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Abstract

In the last few years, Gradient Boosting Decision
Trees (GBDTs) have been widely used in various
applications such as online advertising and spam fil-
tering. However, GBDT training is often a key per-
formance bottleneck for such data science pipelines,
especially for training a large number of deep trees
on large data sets. Thus, many parallel and dis-
tributed GBDT systems have been researched and
developed to accelerate the training process. In this
survey paper, we review the recent GBDT systems
with respect to accelerations with emerging hard-
ware as well as cluster computing, and compare
the advantages and disadvantages of the existing
implementations. Finally, we present the research
opportunities and challenges in designing fast next
generation GBDT systems.

1 Introduction
The successful development of machine learning recently is
not only due to better algorithms with high model quality,
but also efficient algorithms and systems which use the high-
performance hardware (e.g., GPUs and FPGAs) and a clus-
ter of servers. Nowadays, many companies (e.g., Amazon,
Google, Microsoft and Oracle) are providing GPU clouds as an
integral component in cloud computing infrastructures. More
and more researchers are exploring emerging hardware and/or
clouds for machine learning algorithms such as deep learn-
ing [Abadi et al., 2016; Zhang et al., 2020] and SVMs [Wen
et al., 2018b].

Gradient Boosting Decision Trees (GBDTs) have been ac-
celerated by multi-core CPUs, GPUs and clusters. GBDTs
have become one of the most popular machine learning mod-
els recently, due to its excellent capability of handling tabular
data. GBDTs have been widely used in various applications
such as online advertising and spam filtering. In this survey,
we focus on the challenges and opportunities on building fast
GBDT systems with parallel processing on emerging hard-
ware such as multi-core CPUs and GPUs as well as distributed
computing in the computing cluster.

There have been a number of libraries for GBDTs (e.g.,
XGBoost [Chen and Guestrin, 2016], LightGBM [Ke and

et al., 2017], CatBoost [Dorogush et al., 2018a] and Thun-
derGBM [Wen et al., 2020]). While those libraries offer sim-
ilar functionalities for GBDT training and predictions, their
algorithmic design and system implementation are quite dif-
ferent. For example, while many of them can take advan-
tage of GPU computation power, they have very different
choices in which part of model training and prediction to run
on the GPU and the strategies of growing the trees. Moreover,
whether GPU implementations are faster than multi-core CPU
implementation is problem dependant [Ke and et al., 2017;
Wen et al., 2020]. GPU implementations tend to be more
advantageous in medium size problems which can fit in the
GPU memory, while CPU implementations tend to be more
scalable in very large problems.

In order to understand the current design of different GBDT
systems and to identify the future research opportunities for
next-generation GBDT systems, we conduct a survey on ex-
isting GBDT systems running on parallel and distributed en-
vironments. This survey is timely in reviewing the effort in
existing GBDT systems, and in architecting future systems.
Specifically, we identify a few research challenges raised from
irregular memory accesses in training, the support for online
GBDT learning and privacy leakage in the trees, as well as
handling workload balancing among threads. With challenge
comes opportunity, we have seen the opportunities coming
from fast networks and hardware evolution. For example, no
mature GBDT library exploits FPGAs which are becoming
increasingly powerful for machine learning. Moreover, ad-
vanced network equipment, such as Remote Direct Memory
Access (RDMA), can potentially help resolve the network
bottleneck in GBDT training.

2 Background
GBMs were introduced by Friedman (2001), and have shown
great potential in many real world applications. The GBDT
is an ensemble model which trains a sequence of decision
trees, where the later tree aims to correct the errors of the
previous trees. GBDTs are widely used in various applica-
tions especially those with real-time requirements, such as
advertising systems, fraud detection, spam filtering, and image
labeling [Chen and Guestrin, 2016].

Each decision tree is built from the depth of 0 to the maxi-
mum depth. The greedy based node splitting algorithm is used
to recursively grow the trees until the termination condition



is met (e.g., hitting the maximum depth or further splitting
having no error reduction). The approaches of finding the split
point for each node include (i) the exact approach, and (ii) the
approximate approach. In the exact approach, GBDTs traverse
all the feature values to find the split that maximizes the gain.
The cost of finding the exact split points is prohibitively high
for data sets with high dimensions. In the approximate ap-
proach, GBDTs only try some candidate points generated by
the techniques such as quantile sketches [Chen and Guestrin,
2016] or histograms [Ke and et al., 2017].

