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Abstract—In this paper, we present a novel parallel implemen-
tation for training Gradient Boosting Decision Trees (GBDTs) on
Graphics Processing Units (GPUs). Thanks to the wide use of the
open sourced XGBoost library, GBDTs have become very popular
in recent years and won many awards in machine learning and
data mining competitions. Although GPUs have demonstrated
their success in accelerating many machine learning applications,
there are a series of key challenges of developing a GPU-based
GBDT algorithm, including irregular memory accesses, many
small sorting operations and varying data parallel granularities
in tree construction. To tackle these challenges on GPUs, we
propose various novel techniques (including Run-length Encoding
compression and thread/block workload dynamic allocation, and
reusing intermediate training results for efficient gradient compu-
tation). Our experimental results show that our algorithm named
GPU-GBDT is often 10 to 20 times faster than the sequential
version of XGBoost, and achieves 1.5 to 2 times speedup over a 40
threaded XGBoost running on a relatively high-end workstation
of 20 CPU cores. Moreover, GPU-GBDT outperforms its CPU
counterpart by 2 to 3 times in terms of performance-price ratio.

I. INTRODUCTION

The recent advancement of machine learning technologies
is not only because of new algorithms to improve accuracy, but
also new algorithms to exploit the high-performance hardware
(e.g., GPUs and FPGAs) to improve efficiency. Nowadays,
many companies (e.g., Amazon, Google and Microsoft) are
providing GPU clouds as an integral component in comput-
ing infrastructure. Researchers are exploring GPU clouds for
machine learning algorithms [1], [2].

Recently, Gradient Boosting Decision Trees (GBDTs) are
widely used in advertising systems, spam filtering, sales pre-
diction, medical data analysis, and image labeling [3], [4], [5].
In contrast with deep learning, the GBDT has the advantage
of simplicity, effectiveness, and a user-friendly open source
toolkit called XGBoost. Additionally, the GBDT has won
many awards in recent machine learning and data mining
competitions (e.g., Kaggle competitions). However, training
effective GBDTs is often very time-consuming, especially for
training a large number of deep trees using large datasets. In
this paper, we propose a novel GPU-based algorithm called
GPU-GBDT to improve GBDT training.

The GBDT is essentially an ensemble machine learning
technique where multiple decision trees are trained and used
to predict unseen data. A decision tree is a binary tree in
which each internal node is attached with a yes/no question
and the leaves are labeled with the target values (e.g., “spam”

or “non-spam” in spam filtering). Unlike random forests where
individual decision trees are independent [6], the trees of
GBDTs are dependent. Thus, it is a challenging task to develop
an efficient parallel GBDT training algorithm. Particularly,
there are a number of key challenges on the efficiency of
GPU accelerations for GBDTs, such as irregular memory
accesses, many small sorting operations and varying data
parallel granularities in tree construction (more details are
presented in Section 3.1). We have managed to develop GPU-
GBDT, a highly efficient GPU-based training algorithm, to
address the challenges. GPU-GBDT is powered by many
techniques specifically designed for GPUs. Notably, to exploit
the massive thread parallelism of GPUs, we develop fine-
grained multi-level parallelism for GBDTs, from the node
level, the attribute level parallelism to parallelizing the gain
computation of each split point. Moreover, we extend GPU-
GBDT with Run-length Encoding (RLE) compression, since
RLE compression is able to (i) reduce memory consumption
so that the GPU can handle larger datasets, (ii) improve the
efficiency of finding the best split point due to the avoidance
of repeated attribute values, (iii) retain efficiency in splitting
nodes without a total decompression.

To summarize, our contributions are listed as follows.
• We propose GPU-GBDT, a GPU-based training algorithm

for GBDTs. The source code is available at GitHub1. This
is particularly important for a wider use of GBDTs in
more machine learning and data mining applications.

• To make GBDT training efficient to perform on GPUs,
we propose various techniques including RLE compres-
sion for datasets with high compression ratio, dynamic
thread/block workload allocation in different stages of the
GBDT training, and reusing intermediate training results
for efficient gradient computation.

• We conduct extensive experiments in comparison with
the state-of-the-art implementation on the CPU and on the
GPU. The results show that GPU-GBDT is often 10 to 20
times faster than the sequential version of XGBoost, and
achieves around 1.5 to 2 times speedup over a 40 threaded
XGBoost running on a relatively high-end workstation
of 20 CPU cores. Moreover, GPU-GBDT outperforms its
CPU counterpart by 2 to 3 times in terms of performance-
price ratio. We also compare GPU-GBDT with XGBoost
using GPUs, and have found that (i) XGBoost using

1https://github.com/zeyiwen/gbdt



TABLE I
DENSE AND SPARSE DATA REPRESENTATION

Dense Sparse
x1 〈0.0, 0.0, 0.1, 0.0〉 (a3 : 0.1)
x2 〈1.2, 0.0, 0.1, 0.6〉 (a1 : 1.2); (a3 : 0.1); (a4 : 0.6)
x3 〈0.5, 1.0, 0.0, 0.0〉 (a1 : 0.5); (a2 : 1.0)
x4 〈1.2, 0.0, 2.0, 0.0〉 (a1 : 1.2); (a3 : 2.0)

GPUs cannot handle large datasets due to its large GPU
memory consumption whereas GPU-GBDT can, and (ii)
the execution time of our algorithm is comparable to
XGBoost with GPUs for smaller datasets.

