used for the final class label prediction (e.g., through majority voting).

A.1.4 Support Vector Machines with Probabilistic Output

To obtain probabilistic output, the predicted values of the
k(k − 1)

2
binary SVM classifiers

(described in Section A.1.3) on the training instances are used to train the sigmoid function.

P (yi = 1|xi) =
1

1 + exp(Avi +B)
(4)

where vi is the decision value predicted by an SVM classifier, and the parameters A and B
can be obtained by maximizing the following log likelihood.

max .
A,B

F =
n∑

i=1

tilog(P (yi = 1|xi))− (1− ti)log(1− P (yi = 1|xi))

where ti =

{
N++1
N++2 if yi = +1

1
N−+2 if yi = −1,

(5)

N+ denotes the number of positive training instances, and N− denotes the number of nega-
tive training instances. Newton’s method with backtracking is a commonly used approach to
solve the above optimization problem (Lin et al., 2007) and is implemented in ThunderSVM.
The aforementioned SVMs with probabilistic output is for multi-class SVMs. For binary
SVMs with probabilistic output, the sigmoid function can be directly used for prediction.

6

ThunderSVM: A Fast SVM Library on GPUs and CPUs

A.2 Support Vector Machine Regression

In what follows, we discuss two types of SVM regression algorithms: ε-SVR and ν-SVR.

A.2.1 The ε-Support Vector Machine Regression (ε-SVR)

Similar to SVC, given a set X of training instances, X = {x|xi ∈ Rd, i = 1, ..., n}, where
n denotes the data set cardinality and d denotes the data dimensionality. In SVR, each
training instance is associated with a target value z ∈ R instead of a label. The SVM
regression is a function estimation process that finds an optimal function g(x) which mini-
mizes the difference of the target value of each training instance xi and the function value
g(xi). Meanwhile, the function g(x) is as smooth as possible for achieving high accuracy in
predicting unseen data. The training process of the SVM regression is equivalent to solving
the following quadratic programming problem.

max
α

2n∑
i=1

siαi −
1

2
αTQα

subject to 0 ≤ αi ≤ C,∀i ∈ {1, ..., 2n},
2n∑
i=1

yiαi = 0

(6)

where α = 〈α1, α2, ..., α2n〉 is Lagrange multipliers for the training instances; the value αi

denotes the contribution of a training instance xt to the estimated function, where t = i if
i ≤ n, otherwise t = i− n; yi is computed by{

yi = +1, si = ε− zi if i ≤ n
yi = −1, si = ε+ zi if n < i ≤ 2n

where ε is the error tolerant parameter.

A.2.2 The ν-Support Vector Machine Regression (ν-SVR)

Similar to ν-SVC, the hyper-parameter ν is introduced to control the training errors and
the number of support vectors. The optimization problem of ν-SVR is defined as follows.

max
α

−
2n∑
i=1

ziαi −
1

2
αTQα

subject to 0 ≤ αi ≤ C/n,∀i ∈ {1, ..., 2n},
n∑

i=1

αi −
2n∑

i=n+1

αi = 0

2n∑
i=1

αi = Cν

(7)

where the notations have the same meaning as those in ε-SVR.

7

Wen, Shi, Li, He and Chen

A.3 One-class Support Vector Machines (OCSVMs)

OCSVMs were first introduce by Schölkopf et al. (2001), and can be used for distribution
estimation and outlier detection (Hodge and Austin, 2004). Formally, the optimization
problem is defined below.

max
α

− 1

2
αTQα

subject to 0 ≤ αi ≤ 1, ∀i ∈ {1, ..., n},
n∑

i=1

αi = νn

(8)

The notations used in Problem (8) are the same as the previous optimization problems.

A.4 The Sequential Minimal Optimization Algorithm

All of the above optimization are convex and can be solved by various types of solvers. The
goal of the training is to find a vector α of Lagrange multipliers that maximizes the value of
the objective function. Here, we describe a popular training algorithm, the Sequential Mini-
mal Optimization (SMO) algorithm (Platt, 1998). SMO iteratively improves the vector until
the optimal condition of the SVM is met. The optimal condition is reflected by an optimality
indicator vector f = 〈f1, f2, ..., fn〉 where fi is the optimality indicator for the ith instance
xi and fi can be obtained using the following equation: fi =

∑n
j=1 αjyjK(xi,xj)− yi.