3 Parallel GBDT Training
Developing efficient parallel algorithms for GBDT training
is challenging, due to the large number of irregular memory
accesses. The key challenges of developing efficient parallel
GBDTs include (i) minimizing communication cost among
computing units, (ii) making efficient use of the resources of
the computing units, and (iii) adapting to the problem prop-
erties (e.g., data sparsity). Here, we review GBDT parallel
training techniques and systems that run on multi-core CPUs
and GPUs in a single machine.

3.1 Node Split
A traditional way of finding the best split point for a node
is through enumerating all the possible split points. This
way of finding the best split point is expensive for problems
with a large number of feature values, because essentially
every feature value needs to be evaluated when finding the
best split point. One common solution in the current parallel
GBDT systems is using histogram based approximation in-
stead of enumerating all the possible split points, which can be
viewed as considering a number of representative split points
using histogram based approximation. This approximation is a
trade-off between efficiency and accuracy [Chen and Guestrin,
2016]. However, this solution is ill-suited to high dimensional
and sparse problems, since each dimension needs to associate
with a histogram. In a parallel algorithm, the total number
of histograms needed to be maintained equals to: the number
of threads multiplied by the number of features. Hence, the
parallelism granularity, finding best split by enumeration or by
histograms, etc., also need to adapt to this difference in order
to achieve high computation resource utilization. Existing
systems are either specifically optimized for a single machine
or performing badly in high dimensional applications.

3.2 Parallelism Granularity
The key granularities for the parallelism include three levels:
(i) node level parallelism, (ii) feature level parallelism and
(iii) value level parallelism. In the node level parallelism,
one thread is dedicated to finding the best split of a node,
and hence it evaluates the gains of all the values for all the
features in a node. In the feature level parallelism, one thread
is dedicated to finding the best value for only one feature of a
node. Hence, one thread evaluates the gains of all the values
for one feature of a node. In the value level parallelism, one
thread evaluates the gain of one value of a feature in a node.
The node level and feature level parallelism are often adapted
by multi-core CPU based training algorithms. The mainstream

GPU implementations use the value level parallelism which is
the finest granularity of parallelism in finding the best split.

3.3 Training Data Partitioning
When the training problem is tackled by multiple GPUs or
multiple CPUs, the training data set needs to be partitioned.
There are three ways of partitioning the data: instance based
partitioning, feature based partitioning, and hybrid instance
and feature based partitioning. Instance based partitioning as-
signs a number of training instances to a machine, and the rest
to the other machines. The benefit of this way of partitioning
is that each machine has the whole information of the instance
stored in it. Hence, when computing the training error for an
instance, the machine storing the instance can easily compute
it. In comparison, feature based partitioning assigns all the
values of a number of features to one machine. Thus, com-
puting the training error is much more difficult, as a machine
does not have all the information of an instance. However, the
advantage of the feature based partitioning is that a machine
can easily find the best split value of a feature, as all the feature
values of the training data are stored together. The hybrid par-
titioning approach considers the training data set as a matrix,
and each GPU/machine handles a block or tile [Vasiloudis
et al., 2019]. The mainstream GBDT systems user either in-
stance based partitioning or feature based partitioning. The
hybrid partitioning approach is not widely adopted, due to the
implementation and maintenance complexity.