II. PRELIMINARIES

A. Dense and sparse data representation

GBDTs are trained using a set of labeled instances (a.k.a.
data points), and the set is called a training dataset. We can
represent the training dataset in either a dense or a sparse form.
The dense representation is basically a matrix, which is effi-
cient for accessing the value of an attribute given an instance.
For example, the third attribute of the fourth instance (i.e., a3
of x4) can be easily retrieved at the third column of the fourth
row in the matrix. However, the disadvantage is huge memory
consumption. In comparison, the sparse representation stores
only the non-zero elements, which is more memory efficient,
but more expensive to locate the attribute value of an instance.

Suppose we have a training dataset which has four instances:
x1, x2, x3 and x4. We have a dense representation and a
sparse representation as shown in Table I.

In decision tree training, we need to enumerate all the
possible split points of each attribute, such that we can split
a node using the best split point. To facilitate enumeration
through all the split points, the matrix (e.g., Table I) is
transposed and the attribute values are stored in sorted order.
This is a common and efficient approach used in training
decision trees [3], [7]. The sorted results on each attribute
of Table I are shown below.
a1 = (x2 : 1.2); (x4 : 1.2); (x3 : 0.5)
a2 = (x3 : 1.0)
a3 = (x4 : 2.0); (x2 : 0.1); (x1 : 0.1)
a4 = (x2 : 0.6)
The sorted results are useful when computing the quality (i.e.,
gain as defined in Section II-B) of each possible split point,
because we can easily obtain the number of instances on the
left/right side of the split point under evaluation.

Missing values: An additional advantage of sparse rep-
resentation is that missing values of attributes are naturally
supported. We can consider the missing value as either −∞
or +∞, which can be decided during learning. In the dense
presentation, missing values need to be filled (e.g., treated as
0) to allow sorting attribute values.

B. Loss function and gain of a split point

Training GBDTs is to reduce the value of a loss function
denoted by l(yi, ŷi) where yi and ŷi are the true and predicted
target value of xi, respectively. The common loss functions
include mean squared error and cross-entropy loss [8]. The

first order and second order derivatives of the loss function
are denoted by gi and hi which are computed as follows.

gi =
∂l(yi, ŷi)

∂ŷi
, hi =

∂2l(yi, ŷi)

∂ŷ2i
(1)

where gi is also called gradient. The first order and second
order derivatives are used to compute the quality, i.e., gain, of
a split point using the following formula [3].

gain =
1
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]
(2)

where GL and GR denote the sum of gi of all the instances
xi in the left and right node, respectively; similarly, HL and
HR denote the sum of hi of all the instances xi in the left
and right node, respectively; λ is the regularization constant.

C. Graphics Processing Units

A GPU contains a large number of (e.g., thousands of) cores
which are grouped into streaming multiprocessors (SMs). In
the NVIDIA Compute Unified Device Architecture (CUDA),
GPU threads are grouped into blocks which are also called
thread blocks. Each thread block is executed in an SM.
At any timestamp, an SM can only execute instructions of
one thread block. Compared with main memory, GPUs have
relatively small memory (e.g., 12 GB memory in Titan X).
Accessing the GPU global memory is much more expensive
than computation, so we should avoid accessing the GPU
global memory as much as possible. Irregular accesses to
global memory is even more expensive, because the number
of useful values of a cache line is small. The data transfer
between CPUs and GPUs is through PCI-e which is one
order of magnitude slower than accessing the GPU global
memory. Therefore, we should make full use of the GPU
memory to efficiently handle large datasets, and reduce data
transferring between CPUs and GPUs. Previous studies have
demonstrated the efficiency of GPUs in many irregular data-
intensive applications [9], [10]. The recursive nature of GBDTs
has posed new technical challenges. In this paper, we address
the limitation of GPU memory and take advantage of GPU
massive computing capability.

D. The GBDT training and the XGBoost library

GBDTs: The GBDT training algorithm is summarized in
Algorithm 1. The GBDT training algorithm consists of two
key components: (i) finding a split point to a node (Line 7 to
18 of Algorithm 1), and (ii) splitting a node (Line 19 to 23).

XGBoost: The parallel XGBoost on CPUs: The key idea of
parallelism in XGBoost is to find the best splits for multiple
attributes of multiple nodes concurrently (i.e., Line 5 and 7 of
Algorithm 1). In other words, XGBoost uses attribute level and
node level parallelism. Parallelizing these two levels results in
more than enough threads to occupy the CPUs.

The parallel XGBoost on GPUs: Similarly to the CPU
version, XGBoost on GPUs also uses attribute level and node
level parallelism. For attribute level parallelism (i.e., Line 7 of
Algorithm 1), a GPU thread block is dedicated to compute the



Algorithm 1: The GBDT training algorithm
Input: I: a set of instances; d: the maximum depth;

γ: a threshold for valid splits; T : the number of trees.
Output: T : a set of decision trees.

1 T ← φ
2 repeat
3 InitTree(t) /* tree t has only one node */
4 P ← φ, N ← GetRootNode(t)
5 foreach n ∈ N ∧ depth(n) < d do
6 In ← InstanceInNode(n) /* ins. in n */
7 foreach a ∈ A do /* for an attribute */
8 g ← 0, p← 0 /* gain & split */
9 Vn ← AttributeValue(a, n)

10 foreach v ∈ Vn do /* each split */
11 gain← ComputeGain(In, v, a)
12 if g < gain then
13 g ← gain, p← v

14 P ← P ∪ (a, g, p)

15 (a∗, g∗, p∗)← 0 /* best split point */
16 foreach (a, g, p) ∈ P do /* get best a */
17 if (g∗ < g) ∧ (g > γ) then
18 (a∗, g∗, p∗)← (a, g, p)

19 if g∗ = 0 then /* node won’t be split */
20 RemoveLeafNode(n, N )

21 else
22 (n1, n2) ← SplitNode(n, a∗, p∗)
23 UpdateLeafNodes(N , n1, n2)

24 T ← T ∪ t /* store the tree */
25 until |T | > T ;

best split point of an attribute. For node level parallelism (i.e.,
Line 5), the algorithm uses a so-called “node interleaving”
techniques which requires reserving many copies of memory
for gi and hi of instance xi (the number of copies equals
to the number of nodes to split). Moreover, for the ease of
tracking back which attribute the best split point belongs to,
they use the dense data representation for the training dataset.
Therefore, the XGBoost on GPUs requires too much GPU
memory and cannot handle large datasets. That motivates us
to carefully examine the algorithm, and develop GPU-efficient
parallelization as well as memory access patterns (as described
in the next section).