Notably, the number of training instances in SMO for SVM regression is 2n due to the con-
version from SVR to SVC. What we discuss here can be simply applied in SVR by changing
n to 2n. During the SVM training, the SMO algorithm has the following three steps in each
iteration.

Step 1: Search two extreme training instances, denoted by xu and xl, which have the
maximum and minimum optimality indicators, respectively. It has been proven (Keerthi
et al., 2001; Fan et al., 2005) that the indices of xu and xl, denoted by u and l respectively,
can be computed by the following equations.

u = argmin
i
{fi|xi ∈ Xupper} (9)

l = argmax
i
{(fu − fi)2

ηi
|fu < fi,xi ∈ Xlower} (10)

where
Xupper = X1 ∪ X2 ∪ X3,
Xlower = X1 ∪ X4 ∪ X5;

and
X1 = {xi|xi ∈ X , 0 < αi < C},
X2 = {xi|xi ∈ X , yi = +1, αi = 0},
X3 = {xi|xi ∈ X , yi = −1, αi = C},
X4 = {xi|xi ∈ X , yi = +1, αi = C},
X5 = {xi|xi ∈ X , yi = −1, αi = 0};

and ηi = K(xu,xu) + K(xi,xi) − 2K(xu,xi); fu and fl denote the optimality indicators

8

ThunderSVM: A Fast SVM Library on GPUs and CPUs

of xu and xl, respectively. This approach for selecting the two training instances is also
known as “second order heuristics”.

Step 2: Improve the Lagrange multipliers of xu and xl, denoted by αu and αl, by
updating them using Equations (11) and (12).

α′l = αl +
yl(fu − fl)

η
(11)

α′u = αu + ylyu(αl − α′l) (12)

where η = K(xu,xu) +K(xl,xl)− 2K(xu,xl). To guarantee the update is valid, when α′u
or α′l exceeds the domain of [0, C], α′u and α′l are adjusted into the domain.

Step 3: Update the optimality indicators of all the instances. The optimality indicator
fi of the instance xi is updated to f ′i using the following formula:

f ′i = fi + (α′u − αu)yuK(xu,xi) + (α′l − αl)ylK(xl,xi) (13)

Termination conditions: SMO repeats the above steps until the optimal condition is
met, i.e., fu ≥ fmax, where

fmax = max{fi|xi ∈ Xlower} (14)

We also terminate the training when the training cannot make any progress. After the
optimal condition is met, we obtain the α values which corresponding to the optimal hy-
perplane and the SVM with these α values is considered trained. Algorithm 1 summarizes
the whole training process. In Algorithm 1, Ku and Kl correspond to the uth and the lth

rows of the kernel matrix, respectively.

Algorithm 1: The SMO algorithm

Input: a training set X of n instances with labels y
Output: a weight vector α

1 for i← 1 to n do /* initialize α and f */

2 αi ← 0, fi ← −yi
3 repeat
4 search for fu and u using Equation (9);

5 compute kernel values Ku /* uth row */

6 search for fl and l using Equation (10);

7 compute kernel values Kl /* lth row */

8 update αu and αl using Equations (11) and (12);
9 update f using Equation (13);

10 search for fmax using Equation (14);

11 until fu ≥ fmax

A.4.1 Using a larger working set in SMO

Instead of using a working set of size two, ThunderSVM uses a bigger working set and
solve multiple subproblems of SMO in a batch. We precompute all the kernel values for

9

Wen, Shi, Li, He and Chen

the working set and store them in a GPU buffer which is a preallocated space on the GPU
global memory. In each time we update the working set, q (where q ≥ 2) instances in the
working set will be replaced with q new violating instances, such that (i) q rows of the kernel
matrix can be computed at once to make efficient use of the GPU and reduce GPU memory
accesses, and (ii) the kernel values in the GPU buffer can be reused (i.e., GPU buffer size
is larger than q).