3.4 GBDT Training on CPUs
On the parallel GBDT training on CPUs, irregular tree struc-
ture leads to a number of challenges in designing an efficient
GBDT library. First, due to the nature of tree structures, the
memory access pattern of GBDT training is irregular. The
training instances are divided into different nodes after each
splitting. Thus, it is hard to guarantee continuous memory read
and write operations when accessing the instances in a node.
The irregular memory accesses can significantly degrade the
efficiency of the training process. Second, sorting feature
values during the GBDT training may be very costly. The
feature values of every node usually need to be sorted in order
to speed up the enumeration of possible split points. Since
every feature in every node needs to be sorted, the number of
sorting operations with small inputs is huge when handling
high dimensional problems. Therefore, the total number of
sorting operations equals to: the number of nodes multiplied
by the number of features, which is huge for high dimensional
problems. Lastly, it is hard to design a workload balanced
parallel algorithm. The number of nodes in each depth may be
different and the number of instances also varies in different
nodes. The data parallel granularity changes as the tree grows.

To address those challenges, the existing libraries such as
XGBoost, LightGBM and CatBoost can run on CPUs in paral-
lel and adopt different designs on parallelism, node split and
training data partitioning. XGBoost has the best scalability
to the number of machines, LightGBM prunes unimportant
instances and features during training, and CatBoost aims to
train trees for faster prediction. Basically, XGBoost finds
the best split points for multiple attributes of multiple nodes
concurrently. In other words, the GBDT systems on CPUs



use both attribute level and node level parallelism, which may
result in more than enough threads to occupy the CPUs. Light-
GBM and CatBoost have similar parallelism principles as
XGBoost. The key difference is that LightGBM eliminates
some instances with small gradients and combines correlated
attributes, and CatBoost trains the so-called oblivious trees
where an identical split point is used in the whole level of a tree.
Recent studies exploit both value-level parallel and feature-
level parallelism at different stages of the training [Peng et al.,
2019], and exploit bit-level optimization for GBDTs [Devos
et al., 2019]. The authors showed that the proposed algo-
rithms can outperform CPU-based XGBoost and LightGBM.
Along with the mainstream GBDT libraries, there is much
research on training decision trees on CPUs. For example,
Panda et al. (2009) leveraged the MapReduce framework for
learning decision trees. Tyree et al. (2011) designed a method
to parallel boosted regression trees for webpage ranking. Si et
al. (2017) introduced a variant of GBDT algorithm for high
dimensional sparse output.

3.5 GBDT Training on GPUs
Due to the architectural differences between CPUs and GPUs,
a lot of work has been done on optimizing parallelism, node
split and training data partitioning of GBDT training in order
to exploit the GPU power. Existing GBDT systems which
can run on GPUs include XGBoost, LightGBM, CatBoost and
ThunderGBM. Here, we present their key ideas of parallelism
on GPUs. Similar to the CPU version, XGBoost on GPUs also
uses attribute level and node level parallelism. For attribute
level parallelism, a GPU thread block is for computing the
best split point of an attribute. For node level parallelism, XG-
Boost uses node interleaving techniques on GPUs [Mitchell
and Frank, 2017]. However, XGBoost requires reserving many
copies of the gradient of each instance, where the number of
copies equals to the number of nodes to split. Moreover, they
use the dense data format for the training data set, which can
easily track back the attribute of the best split point. Therefore,
this way of parallelism on GPUs requires too much GPU mem-
ory and cannot handle large data sets. To tackle this problem,
XGBoost applies the histogram based approximation to reduce
the memory consumption. LightGBM and CatBoost also use
finding the best split points approximately to avoid consuming
too much memory while enumerating all the possible split
points. ThunderGBM is the latest GBDT library on GPUs.
It supports multiple GPUs and has been reported to produce
comparable models while faster than the other libraries. Thun-
derGBM can handle high dimensional data efficiently, while
the other libraries fail [Wen et al., 2020].

There is also research on accelerating decision tree train-
ing using GPUs, although not specifically for GBDTs. For
a random forest, Grahn et al. (2011) proposed to use a GPU
thread to train each decision tree. Since the trees do not have a
dependency on each other unlike GBDTs, they can be trained
in parallel. Nasridinov et al. (2014) developed a GPU-based
algorithm to compute the information gain of each split point
of a node. Lo et al. (2014) proposed to split one node per
iteration. The values of each attribute for all the instances are
sorted in the node. However, GPU resources can be under-
utilized, since the level of parallelism is notably low. Strnad