III. OUR GPU-GBDT ALGORITHM

A. Challenges and design rationale

Challenges: The key challenges of designing GPU-GBDT
are in four aspects. First, the memory access pattern is irregular
due to the nature of tree structures. The irregular memory
accesses can significantly degrade the efficiency of GPU-based
algorithms. Second, the values of the attributes of every node
need to be sorted and the number of sorting operations may
be huge. Sorting operations are expensive on GPUs especially
for a large number of small segments (each attribute of a node
is stored as a segment). Third, the data parallel granularity
changes as the tree grows. At the early stages, the nodes are
large which contains many training instances (e.g., the root

node contains all the training instances); at the later stages,
the nodes become smaller but the number of nodes is large.
This is challenging because the massive thread parallelism
of the GPU needs to adapt to different parallel granularity.
Fourth, the same attribute value appears in many instances
which causes the same split point having different gains when
the gains are computed in parallel. Removing the duplicated
split points is expensive on GPUs, because we need to access
the neighboring elements which requires extensive memory
accesses.

Design rationale: In order to better take advantage of
GPU accelerations, we have the following design rationales.
First, according to the massive thread parallelism of GPUs,
we develop fine-grained multi-level parallelism for GBDTs.
In addition to the node level and attribute level parallelism
(also used in XGBoost), we propose fine-grain parallelism by
parallelizing the gain computation of each split point (cf. Line
10 of Algorithm 1).

Second, due to the GPU memory limitation, we look for
more memory efficient representation than the dense and
sparse representations introduced in Section II-A. Particularly,
we extend GPU-GBDT with RLE compression, since RLE
compression is able to (i) reduce memory consumption, (ii)
improve the efficiency of finding the best split point due to
the avoidance of repeated attribute values, (iii) retain efficiency
in splitting nodes without a total decompression. RLE com-
pression is particularly effective for our algorithm (especially
when handling datasets with high compression ratio), because
it helps reduce the PCI-e traffic.

Lastly, based on the fine-grained multi-level parallelism
and RLE compression, we further address all the technical
challenges. First, to reduce the irregular memory access, we
propose to reuse the intermediate training results to compute
gradients and avoid traversing the trees (cf. Section III-B).
Second, to keep the values sorted of each attribute in every
node, we propose to use the order preserving partitioning (i.e.,
histogram based partitioning in Section III-B), powered by
techniques to control memory consumption. Third, to handle
the changing number of nodes and the increasing number of
segments (the number of segments equals to the number of
attributes times the number of nodes), we develop techniques
to dynamically allocate the number of segments that each GPU
thread block handles (cf. the end of Section III-B). Lastly, to
avoid the same split point having different gains, we exploit
the RLE compression and develop novel techniques to split an
RLE element (cf. Section III-C).

B. Training GBDTs using sparse representation

Finding the best split point for a node: There are three steps
in finding the best split point for a node: (i) compute the gain
for each possible split point, (ii) reset the gain of repeated split
points to 0, and (iii) select the best split point (i.e., the split
point with the maximum gain).

(i) Compute the gain of a split point: As discussed in
Section II-B, we need to compute gi and hi for computing
the gain of each possible split point (cf. Equation 2). Although



our algorithm supports user defined loss functions, we suppose
the mean squared error is used as the loss function2. Then,
gi = 2(ŷi − yi) and hi = 2. As computing gi and hi
requires the predicted value (i.e., ŷi) for each training instance,
a naive approach is that we first use the trained decision
trees to perform prediction and then compute gi and hi using
Equation 1. This naive approach results in large amount of
irregular memory accesses due to tree traversal. Next, we
present optimizations to avoid the irregular memory accessess.

Computing gi using intermediate training results: Before we
present our optimization in computing the predicted values,
we first discuss a simple optimization. The quick and simple
optimization is that each time we need to compute gi and
hi, we only predict the target value using the latest trained
tree and reuse the predicted target value of the previous trees
(i.e., predict a target value incrementally). This is because
the predicted target value is the accumulated result of all
the previous trees. However, traversing a tree on GPUs is
very expensive while predicting the target values. This is
because the tree traversal results in thread branch divergence
and irregular memory access. Recall that during the training,
the training instances are partitioned into new nodes. At the
end of training a tree, all the training instances are in leaf
nodes. Hence, we avoid traversing the tree to decide where leaf
node an instance belongs, and perform prediction by obtaining
the weight of the leaf node where the instance belongs.

After we have obtained gi and hi, we can compute GL,
GR, HL and HR. Because the values of each attribute are
sorted as discussed in Section II-A, we can consider all the
instances on the left (right) part of the possible split point go
to the left (right) node. Then, we can obtain the aggregated
gi and hi of the left and right nodes (e.g., GL and GR) for
computing the gain shown in Equation 2 relatively easily as
follows. Computing GL and HL can be done by segmented
prefix sum which is available in CUDA Thrust [11]. Figure 1
gives an example of the segmented prefix sum for the first
order gradient gi. In the example, we have two segments: one
segment corresponds to attribute a1 and the other corresponds
to attribute a2. The second row labeled as “Gradient” is the
values where we need to perform segmented prefix sum. Then,
we obtain the results shown in the bottom row.

