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Abstract—We study the following location ranking problem.
Given a set of existing facilities and a set of customers, we rank
a set of candidate locations based on their potential influences,
where the potential influence of a candidate location is defined as
the number of customers the candidate location can attract. This
problem is important in deciding where to establish a new facility.
We formulate the problem as the potential influence location
ranking query and analyze its basic properties. The analysis
shows that the query is computationally expensive and efficient
query processing techniques are needed. We propose a nearest
location circle algorithm and a Voronoi diagram based algorithm
to process the query. Experiments on both real and synthetic
datasets show that the proposed algorithms are effective and
efficient.

Index Terms—Decision support system, facility location selec-
tion, nearest neighbor query, ranking query

I. INTRODUCTION

Suppose a convenience store chain is to open a new store
and would like it to attract as many customers as possible
to maximize its profit. Assume that customers are attracted
by their respective nearest convenience stores. Then the new
store should be open at a place that is nearest to the largest
number of customers. Usually, there are a set of candidate
locations for the establishment of the new store. We define
the number of customers that the new store can attract if it is
established at candidate location c as the potential influence
of c, and study the problem of ranking the candidate locations
based on their potential influences. The ranking result can
be fed to further evaluation procedure to decide where to
establish the new store. The location ranking problem has
many applications since many businesses or governmental
organizations that manage large numbers of facilities may face
the problem of adding new facilities (e.g., McDonald’s may
want to add a restaurant to compete with other fast food chains
such as KFC).

In general, the above location ranking problem can be
described as follows. Given a set of existing facility locations,
a set of residential customer locations, and a set of candidate
locations for establishing a new facility, the potential influence
location ranking problem ranks the candidate locations based
on their influences. For example, in Fig. 1 where stars denote
candidate locations, pentagons denote existing facilities and
circles denote customers, c1, ..., c6 as six candidate locations
whose influence values are 2, 2, 4, 3, 2 and 3. Therefore, the

Fig. 1. Example for influence ranking

ranking order of the candidate locations is c3, c4, c6, c1, c2,
c5.

Note that the potential influence location ranking problem
provides a primary result for deciding which location should
be used for establishing the new facility. This problem could
also be extended to support decisions on non-geographic
location decision problems such as product pricing and profile
market analysis. For example, when introducing a new model
of laptop to the market, a company may want to rank all can-
didate models based on their potential of attracting customers.
This potential can be modeled as the influence where the
distance is the distance between the expectations of customers
and the offer of the product. Thus, the ranking problem is
practical for many decision making related applications in real
world and designing efficient algorithms for it is essential.

In this paper, we formulate the above described problem
as the potential influence location ranking query and propose
algorithms to process the query efficiently. Contributions of
the paper are as follow:

• We propose a novel location ranking query for deciding
where to establish a new facility.

• We propose a nearest location circle algorithm and a
Voronoi diagram based algorithm to process the query.

• We perform extensive experiments to validate the pro-
posed algorithms and to show their efficiency.

The rest of the paper is organized as follows. We first



review related works in Section II, then formally define the
ranking query in Section III. We introduce a nearest location
circle algorithm and a Voronoi diagram based algorithm in
Section IV. In section V, experimental results on the proposed
algorithms are presented. Finally, we conclude the paper in
Section VI.

II. RELATED WORKS

Our location ranking query is closely related to the reverse
nearest neighbor (RNN) query [1], which retrieves the objects
perceiving the query object as one of their nearest neighbors.
It has many applications in geographic information systems
(GIS), military simulation systems, and decision support sys-
tems, etc. Thus, this query type is widely studied [2, 3, 4, 5,
6, 7]. Based on whether the query objects and the retrieved
objects belong to the same dataset, the RNN query can be
classified into the Monochromatic RNN (MRNN) query and the
Bichromatic RNN (BRNN) query. The MRNN query retrieves
RNNs of the query object from the dataset that contains the
query object. The TPL algorithm [6] is an efficient the MRNN
query processing algorithm in terms of both response time and
I/O cost. The BRNN query retrieves objects from datasets
that do not contain the query object. The TPL algorithm
cannot be applied straightforwardly to process the BRNN
query since it evolves mutual pruning between the query object
and retrieved objects. Korn and Muthukrishnan [1] propose
a naive solution to handle the BRNN query by computing
the nearest distances between objects in two sets, drawing
a circle for each potential reverse nearest object, and then
checking which circles enclose the query object. Stanoi et al.
[5] process BRNN by introducing a Voronoi diagram based
pruning algorithm. Chemma et al. [7] extend this Voronoi
diagram based algorithm to find an influence zone on-the-fly
for every query object. Objects in the influence zone of a query
object form the set of the reverse k nearest neighbors of the
query object.