and Nerat (2016) took advantage of three levels of parallelism
in the GPU computing: 1) evaluating multiple split points
simultaneously, 2) finding the best split point for multiple at-
tributes on a node in parallel, 3) finding the best attribute for
multiple nodes concurrently. Their algorithm launches many
kernels inside GPU kernels, which introduces significant over-
head. Moreover, the attribute values are repeatedly sorted for
every new node. Most of the above methods for training deci-
sion trees are implemented in the GPU version of the existing
GBDT systems such as XGBoost. The H2O system [Cook,
2016] adapts the GPU implementation of XGBoost. In con-
trast, Wen et al. (2018a; 2019) proposed approaches which
use data compression techniques to efficiently train GBDTs
and to support larger data sets.

Existing studies use GPUs to optimize the decision tree
prediction which is part of GBDT training when computing
the gradients. Sharp used GPUs for accelerating the decision
trees and forests prediction [Sharp, 2008]. The main idea is for
each GPU thread to predict the target value of a single instance,
which takes advantage of the massive thread parallelism on the
GPU. Like Sharp’s algorithm, Birkbeck et al. (2011) studied
a GPU-based algorithm for the decision tree prediction. The
decision tree is stored in GPU texture memory to improve
efficiency.

3.6 System Comparison
Table 1 summarizes the system features of GBDT training
algorithms on GPUs. Systems support different features in
parallelism, handling sparsity data and node split.

Tabel 2 shows the performance comparison between exist-
ing GBDTs implementations downloaded on 4 Jan 2021. We
conducted the experiments on a machine running Linux with
two Xeon E5-2640v4 10 core CPUs, 256GB main memory and
one Tesla Pascal P100 GPU of 12GB memory. The data sets
are publicly available from the LIBSVM website. The predic-
tion accuracies are similar between different libraries in all the
experiments. LightGBM and CatBoost tend to have lower pre-
diction accuracy compared with XGBoost and ThunderGBM.
We have two major observations in terms of efficiency from
the results. First, compared with running on CPUs, all the
libraries can gain significant improvement in efficiency by run-
ning on GPUs. Second, LightGBM appears to usually work
better than other existing libraries when running on CPUs,
while ThunderGBM has a better performance when running
on GPUs especially on high dimensional data and on large
data sets. The GPU implementation of CatBoost is excellent,
but we also observed that its GPU memory consumption is
significantly higher than other implementations. Hence, Cat-
Boost ran out of memory (denoted by “oom”) on the news20
data set which has about 60 thousand dimensions.

4 Distributed GBDT Training
The current GBDT systems such as XGBoost, LightGBM,
Spark MLlib and DimBoost can run on a distributed environ-
ment. They use the instance based data partitioning, where

1https://github.com/Microsoft/LightGBM/
2https://catboost.ai/#benchmark
3https://github.com/Xtra-Computing/thundergbm



system
name

sparsity
aware

multi-gpu
support

find exact
split points

support
text data

compress
data

regular
tree

best
first

distributed
gpus

categorical
preprocessing

xgboost 3 3 7 7 7 3 3 3 7
lightgbm 3 7 7 7 7 3 3 3 3
catboost 7 3 7 3 7 7 7 7 3

thundergbm 3 3 3 7 3 3 7 7 7

Table 1: Comparison between existing GPU implementations of GBDTs. XGBoost on GPU is considered not supporting finding exact split
points, as it either runs out of memory or produces extremely large RMSE.

data set Training on CPUs only (sec) Training accelerated with GPUs (sec)
name card. dim. XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost ThunderGBM

abalone 4177 8 1.3 0.1 0.4 1.3 1.2 1.8 0.72
covetype 581K 54 3.1 4.3 3.7 1.0 11 1.5 1.7
cpusmall 8192 12 1.4 0.1 0.5 1.4 1.2 1.8 0.7
insurance 13M 35 23 27 47 9 25 10 6

higgs 11M 28 45 48 39 10 40 8 6.6
news20 16K 62K 287 15.4 oom 109 16.5 oom 16.5

susy 5M 18 17 35 22 1.9 28 3.6 3.1

Table 2: Efficiency comparison between existing GBDTs implementations (downloaded on 4 Jan 2021)

each machine stores a number of training instances. In the
following, we first discuss key system issues including load
balancing, communication of different data partitioning, and
heterogeneous clusters, followed by system comparison.