1.71.4 20.4 0.7

Segemented prefix sum

Prefix sum 0.7

a2a1

−0.30.7

x2x3x1x4x2x1Instance Id

Gradient 0.60.7−0.30.7

Fig. 1. Example results of segmented prefix sum

GL of the ith possible split point is the ith element of the
prefix sum result; GR equals to (G−GL) where G is the total
gradients of the node to split. The gains of all the possible split

2Our implementation can support other loss functions by customizing the
functions for computing gi and hi, and nothing else needs to be changed.

points are computed in parallel on GPUs. The instances with
missing values on that attribute either go to the left or right
node, depending on which way results in larger gain.

(ii) Reset gain of repeated split points: We need to compute
the gains of all possible split points of an attribute (e.g., a1
in Section II-A) in parallel. However, some split points may
be repeated in the attribute (e.g., a1 = 1.2 in Section II-A).
The split points with the same value next to each other may
have different gains which are computed using Equation 2.
The different gains are due to different values of GL, GR,
HL and HR computed from the segmented prefix sum.

The interpretation of the different gains is that instances of
equal attribute values to the split point can go to the left node
and the right node. In reality an instance should belong to
only one node (either left or right node). To avoid the same
split point having different gains, we set the gains after the
first value to 0, i.e., forcing all the instances with the same
attribute values going to only one node.

(iii) Select the best split point for each node: After we
have obtained the gain of all the possible split points, we
first use the segmented reduction to obtain the best split point
for each attribute of a node. Then, we use the GPU parallel
reduction [12] to get the best split point for each node. When
using segmented reduction, each segment needs to have its
own key to distinguish one segment from another. A naive
method to set key for each segment is using one block per
segment. However, the granularity of parallelism varies as the
tree grows. Specifically, the number of segments is increasing
as the tree grows, and some datasets may have a large number
of segments (due to high dimensionality and the large number
of tree nodes). Using one block per segment results in low
efficiency, due to the overhead of scheduling and launching a
large number of GPU thread blocks.

We propose techniques to automatically decide how many
segments a block should process depending on the dataset. The
simple and effective formula we use is: 1+ # of segments

(# of SM)×C where
C is a user defined constant and we set it to 1000 (i.e., one
SM—GPU Stream Multi-processor—executes 1000 blocks).
The basic idea of the formula is that we set the number of
blocks created to handle the segments to a fixed number, such
that the number of blocks does not explode when the number
of segments is large. Although the formula is simple, it brings
10% to 20% performance improvement for some datasets, as
we will show in Section IV.

Splitting a node: After we have found the best split point,
we split the node using that split point. During splitting,
an important task is to partition the training instances that
belonging to the current node into two child nodes. For
partitioning, we can use the sorted values on that attribute to
directly partition the training instances. The most challenging
task in splitting the node is to maintain values of each attribute
in the new nodes in sorted order. We propose to extend the
histogram-based method [13] for order preserving partitioning.
Figure 2 gives an example of the order preserving partitioning.
In the example, the second row labeled as “Attribute values”
is the content that we need to partition. Before partitioning,



the attribute values are in two partitions (i.e., Node 1 and
Node 2); after the partitioning, the attribute values are in four
partitions (i.e., Node 3 to Node 6) as shown in the bottom
row. The key component of this example is the third row
labeled as “Scatter” which is used to preserve the sorted order.
This “Scatter” is computed by the histogram based partitioning
which is discussed next.

109875642130Scatter

Instance Id

Node 3 Node 4 Node 5 Node 6

Node 1 Node 2

0 3 0 21 145 6 76

a1 a1 a1 a1a2 a2 a2

1.8 1.8 1.5 1.5 4 1.2 1.2 1.5 6 6 6

1.8

a1 a2 a1 a2

Attribute value

Attribute value 1.5 1.5 1.8 4 1.2 1.2 1.5 6 6 6

Fig. 2. Partitioning instances of a node to two nodes

Histogram-based data partitioning: Figure 3 shows an ex-
ample of how the histogram-based data partitioning works. In
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1 1
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0partition 1
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12121 0 1 0

1 2 1 1 2 2 2 1

partition 2partition 1
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21 222111

7

3

5

3

5

1

4

0partition 1

partition 2

offsets

75543310prefix sum

counters

t4t3t2t1

Fig. 3. Histogram-based partitioning

the example, each thread (denoted by ti) handles two elements
and requires two counters. Originally, the data are in one
partition. We want to partition the data into two partitions.
So the total number of counters is: (# of threads) × (# of
partitions). The first counter records the number of elements
that goes to partition 1 and the second counter records the
number of elements that goes to partition 2. The counters of
the threads are written into the row labeled as “counters”.
Then, we perform the prefix sum on the counters to determine
the first location that each thread will write their elements to.
Finally, the offsets (forming the “Scatter” in Figure 2) of the
elements are used by the threads to relocate the elements for
achieving the final partitioning.