In the following, we first discuss our approach to select the q violating instances to
refresh the working set. Then, we provide more details of computing kernel values for the
q instances and store them to a GPU buffer.

Selecting q violating instances: Our intuition for updating the working set is to
choose q training instances that violate the optimality condition the most, such that the
current SVM can be potentially improved the most (Joachims, 1998). Hence, we sort the

optimality indicators ascendingly. Then, we choose the top
q

2
training instances whose

yiαi can be increased; and we choose the bottom q
2 training instances whose yiαi can be

decreased. We consider yiαi, because of the constraints
∑
yiαi = 0 and 0 ≤ αi ≤ C.

Maintaining a GPU buffer for kernel values: Once the q violating instances are
selected, we compute all the kernel values related to the q instances (i.e., q rows of the
kernel matrix). Computing those kernel values is essentially matrix multiplication between
the q instances and the rest of the training instances, because computing a kernel value can
be viewed as a dot product of two vectors. Thus, the kernel value computation here can be
efficiently carried out by the cuSPARSE library (Nvidia, 2008).

The kernel values computed here are stored in a GPU buffer on the GPU global memory,
as the kernel values will be repeatedly used by SMO while improving the current SVM with
the updated working set. Note that the SMO in our algorithm only considers the instances
in our working set, which is different from the original SMO that needs to consider all the
training instances in every iteration. We allocate a GPU memory buffer which can store
m × q rows of the kernel matrix (i.e., allow m batches to be stored in the buffer). The
first-in first-out batch replacement strategy is used when the buffer is full. Although other
strategies may be more effective, we find first-in first-out simple and sufficiently effective in
our algorithm.

Appendix B. Experimental Studies

In this section, we empirically study the efficiency of ThunderSVM in comparison with
LibSVM. We compare the efficiency on training SVMs for classification, regression and one-
class SVMs (denoted by “OCSVM”). Regarding SVMs for classification and regression, we
study both C-SVC, ν-SVC, ε-SVR and ν-SVR. The five representative data sets we used are
listed in Table 2. We conducted our experiments on a workstation running Linux with two
Xeon E5-2640 v4 10 core CPUs, 256GB main memory and an NVIDIA Tesla P100 GPU of
12GB memory. ThunderSVM are implemented in CUDA-C and C++ with OpenMP. We
used Gaussian kernel and hyper-parameters C and γ for the kernel on each data set are the
same as the existing studies (Wen et al., 2014, 2018). LibSVM uses 12GB (which is the
same as the GPU memory) of main memory for kernel value caching.

10

ThunderSVM: A Fast SVM Library on GPUs and CPUs

data set elapsed time (sec)
speedup

name cardinality dimension
ThunderSVM

LibSVM
GPU CPU GPU CPU

MNIST8m (svc) 8.1x106 784 7.1x103 3.2x104 8.1x105 114 39.9

RCV1 test (svc) 677399 47236 621 20633 8.3x105 1337 40

Epsilon (svc) 400000 2000 1251 26042 1 week+ 483+ 23+

E2006-tfidf (svr) 16087 150360 13.25 343.5 9161 691 26.7

Webdata (ocsvm) 49749 300 4.66 16.5 1493 320 90.5

Table 2: Comparison between ThunderSVM with LibSVM

Adult
RCV1

Real-si
m

Webdata

CIFA
R-10

Connect-4MNIST

MNIST8M
News20

100

101

102

103

sp
ee

du
p

over LibSVM (w/o OpenMP)
over LibSVM (w/ OpenMP)

Figure 2: Training time speedup of ThunderSVM over LibSVM with/without OpenMP

B.1 Efficiency and Final SVM Comparison

We study the performance of ThunderSVM and LibSVM using more data sets and compare
the final results produced by the two libraries. LibSVM with OpenMP uses 40 threads,
which achieves the best performance. Some results shown here are from another work of
ours (Wen et al., 2017a).