4.1 Load Balancing
Load balancing in terms of the number of instances or
features. The instance based data partitioning divides the
training data in the following manner. Suppose the cluster has
two machines, the instance based data partitioning assigns n

2
instances to one machine and the remaining training instances
to the second machine. The feature based data partitioning
assigns d

2 features to one machine and the remaining features
to the second machine.

Load balancing in terms of the number of feature values.
An alternative way of balancing the workload is through the
number of feature values. For instance based data partitioning,
a number (denoted by n1) of training instances are assigned to
one machine and the remaining (n−n1) training instances are
assigned to the second machine, such that the total number of
feature values in each of the machines is the same or similar.
For feature based data partitioning, a number (denoted by
d1) of features are assigned to a machine and the remaining
(d− d1) features are assigned to another machine, such that
the two machines have the similar number of feature values.

4.2 Network Communication
Network communication is mainly from two aspects: con-
structing the histogram for a feature and finding the best fea-
ture among all the features. We present them in the two ways
of partitioning data.

Instance based data partitioning. The values of a feature
are distributed in different machines. Hence, finding the best
split value for a feature requires network communication be-
tween machines. The instance based data partitioning cannot

XGBoost (All Reduce)
reduce

LightGBM
(Reduce Scatter)

DimBoost
(Parameter Server)

reduce push

MLlib (Map Reduce)

reducemap

Figure 1: Different ways of communication in GBDT training

support finding the best split point by enumeration, since a
machine does not have all the available information about the
feature to perform the enumeration. Hence, we only discuss
how to find the best split using histogram based approxima-
tion [Jiang et al., 2018]. The process of constructing the
histogram for a feature works as follows. First, each machine
constructs a local histogram for a feature using the instances
stored locally. Then, the local histograms for a feature from
each machine are aggregated by a centralized server in order
to construct the histogram of the feature. The best split point
of the feature can be computed by the server. Finally, the best
split points of each feature are compared in the centralized
server, and the best feature is selected.

Feature based data partitioning. The values of a feature
are fully stored in one machine. Hence, finding the best split
value for a feature can be handled locally. Then, obtaining
the best feature is simply collecting the best split value of
each feature and to select the feature with the maximum gain.
One question that may be raised is that one machine may
not be able to store the values of a feature. This question is
valid, but in reality, one machine has sufficient memory to
store all the values of a feature. Let us take a more concrete
example. Suppose a machine has only 10GB of memory for
GBDT training, and each feature value requires 4 bytes. Then,
a machine can store about 2.5 billion feature values, which
indicates that the training data set has more than 2.5 billion
instances.

Figure 1 shows four typical ways of communications used in
the four GBDT training systems. XGBoost, DimBoost [Jiang



GBDT distributed
implementation

Hadoop
support

Spark
support

SGE
support

instance based
data partition

feature based
data partition

communication
design

XGBoost 3 3 3 3 7 centralized
LightGBM 3 3 7 3 3 decentralized
MLlib [Meng and et al., 2016] 3 3 7 3 7 centralized
DimBoost [Jiang et al., 2018] 3 7 7 3 7 centralized

Table 3: Comparison between existing implementations of GBDTs on some major distributed environments.

GBDT training
algorithm

communication cost proportional to

# of ins. # of dim.
user control
parameter

XGBoost 7 3 7
LightGBM 7 3 7
CatBoost 7 3 7
ThunderGBM 3 7 7
MLlib 7 3 7
DimBoost 7 3 7
Vero 3 7 7
PV-Tree 7 7 3

Table 4: Main factor of communication complexity

et al., 2018] and Spark MLlib [Meng and et al., 2016] uses
the centralized design, where the global information needs to
be sent to one or multiple servers. In comparison, LightGBM
uses a decentralized method for data communication. Thun-
derGBM also uses the centralized design for a machine with
multiple GPUs, but does not support distributed computing.