More generally, in the histogram-based data partitioning,
suppose we want to partition the data into k partitions (i.e.,
creating k new nodes of a tree); each thread handles b
elements and requires maintaining k counters (a counter for

6 765 4 11 2030

312122

a2a1a2a1

6661.51.21.241.51.51.81.8

Instance Id

Attribute value

RLE length

Attribute value

a1 a2 a2

1.8 1.5 4 1.2 1.5 6

a1

Fig. 4. Sorted attribute values to RLE

each partition). Based on the counters of each thread, we can
build histograms and determine where an element should go
to in the new partitions. So the total number of counters is:
(# of threads) × (# of partitions). A naive approach is to set
the workload of a thread to a constant (e.g., b = 16), but
such an approach suffers from the uncontrollable amount of
memory consumption and runs out of GPU memory for large
datasets, because of the large number of counters. To control
the memory consumption by the counters, we need to limit the
number of threads. To address the limitation of the existing
approach [13], we propose techniques to automatically decide
the number of threads used in partitioning a node under the
memory constraint. The formulas for computing the thread
workload and the number of threads are shown below. The ba-
sic idea is that we allocate more workload to a thread when the
number of partitions (i.e., # of attribute values×# of nodes) is
large, such that we avoid using a large number of counters and
running out of GPU memory. The maximum allowed memory
size is a user predefined value (e.g., 230 for 2GB).

thread workload =
(# of attribute values)× (# of nodes)

Maximum allowed memory size

# of threads =
# of attribute values

thread workload

C. GBDT training with Run-length Encoding

We have observed that there are many repeated values in
each sorted attribute, and the repeated values can be com-
pressed using Run-length Encoding (RLE) [14]. Given a se-
quence of values 1.2, 1.2, 1.2, 3.4, 3.4, 3.4, 3.4, RLE represents
the sequence using value-and-length pairs: (1.2, 3), (3.4, 4).
The overview of RLE compression on the sorted attribute
values is shown in Figure 4.

This compression has the following two advantages. (i)
Reduce memory consumption: some datasets which originally
cannot fit into the GPU memory now can be stored in the
GPU memory; the memory traffic for transferring the training
dataset through PCI-e is reduced. (ii) Improve the efficiency of
finding the best split point: the same split point with different
gains issue is naturally avoided and the number of split points
to compute gains is reduced. Moreover, as we will see later
in this section, we retain fast execution time in splitting nodes
without the requirement of a total decompression.

The RLE compression is very effective for datasets with
high repetition. For attributes that have little repetition, the
RLE compression may not be useful. To make our GBDT
training algorithm adapt to different datasets, we use a formula
to decide whether to perform RLE compression based on
the estimated compression ratio: dimensionality

cardinality . If the ratio is
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Summation

Feature values

Gradients 0.5 0.2 0.1 −0.4 0.7 0.1 0.5 0.7 0.6 0.1 0.2

1.8 1.8 1.5 1.5 4 1.2 1.2 1.5 6 6 6

0.7 −0.3 0.7 0.9

RLE length

RLE gradients

Instance Id

Fig. 5. Computing g′i for each RLE element

large than R (a user defined constant), we perform RLE
compression; otherwise, we do not compress the dataset. It is
worth pointing out that the cost of RLE compression is low.
This is because the attribute values are already sorted and we
only need linear time to compress the data. The compressed
data can be used for multiple times (i.e., the number of times
equals to the number of trees to construct).

Since the GBDT with RLE compression is similar to the
GBDT with sparse representation (discussed in Section III-B)
in selecting the best split, the major difference is how to
compute gain of split points using RLE and how to split RLE
elements. In the following, we highlight the techniques that
are different from the GBDT with sparse representation.

Finding the best split point of a node: Finding the best split
point is similar to that using sparse representation (i) compute
the gain for each possible split point, and (ii) select the best
split point for each node.

Compute gain of split points with RLE compression: Com-
puting the gain for each possible split point requires computing
gi and hi for each instance in the node. In the sparse data
representation, each possible split point corresponds to an
attribute value of one instance; in data representation with
RLE compression, each possible split point corresponds to a
few instances with the same attribute value. Here, we denote
the first order and second order derivatives for an RLE element
by g′i and h′i, respectively. Then, g′i and h′i for the split
point of RLE are the sum of the first order and second order
derivatives, respectively. To calculate the first order derivative
g′i (the second order derivative h′i) for each RLE element is
to compute the sum of gi (the sum of hi) of each instance
in the node. Figure 5 gives an example of computing g′i of
each RLE element. The key idea is that the gradients of the
instances with the same attribute values are added together.

Splitting a node: Despite several advantages with RLE
compression, splitting nodes becomes much more challenging.
Next, we present two approaches to split nodes: splitting RLE
with decompression, and directly splitting RLE elements.

Splitting RLE with decompression: A simple approach for
splitting RLE elements is that we first decompress the RLE
elements, then we use the approach discussed for sparse data
representation to partition the node, and finally we compress
the attribute values on each node to obtain the new RLE ele-
ments. Figure 6 shows an example of splitting RLE elements
by decompression. Given RLE elements, we decompress the
RLE elements back to the original form as shown in the middle
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Fig. 6. Splitting RLE elements with decompression

of the figure. Then, we apply the order preserving partitioning
to the decompressed values, such that we partition the original
data. After that, we compress the partitioned data to obtained
the new RLE elements as shown in the bottom of the Figure 6.

Directly splitting RLE elements: The above approach re-
quires performing decompression and compression every time
the nodes are split, which leads to repeated computation. We
propose another technique to directly split an RLE element.
First, each RLE element is potentially split into two RLE
elements, and hence we preallocate two RLE elements in the
GPU memory for each RLE element. Then, we compute the
length of each new RLE element using the instance to node
mapping information. As a result, some preallocated RLE
elements may have length of 0. We use prefix sum to remove
the RLE element with length of 0 and obtain the final new RLE
elements. Figure 7 gives an example of directly splitting RLE
elements. First, each RLE element is potentially split into two
RLE elements, and hence we preallocate two RLE elements
in the GPU memory for each RLE element as shown in the
middle of Figure 7. Then, we compute the length of each new
RLE element using the instance to node mapping information.
As a result, some preallocated RLE elements may have length
of 0 (shown by shaded grids in the figure). We use prefix sum
to remove the RLE element with length of 0 and obtain the
final new RLE elements as shown at the bottom of Figure 7.