Efficiency comparision: Figure 2 shows the speedup on training of ThunderSVM
over LibSVM. As we can see from the results, ThunderSVM consistently outperforms Lib-
SVM without OpenMP by one to two orders of magnitude, LibSVM with OpenMP by 10x
times. Figure 3 shows the results of speedup on prediction of ThunderSVM over LibSVM.
As we can see from the figure, ThunderSVM consistently outperforms LibSVM without
OpenMP by two orders of magnitude. When OpenMP is used for LibSVM, ThunderSVM
still outperforms it by more than 10 times.

Final SVM comparison: ThunderSVM and LibSVM produce identical SVMs, be-
cause ThunderSVM can be viewed as a highly parallelized version of LibSVM. We have
measured the training error to confirm if ThunderSVM produces almost identical results as
LibSVM, and the results are shown in Table 3. Notably, the difference of the trained SVMs

11

Wen, Shi, Li, He and Chen

Adult
RCV1

Real-si
m

Webdata

CIFA
R-10

Connect-4MNIST

MNIST8M
News20

100

101

102

103

104

sp
ee

du
p

over LibSVM (w/o OpenMP)
over LibSVM (w/ OpenMP)

Figure 3: Prediction speedup of ThunderSVM over LibSVM with/without OpenMP

Table 3: Final classifier comparison between LibSVM and ThunderSVM

Data set
bias training error

LibSVM ThunderSVM LibSVM ThunderSVM

Adult -0.510 -0.510 4.4% 4.4%
RCV1 -0.512 -0.512 0.11% 0.11%

Real-sim -1.061 -1.061 0.27% 0.27%
Webdata -0.936 -0.947 1.92% 1.92%

CIFAR-10 0.0245 0.0245 0.35% 0.35%
Connect-4 0.233 0.233 4.39% 4.39%

MNIST 0.360 0.360 0% 0%
MNIST8M -7.339 -7.339 0% 0%

News20 -0.0016 -0.0016 2.23% 2.23%

12

ThunderSVM: A Fast SVM Library on GPUs and CPUs

Table 4: Objective value comparison between LibSVM and ThunderSVM

Data set
Objective value Hyper-parameters

LibSVM ThunderSVM (C, γ, e)

MNIST -1929.243772 -1929.241943 (10, 0.125, 0.00001)
Webdata -15885.845511 -15885.854492 (16, 0.03125, 0.00001)

News20.binary -46577.730219 -46577.665349 (32, 0.03125, 0.00001)

by ThunderSVM and LibSVM is due to the floating point precision of a parallel program
and sequential program; the difference is almost negligible in terms of the prediction accu-
racy of the trained model. As we can see from the results, the training errors are identical,
which implies that ThunderSVM and LibSVM produce the same (at least highly similar)
SVMs. To further confirm the SVMs trained by ThunderSVM and LibSVM are the same,
we also compare the bias of the trained SVMs, and the results are shown in Column “bias”
of Table 3. Note that we used the bias of the last binary SVM for the multi-class problems.
As we can see from the results, the biases of SVMs trained by ThunderSVM are almost
the same to those of LibSVM. Note that existing studies in machine learning commonly
compare the difference of ||~w|| of two algorithms. However, it is impossible for kernelized
SVMs, because ||~w|| is in the data space induced by the kernel function.

Finally, we also show the objective value comparison between LibSVM and Thunder-
SVM. As we can see from Table 4, the difference of the objective values is negligible com-
pared with the object values.

Appendix C. Related Work

We categorize the most relevant related work into two categories: the studies dedicated to
training SVMs using CPUs and the studies dedicated to training SVMs using GPUs.

Training SVMs using CPUs: Platt (1998) proposed the SMO algorithm which is
simple and efficient, and hence SMO is used in LibSVM, WEKA (Hall et al., 2009) and
Catanzaro’s algorithm (2008). Other studies in training linear SVMs, such as Joachims’
algorithm using cutting plane (2009) and “Pegasos” (Shalev-Shwartz et al., 2011), cannot
apply nonlinear kernels. Training SVMs in distributed environment, such as MapReduce
SVMs (Catak and Balaban, 2012) and MPI SVMs (Cao et al., 2006), is inefficient due to the
iterative nature of the SVM training and costly network communication. Another related
study is binary SVMs with probabilistic output proposed by Platt (1999).