Communication Complexity Analysis
Meng et al. (2016) proposed a communication efficient par-
allel decision tree training algorithm called “PV-Tree” which
can be used in GBDT training as well. Here, we compare
the communication complexity of different algorithms for
training GBDTs. The most common ways of partitioning the
training instances are: feature based partitioning and instance
based partitioning [Fu et al., 2019]. Feature based partition-
ing does not require the whole histogram to be sent to other
machines. Instead, only the local best split is sent out in
order to identify the global best split. The main communica-
tion cost is broadcasting the instance placement after a node
split, which requires sending out all the IDs of the training
instances. Therefore, the communication on the tree construc-
tion is O(N ×W × L), where N is the number of training
instances, W is the number of machines and L is the number
of layers of the trees (a.k.a. tree depth). In comparison, the
main communication cost of the instance based partitioning
is sending out the histograms to other machines. We denote
the size of the histograms of a tree node by Sizehist. Then
the communication cost is O(Sizehist ×W × 2L−1). The
size of the histograms of a tree node depends on the number
of dimensions D, the number of candidate splits per feature q,
and the number of classes of the learning problem C.

4.3 System Comparison
Tabel 3 shows the features of some existing libraries which
can run on a distributed environment. We investigate whether

the libraries can run on some major distributed environments
such as Apache Hadoop, Apache Spark and SGE (Sun Grid
Engine). A few observations can be made. First, XGBoost
has a complete development on the distributed systems. It
supports many different distributed environments. Second, all
the four libraries adopt the instance based data partition, where
the instances are divided horizontally to different machines.
Third, apart from LightGBM, the other libraries implement
data communication in a centralized way. Although the in-
stance based data partition and the centralized design seem to
be the mainstreams in the implementations of GBDTs, there
is no final conclusion as to which technique is better.

For performance comparison, the previous study [Jiang et
al., 2018] has presented some results. In the study, they com-
pared DimBoost with XGBoost, LightGBM, and MLlib. Two
clusters and three data sets are used in the experiments. From
the results, MLlib is much slower than the other libraries,
and DimBoost outperforms other libraries. Furthermore, Dim-
Boost achieves the fastest convergence rate, followed by Light-
GBM. XGBoost converges slowly for high dimensional data.

5 Challenges and Opportunities
We present the challenges and opportunities GBDT systems.

5.1 Challenges
Benchmark for GBDT. Although there have been quite
some efforts in developing libraries for GBDTs, a fair and
robust benchmark is still a quite challenging open problem.
Dorogush et al. (2018b) pointed out the main problems of cur-
rent approaches of benchmarking GBDT libraries. We believe
that a fair benchmark will be important for further develop-
ment, evaluations and optimizations of GBDT libraries.
Privacy concerns. The GBDT model is relatively transpar-
ent [Li et al., 2020b]. When the model is deployed, users can
extract information relatively easily from the decision trees.
Training data is very precious. Even worse, data are dispersed
over different organizations in reality. For example, people
tend to go to nearby hospitals, and the patient records in dif-
ferent hospitals can become “island”. Hospitals may benefit
from each other if they can collaborate to train a model with
all their data as input. However, it is a non-trivial task for
organizations to combine their data. For example, to protect
user data privacy, data regulations and policies such as General
Data Protection Regulation (GDPR) have posed restrictions
on data movement among different parties. Recently, much
research efforts have been devoted to developing new learning
algorithms in the federated learning setting [Li et al., 2020a].
It is still an open problem of how to develop GBDT systems
under the context of federated learning.



Automated feature engineering and parameter tuning.
Features and hyper-parameters of GBDTs such as the number
of trees and tree depths often have a significant impact on the
model efficacy. Feature augmentation has shown improvement
for the predictive accuracy of GBDTs [Tannor and Rokach,
2019]. Therefore, features and hyper-parameters need to be
carefully chosen. For hyper-parameter tuning, grid search
technique is rather costly. One may develop/use Bayesian
optimization to automate hyper-parameter tuning. Moreover,
GBDTs rely on (handcrafted) feature engineering. To make
machine learning more accessible to wider communities, au-
tomatic feature engineering is an emerging area. Feature-
tools [Kanter and Veeramachaneni, 2015] is an initiative of
the area, but more techniques and research are needed in the
field. GBDT systems with automatic feature engineering and
parameter tend to be more useful for real-world applications.