D. GPU-GBDT prediction algorithm

In GBDT training, training the next tree is based on the
results of the previous trees. Hence, the prediction algorithm is
part of the GBDT training algorithm. Although this prediction
algorithm can be used for other purposes (e.g., predict target
values for unseen instances), we discuss it here for the
completeness of our GBDT training algorithm. We need to
predict the target values in order to compute derivatives (e.g.,
gi) for training a new tree (i.e., splitting nodes). To perform
prediction in parallel, we do both instance level and tree level
parallelism (i.e., one GPU thread predicts the partial target
value of an instance using one tree), since all the instances are
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independent and all the trees are independent. The prediction
algorithm repeats the following two steps until a leaf node
is reached: (i) examine the decision making condition (i.e.,
the information of the split point) of the current node for an
instance, and (ii) go to the left (right) child if the condition
is true (false). Other optimizations for decision tree prediction
can be applied to our prediction algorithm [15], but they are
out of the scope of this paper, because prediction can be totally
avoided in the GBDT training as we have discussed earlier.

IV. EXPERIMENTAL STUDIES

Experimental setup. We used 8 publicly available datasets
which were downloaded from the LibSVM website3, as listed
in Table II. The datasets cover a wide range of the cardinality
and dimensionality. The experiments were conducted on a
workstation running Linux with 2 Xeon E5-2640v4 10 core
CPUs, 256GB main memory and a Titan X Pascal GPU of
12GB memory. The program was compiled with -O3 option.
We have also tested GPU-GBDT on Tesla P100 and K20,
and the speedup is almost sublinear in the number of cores
of the GPUs. Our GPU-GBDT algorithm was implemented in
CUDA-C.

Comparison. We compare our algorithm with a well-known
GBDT training algorithm named XGBoost4 which exploits
multi-core CPUs and GPUs. We compare three versions of
XGBoost: sequential XGBoost (denoted by “xgbst-1”), par-
allel XGBoost with 40 CPU threads (denoted by “xgboost-
40”), and parallel XGBoost with 40 CPU threads and GPUs
(denoted by “xgbst-gpu”). Note that the number of threads
(i.e., 40 threads) in the parallel XGBoost is automatically
selected by the XGBoost library. We have also tried XGBoost
with 10, 20, 40 and 80 threads, and found that using 40 threads
results in the shortest execution time for XGBoost in the 8
datasets. Although GPU-GBDT supports other loss functions,
the loss function in our experiments for both XGBoost and
GPU-GBDT is mean squared error: l(yi, ŷi) =

∑
i (yi − ŷi)2.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4https://github.com/dmlc/xgboost

A. Overall performance study

To study the performance of GPU-GBDT, we set the tree
depth to 6 and the number of trees to 40 (corresponding to
d and T , respectively in Algorithm 1). Although GPU-GBDT
performs better when tree depth is 2 in our experiments, we
use tree depth of 6 as it is more common in real world
applications to have good accuracy. We measured the total
time (including data transfer from CPU to GPU) of training all
the trees for both XGBoost and GPU-GBDT. During training,
the split points are found without approximation. The results
are shown in Table II.

Execution time comparison: We compare the execution time
of GPU-GBDT with that of XGBoost. As can be seen from
the “speedup over” columns, our algorithm achieves 1.5 to
2 times speedup over xgbst-40, and is often 10 to 20 times
faster than xgbst-1. We report the results of xgbst-1, because
we hope readers can gain the expected speedup on their CPU
(e.g., with 4 cores). The most expensive operation is finding
the best split point: around 75% of total training time for
XGBoost and around 95% of that for GPU-GBDT in our
experiments. This gives insight for further improvement of
GPU-GBDT. Further improving the performance of finding
the best split is indeed a challenging task due to the extensive
memory access and recursive nature of the splitting process.
The GPU enabled XGBoost (i.e., xgbst-gpu) is quite unstable:
xgbst-gpu cannot process most of the datasets tested either
because of out of memory or because of very large different
RMSE. For the susy dataset that xgbst-gpu can process, the
execution time of our algorithm is comparable to xgbst-gpu.
If we further analyze the performance difference between
these two GPU implementation, we find that xgbst-gpu is
slightly faster than our algorithm, because xgbst-gpu uses
dense data representation and is faster when looking up which
attribute a split point belongs to. That also leads to a potential
optimization to our algorithm for small datasets, and GPU-
GBDT can use dense data representation if the data set is
small. We have performed the experiments, and confirmed this
finding. The results are omitted here due to lack of space.

RMSE comparison: We have compared the trees con-
structed by GPU-GBDT and the CPU-based XGBoost, and
found that the trees are identical. Here, we show the rooted
mean squared error (RMSE) on the training datasets for the
trees trained by GPU-GBDT and XGBoost. As can be seen
from the last three columns (i.e., “rmse” column) of Table II,
our algorithm produces exactly the same RMSE as XGBoost
(both xgbst-1 and xgbst-40; the RMSE of xgbst-1 is omitted as
it is identical to xgbst-40). For the GPU version of XGBoost
(i.e., xgbst-gpu), RMSE is different from its CPU counterpart
and our algorithm (cf. real-sim and covetype). The large RMSE
of xgbst-gpu is probably because of dense representation
which considers missing values as 0.