Training SVMs using GPUs: Catanzaro et al. (2008) first introduced GPUs for
training binary SVMs. Wen et al. (2014) proposed GPU based binary SVM cross-validation
by precomputing the whole kernel matrix which is stored in high-speed storage (for example
SSDs). A recent study extended the algorithm for SVM regression problems (Wen et al.,
2018). Athanasopoulos et al. (2011) used GPUs to purely accelerate the kernel matrix
computation in the SVM training. These studies are for training binary SVMs and cannot
handle large data sets, because the size of kernel matrix is quadratic in the number of
instances. For example, processing the MNIST8M data set with those algorithms needs
256TB of storage which is unacceptable for GPUs. Herrero-Lopez et al. (2010) used one-
against-all method to solve multi-class problems on GPUs. However, they represented

13

Wen, Shi, Li, He and Chen

the training instances in dense format for the ease of implementation and better memory
alignment. The dense representation makes the above algorithms difficult to handle large
but sparse data sets. Another study (Vaněk et al., 2017) compares different GPU SVM
implements and provides some benchmark results, and proposes the OHD-SVM algorithm.
However, the work only focuses on binary SVMs and no multi-class SVMs or probabilistic
SVMs are presented. Cotter et al. (2011) represented training instances in sparse format,
that is CSR format (Buluç et al., 2009), and proposed a clustering technique to make use
of the data sparseness. We also use CSR format to represent the training data for handling
large but sparse data sets. We call Cotter et al.’s algorithm GTSVM. GTSVM supports
both binary and multi-class SVMs, but does not support multi-class probability estimation
due to their mathematical modelling.

References

Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, and Ioannis Kompatsiaris.
GPU acceleration for support vector machines. In Procs. 12th Inter. Workshop on Image
Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, Netherlands, 2011.

Todd Bodnar and Marcel Salathé. Validating models for disease detection using Twitter.
In International Conference on World Wide Web (WWW), pages 699–702. ACM, 2013.

Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leis-
erson. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using
compressed sparse blocks. In Annual Symposium on Parallelism in Algorithms and Ar-
chitectures, pages 233–244. ACM, 2009.

Li Juan Cao, S Sathiya Keerthi, Chong Jin Ong, Jian Qiu Zhang, Uvaraj Periyathamby,
Xiu Ju Fu, and HP Lee. Parallel sequential minimal optimization for the training of
support vector machines. IEEE Trans. Neural Networks, 17(4):1039–1049, 2006.

F Ozgur Catak and M Erdal Balaban. CloudSVM: training an SVM classifier in cloud
computing systems. In Joint International Conference on Pervasive Computing and the
Networked World, pages 57–68. Springer, 2012.

Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast support vector machine
training and classification on graphics processors. In International Conference on Machine
Learning (ICML), pages 104–111. ACM, 2008.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Andrew Cotter, Nathan Srebro, and Joseph Keshet. A gpu-tailored approach for training
kernelized svms. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 805–813. ACM, 2011.

Cristian Dittamo and Antonio Cisternino. GPU White paper, 2008.

14

ThunderSVM: A Fast SVM Library on GPUs and CPUs

Vito D’Orazio, Steven T Landis, Glenn Palmer, and Philip Schrodt. Separating the wheat
from the chaff: applications of automated document classification using Support Vector
Machines. Political Analysis, 22(2):224–242, 2014.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order
information for training Support Vector Machines. The Journal of Machine Learning
Research, 6:1889–1918, 2005.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The WEKA data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

Sergio Herrero-Lopez, John R Williams, and Abel Sanchez. Parallel multiclass classification
using svms on gpus. In Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pages 2–11. ACM, 2010.

Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass Support Vector
Machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

Thorsten Joachims. Making large-scale svm learning practical. Technical report, Technical
report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität
Dortmund, 1998.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59, 2009.

Mohamad Kachuee, Mohammad Mahdi Kiani, Hoda Mohammadzade, and Mahdi Shabany.
Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time.
In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1006–1009.
IEEE, 2015.