Incremental learning and online learning. A total train-
ing may not be practical in some scenarios. One example is
that the data is streaming data, where the training data is con-
tinuously generated. For such scenarios, incremental learning
and online learning can be more effective. A recent proposal
along this direction is that a new tree is built to correct the
errors of the newly arrived data [He and et al., 2013]. How-
ever, this approach may result in a large number of trees, as
the training proceeds. Ke et al. (2019) proposed techniques to
extract knowledge from GBDTs to learn a Neural Network,
in order to make use of the property of Neural Networks for
online learning. However, retaining the tree structure may be
crucial for applications with real-time inference constraints.
The existing GBDT systems do not support online or incre-
mental learning. Hence, more research needs to be carried out
to improve the current GBDT systems for online learning.

Approximation. When the number of training instances is
too large, the training process is either too slow or consumes
too much memory. The common approximation technique is
using histograms to approximate the data. Also, only a number
of representative split points are considered. Thus, the com-
putation cost is reduced. However, the memory consumption
issue is not totally addressed for high dimensional data, since
each dimension requires building a histogram. The memory
consumption for the histograms is huge and may exceed the
memory limits of existing GBDT systems like CatBoost. Thus,
more approximation mechanisms can be developed with the
minimum loss in the precision of the trained model.

5.2 Opportunities
Fast networks. Remote Direct Memory Access (RDMA)
offers high performance networking fabrics in clusters and
data centers. RDMA achieves very low round-trip latency
(several µs), high throughput, and very low (almost zero) CPU
overhead. For training large-scale GBDTs, RDMA can be
leveraged to reduce the network bottleneck.

Heterogeneous Cluster with GPUs. Nowadays, many
servers in a cluster are equipped with both CPUs and GPUs.
Existing systems such as XGBoost, LightGBM and CatBoost
can make use of both CPUs and GPUs of the servers. The
current strategies of those systems to use CPUs and GPUs are
standard. More specifically, the current systems use CPUs

for data preparation and/or node splitting and use GPUs for
finding the best split points of a node, as finding the best split
is the most computationally expensive operation. More re-
search on unleashing the capacity of CPUs and GPUs will be
compelling in training GBDTs collaboratively.

FPGA on the Cloud. FPGAs have been widely adopted in
industries to accelerate applications, due to their high energy
efficiency and performance. Cloud FPGA providers such as
Amazon, Baidu, and Tencent have also offered virtual ma-
chines with FPGAs. Some preliminary study [Tanaka and et
al., 2018] used FPGA to accelerate GBDT, which has demon-
strated promising results. More work can be done along this
direction to further power the GBDT systems.

The emergence of artificial intelligence accelerators. Be-
sides GPUs and FPGAs, AI specialized hardware accelerators
are emerging in recent years, such as Tensor Cores and Google
TPU4. These hardware accelerators have been used to acceler-
ate machine learning applications, especially for deep learning
in the cloud. The experiences and knowledge created from
those specialized architectures lead to new thoughts in further
improving the energy efficiency of GBDT systems. It is worth
to explore whether specialized hardware is cost-effective for
GBDTs in terms of training and prediction efficiency.

6 Conclusions
Fast GBDT systems is a hot research topic that has been gain-
ing considerable popularity in recent years. A number of
systems have been developed to improve the efficiency of
GBDT training on a single machine with multi-core CPUs and
GPUs, as well as on a cluster of servers. To the best of our
knowledge, there is no systematic survey among those GBDT
training systems. In this work, we have presented a timely
survey study to summarize the existing effort and point out
the future direction. We have compared the differences and
common designs among those GBDT systems. Moreover, we
present the comparison on system features as well as training
performance. We believe that hardware-software codesign is
an important aspect for fast GBDT systems. More importantly,
we have pointed out a number of challenges and opportunities,
which call for the effort from machine learning, computer
architecture and computer system communities.
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