B. Sensitivity studies

Varying tree depth: We set the number of trees to 40, and
varied the tree depth from 2 to 8. Figure 8a shows the effect of
tree depth on speed up of GPU-GBDT over xgbst-40. As we



TABLE II
OVERALL COMPARISON BETWEEN OUR GPU ALGORITHM WITH XGBOOST

dataset elapsed time (sec) speedup over rmse
name cardinality dimension ours xgbst-40 xgbst-1 xgbst-gpu xgbst-40 xgbst-1 ours xgbst-40 xgbst-gpu

covetype 581012 54 3.65 5.93 36.11 diff. rmse 1.62 9.89 0.31 0.31 3.3x1015

e2006 16087 150361 12.47 21.80 227.79 out of mem. 1.75 8.27 0.23 0.23 N.A.
higgs 11000000 28 220.01 386.47 2189 out of mem. 1.75 9.95 0.42 0.42 N.A.

insurance claim 13184290 35 216.6 339.55 2085 out of mem. 1.56 9.63 38.22 38.22 N.A.
log1p 16087 4272228 39.93 66.58 544.88 out of mem. 1.67 13.65 0.24 0.24 N.A.

news20 19954 1355191 7.03 13.12 139.78 out of mem. 1.87 19.88 0.49 0.49 N.A.
real-sim 72201 20958 2.97 4.23 44.87 diff. rmse 1.42 15.11 0.48 0.48 7.29

susy 5000000 18 78 127.18 869.11 60.11 1.63 11.14 0.37 0.37 0.37
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Fig. 8. Speedup of GPU-GBDT over xgbst-40

can see from the figure, our algorithm consistently outperforms
xgbst-40. Our algorithm performs best when the tree depth is
2, but the speedup is relatively stable when the tree depth
increases further.

Varying the number of trees: We set the tree depth to 6, and
varied the number of trees from 10 to 80. Figure 8b shows the
result. The speedup when varying the number of trees is rather
stable as the number of trees increases. This is due to the fact
that the trees in GBDTs are dependent, and hence the increase
of the number of trees does not bring better parallelism.

C. Impact of individual optimizations

As we have discussed in Section III, we have some op-
timizations specifically for our GPU algorithm. Here, we
study their individual impacts on GPU-GBDT. The techniques
include (i) Customized SetKey: to automatically set key for
the segmented prefix sum discussed in Section III-B; (ii)
Customized IdxComp Workload: to decide thread workload
depending on datasets discussed in Section III-B; (iii) RLE:
to compress datasets with RLE compression discussed in
Section III-C; (iv) SmartGD: to compute gi and hi using
the intermediate training results discussed in Section III-B;
(v) Directly Split RLE: to directly split RLE elements as
discussed in Section III-C. We switch off each individual
optimization, and investigate the execution time change to the
entire algorithm. We set the tree depth to 6 and the number
of trees to 40 in this set of experiments.

Figure 9 shows the change in the execution time of disabling
each optimization. Two techniques (including SmartGD and
Directly Split RLE) have quite significant impact on the overall
algorithm. This demonstrates the important of our SmartGD
and Directly Split RLE techniques. The Customized SetKey
technique helps improve 10% to 20% for the execution time in
datasets (e.g., log1p and news20) of high dimensionality. The
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Customized IdxComp Workload has significant improvement
on execution time for large datasets, this is because more
workload a thread does, more memory the algorithm saves.

D. Economic cost comparison

Finally, we study the performance per dollar. We define
the performance-price ratio as: 1/time

price . The price of NVIDIA
Titan X is 1,200 USD [16], and that of two Xeon E5-2640v4
CPUs is 1,878 USD [17] at the time of writing this paper.
Figure 10a shows the performance ratio normalized by the
performance ratio of CPUs (xgbst-40 is used for CPU). The
performance-price ratio of GPU-GBDT consistently outper-
forms its CPU counterpart by 1.5 to 3 times. This result
confirms that GPU-GBDT is more cost-effective than its CPU
counterpart.

E. Case studies

Our algorithm is useful to three key application scenarios:
(i) applications require updating the predictive model fre-
quently (i.e., online learning); (ii) applications require training
models in real-time and (iii) applications require minimizing
the test error given a time budget.

(i) Applications that require updating the predictive model
frequently: One example of such applications is using GBDT
for credit risk prediction [18] where updating model timely



is important, because a large number of transactions occurs
every minute. However, the number of credit card transaction
records used in the training dataset is large and the training is
expensive. The work [18] uses 211,357 training instances each
of which has 8,990 features. Training the model (described in
the work [18]) requires about 27 minutes using XGBoost on
our workstation. In comparison, GPU-GBDT can respond new
credit risk and prevent invalid transactions more timely.

(ii) Applications that require training models in real-time:
One example of such applications is using GBDT for malware
detection [19]. Responding to newly emerged malware in
real-time is crucial, because malware spreads so quickly and
every second counts in the prevention of malware spreading.
XGBoost took 43 seconds to update the model for malware
detection [19], while our GPU-GBDT requires only about 20
seconds to update the model so as to detect recent outbreak
malware. This is important to mitigate the spread of malware.

(iii) Applications that require training an effective model in
a given time budget: One example of such applications is using
GBDT for data mining and machine learning competitions
(such as Kaggle.com, a popular data science competition
platform). We have studied a use-case from Kaggle.com on
product recommendation5. The solution with ranking at the
third place6 uses XGBoost. The solution uses 142 features to
represent a training instance, and the dataset has 17 million
training instances in total. The hyper-parameters of gradient
boosting decision trees include the number of trees T , the
depth of trees d, the regularization constant γ and learning rate
η. In practice, competition participants will look for the best
settings for hyper-parameters in order to achieve an effective
model. We consider the following search space where T ∈
{500, 1000, 2000, 4000}, d ∈ {2, 4, 6, 8}, γ ∈ {0, 0.1, 0.2}
and η ∈ {0.2, 0.3, 0.4}. In total, we train 144 models each
of which has a unique four tuple of hyper-parameters. The
solution (with the best accuracy) winning the competition has
1000 trees of depth 4 with η = 0.3 and γ = 0 and takes 2.95
hours to train the model. Training the 144 models for best
hyper-parameter selection takes about 535 hours (about 22.3
days) on a workstation with 20 CPU cores. In comparison,
our GPU-GBDT finishes the training in about 10 days, which
saves practitioners significant amount of time and is especially
critical for winning a competition.