S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karuturi
Radha Krishna Murthy. Improvements to Platt’s SMO algorithm for SVM classifier
design. Neural Computation, 13(3):637–649, 2001.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C Weng. A note on platt’s probabilistic outputs
for Support Vector Machines. Machine Learning, 68(3):267–276, 2007.

Duane Merrill. CUB v1. 5.3: CUDA unbound, a library of warp-wide, block-wide, and
device-wide GPU parallel primitives, 2015.

CUDA Nvidia. Cublas library. NVIDIA Corporation, Santa Clara, California, 15(27):31,
2008.

Edoardo Pasolli, Farid Melgani, Devis Tuia, Fabio Pacifici, and William J Emery. SVM
active learning approach for image classification using spatial information. IEEE Trans-
actions on Geoscience and Remote Sensing, 52(4):2217–2233, 2014.

15

Wen, Shi, Li, He and Chen

John Platt. Sequential Minimal Optimization: A fast algorithm for training Support Vector
Machines, 1998.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Volker Roth. Kernel fisher discriminants for outlier detection. Neural Computation, 18(4):
942–960, 2006.

Bernhard Schölkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett. New
support vector algorithms. Neural Computation, 12(5):1207–1245, 2000.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural Com-
putation, 13(7):1443–1471, 2001.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

Shirish Krishnaj Shevade, S Sathiya Keerthi, Chiranjib Bhattacharyya, and Karaturi
Radha Krishna Murthy. Improvements to the SMO algorithm for SVM regression. IEEE
Transactions on Neural Networks, 11(5):1188–1193, 2000.

Amber Thomas. Kaggle 2017 survey results: https://www.kaggle.com/amberthomas/

kaggle-2017-survey-results, 2017.

Jan Vaněk, Josef Michálek, and Josef Psutka. A GPU-architecture optimized hierarchical
decomposition algorithm for Support Vector Machine training. IEEE Transactions on
Parallel and Distributed Systems, 28(12):3330–3343, 2017.

Kilian Q Weinberger, Fei Sha, and Lawrence K Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In International Conference on Machine Learning, page 106.
ACM, 2004.

Zeyi Wen, Rui Zhang, Kotagiri Ramamohanarao, Jianzhong Qi, and Kerry Taylor. MAS-
COT: fast and highly scalable SVM cross-validation using GPUs and SSDs. In IEEE
International Conference on Data Mining (ICDM), pages 580–589. IEEE, 2014.

Zeyi Wen, Jiashuai Shi, Bingsheng He, Jian Chen, and Yawen Chen. Efficient multi-class
probabilistic SVMs on GPUs, 2017a.

Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Supplementary
material of ThunderSVM: https://github.com/zeyiwen/thundersvm/blob/master/

thundersvm-full.pdf, 2017b.

Zeyi Wen, Rui Zhang, Kotagiri Ramamohanarao, and Li Yang. Scalable and fast SVM
regression using modern hardware. World Wide Web, 21(2):261–287, 2018.

16

https://www.kaggle.com/amberthomas/kaggle-2017-survey-results
https://www.kaggle.com/amberthomas/kaggle-2017-survey-results
https://github.com/zeyiwen/thundersvm/blob/master/thundersvm-full.pdf
https://github.com/zeyiwen/thundersvm/blob/master/thundersvm-full.pdf

	Introduction
	Overview and Design of ThunderSVM
	Design of Parallel SVM Training Algorithms
	Design of the Parallel Prediction Algorithm
	Experimental Studies

	Conclusion
	Formal Definitions of Support Vector Machine Algorithms
	Support Vector Machine Classification
	C-Support Vector Machine Classification (C-SVC)
	-Support Vector Machine Classification (-SVC)
	Multi-class Support Vector Machine Classification
	Support Vector Machines with Probabilistic Output

	Support Vector Machine Regression
	The -Support Vector Machine Regression (-SVR)
	The -Support Vector Machine Regression (-SVR)

	One-class Support Vector Machines (OCSVMs)
	The Sequential Minimal Optimization Algorithm
	Using a larger working set in SMO

	Experimental Studies
	Efficiency and Final SVM Comparison
	Related Work