As a sanity check, Figure 10b shows the test error of
XGBoost and of our GPU-GBDT on the workstation that
we used for our experimental study. The dataset used here
is susy. For the same time budget measured in seconds, GPU-
GBDT obtains the model that clearly has smaller test error
than XGBoost.

In addition, we achieve the speedup using the GPU which is
2 to 3 times cheaper than CPUs with 20 cores (cf. Figure 10a)
in terms of price-performance ratio.

5https://www.kaggle.com/c/santander-product-recommendation
6www.kaggle.com/c/santander-product-recommendation/discussion/26899

V. RELATED WORK

GPU accelerated decision tree prediction: In the studies
of GPU accelerated decision trees, most of the work focuses
on the decision tree prediction process. Sharp proposed to
use GPUs for accelerating the decision forest prediction [20].
Sharp’s key idea is to use a GPU thread to predict the
target value of one instance in order to take advantage of the
massive thread parallelism on the GPU. Similar to Sharp’s
algorithm, Birkbeck et al. presented a GPU-based algorithm
for the decision tree prediction [21]. Their algorithm stores
the decision tree in the texture memory of GPUs to improve
efficiency. Van Essen et al. tried to find out which hardware
(i.e., multi-core CPUs, GPUs and FPGAs) is the best for de-
cision tree prediction [22], and their results show that FPGAs
performs the best for prediction. Although the above proposed
techniques can be used to accelerate the prediction module
during GBDT training, our proposed approach is faster since
the prediction can be totally replaced by reusing intermediate
training results (cf. Section III-B).

GPU accelerated decision tree training: Grahn et al. pro-
posed to use a GPU thread to train one decision tree for the
random forest training [23]. Thus, many decision trees can
be trained in parallel, unlike the trees having dependency in
GBDTs. Nasridinov et al. developed a GPU-based algorithm
to compute the information gain when finding the best split
point of a node [24]. Lo et al. [25] designed a GPU-based
algorithm to train decision trees. Their key idea is to split
one node at a time and sort the values of each attribute for
all the instances in the node. One key limitation of the above
discussed GPU-based algorithms for decision tree training is
that the level of parallelism is low and the GPU can be severely
underutilized. Strnad and Nerat [26] proposed a GPU-based
algorithm with three levels of parallelism: evaluating multiple
possible split points concurrently, finding the best split point
for multiple attributes on a node concurrently, and finding the
best attribute for multiple nodes concurrently. The bottleneck
of their algorithm lies in launching too many kernels inside
GPU kernels, and repeatedly sorting attribute values for every
newly created node. Most of the above-mentioned ideas for
training decision trees are implemented in the GPU version
of XGBoost. However, the GPU version of XGBoost sup-
ports only dense data representation when finding split points
without approximation. In contrast, our algorithm utilizes data
compression techniques to train GBDTs more efficiently and
to support larger datasets.

Gradient Boosting Decision Trees: Gradient Boost Ma-
chines were first introduced by Friedman [27], and have
shown great potential in many real world applications [28],
[29]. Panda et al. [7] proposed a MapReduce-based learning
algorithm for decision trees that ensembles with approximation
when finding split points for large datasets. Tyree et al.
proposed parallel CPU boosting regression trees for webpage
ranking problems [30]. Si et al. developed a GBDT training
algorithm for high dimensional sparse output [31]. Chen and
Guestrin proposed an efficient GBDT algorithm which is



implemented in XGBoost [3]. Mitchell and Frank proposed
to use GPUs to accelerate the finding split point procedure of
XGBoost [1]. XGBoost with GPUs uses dense data represen-
tation for the ease of tracking back which attribute has the best
gain, which makes it unable to handle large datasets due to the
large memory consumption. LightGBM [32] is an alternative
implementation of GBDTs, but it only supports finding the
best split points approximately.

VI. CONCLUSION AND FUTURE WORK

GPU accelerations have become a hot research topic for
improving the efficiency of machine learning and data mining
algorithms. This paper develops a novel parallel implemen-
tation named GPU-GBDT for training GBDTs, which have
become very popular in recent years and won many awards
in machine learning and data mining competitions. Although
GPUs have much higher computational power and memory
bandwidth than CPUs, it is a non-trivial task to fully exploit
GPUs for training GBDTs. We have addressed a series of
technical challenges in training GBDTs on GPUs, including
irregular memory access and order reserving node partitioning.
Our experimental results show that our GPU algorithm is often
10 to 20 times faster than the sequential version of XGBoost,
and achieves 1.5 to 2 times speedup over XGBoost running
on a relatively high-end workstation with 20 CPU cores.
Moreover, GPU-GBDT outperforms its CPU counterpart by
2 to 3 times in terms of performance-price ratio. Thus, we
demonstrate that GPU-GBDT can be a more efficient and cost
effective alternative to its CPU-based counterparts.

Our algorithm is naturally applicable to multiple GPUs or
GPU clusters, and we consider this direction as our future
work. Moreover, GPU-GBDT spends most of its time on
finding the best split point. We will further investigate this
process for improving GPU-GBDT.
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