There are also studies of the RNN query under various
problem settings. For example, the continuous BRNN query
focuses on continuously monitoring the minimum distance
relationships [9, 10]. It differs from many other queries such
as the continuous intersection join query [8], which finds
intersection relations between moving objects. A most recent
work on monitoring RNN for moving objects is [11], which
gives a detailed review on existing techniques and proposes
advanced solutions for problems in both Euclidean space and
spatial networks.

Using the cardinality of an object’s BRNN set as an
indicator of the object’s influence, several studies have given
results in different facility location problems. In [12] and [13],
the authors aim at finding the top-t most influential objects
in a given region. Their problem settings differ from ours
in that they select influential locations from existing facilities
in a given region, while we rank locations in a candidate
location set based on the influence of a new facility if added
there. This difference makes their priority queue and k-d tree
based approach inapplicable in our problem. Wong et al. [14]

propose a nearest location circle based solution to find the
optimal region for a new facility to be establish in. This
solution cannot solve our problem directly since it finds a
region instead of suggesting a optimal candidate location.
Ghaemi et al. study the problem in networks. A more recent
study [16] proposes two branch and bound algorithms on
selecting top-k most influential locations for a new facility.
However, instead of picking up k superior locations, our
problem here centers on ranking all candidates based on their
potential influences. Our ranking query is a more general
query. Therefore, solutions tuned for top-k selection in that
paper do not apply.

III. PRELIMINARIES

We assume a set C of candidate locations, a set F of
existing facility locations and a set M of customer locaitons.

Definition 1 (Bichromatic Reverse Nearest Neighbor)
Given two location datasets F and M , for a location f (f ∈
F ), its bichromatic reverse nearest neighbors, denoted as
BRNN(f, F,M), is a subset of M containing every loca-
tion m (m ∈ M) that views f as its nearest neighbor, i.e.,
BRNN(f, F,M) = {m ∈ M | ∀f ′ ∈ F \ {f}, d(f,m) ≤
d(f ′,m)}, where d(f,m) is the Euclidean distance between f
and m.

Definition 2 (Influenced Relationship) Given two location
datasets F and M , for a location f (f ∈ F ) and a location m
(m ∈ BRNN(f, F,M)), m is influenced by f .

Definition 3 (Influence Value) Given two location datasets
F and M , for a location f (f ∈ F ), its influence value, denoted
as Inf(f, F,M), is the number of its bichromatic reverse near-
est neighbors in M , i.e. Inf(f, F,M) = | BRNN(f, F,M) |.

Definition 4 (Potential Influence Value) Given three lo-
cation datasets C, F and M , for a location c (c ∈ C), its
potential influence value, denoted as InfP (c, F,M), is the
influence value it earns if it is added to F , i.e. InfP (c, F,M) =
Inf(c, F ∪ {c},M).

Definition 5 (Potential Influence Location Ranking
Query) Given three location datasets C, F and M , the po-
tential influence location ranking query ranks locations in
C according to their potential influence values in a descending
order.

Note that the potential influence value of a candidate
location is computed by assuming that the candidate location is
added to the existing facility set, which differs from previously
studied problems, where influence values of existing facilities
are the research focus. Applying conventional algorithms for
BRNN queries to compute potential influence values will
result in forming facility datasets for each candidate location
and is therefore inefficient. To avoid such problem, we propose
algorithms that can compute the influence values without
forming a facility datasets for every candidate location.

IV. PROPOSED SOLUTION

In this section, two algorithms for processing the potential
influence location ranking query are introduced.



Fig. 2. An example of the NLC Algorithm

A. A Nearest Location Circle (NLC) Algorithm

NLC is based on the observation that a candidate location
c can influence a customer location m if and only if the
Euclidean distance between c and m, denoted as d(c,m), is no
larger than the minimum distance between m and any existing
facility f , denoted by m.dist.

Theorem 1. If d(c,m) ≤ m.dist, then m is influenced by c.
Proof If d(c,m) ≤ m.dist, then for any object s ∈ F ∪{c},

d(s,m) ≥ d(c,m). According to Definitions 1 and 2, m is in
BRNN(c, F ∪ {c},M). Therefore, m is influenced by c.

Based on Theorem 1, NLC works as follows. First, NLC
computes m.dist for every customer location m, then for every
candidate location c, NLC checks every customer location m
whether d(c,m) ≤ m.dist. If so, NLC increases the potential
influence value of c by 1.

Figure 2 gives an example for the algorithm, where the
number of circles enclosing c represents the potential influence
value of c. In this example, the potential influence values of
c1, c2, c3, c4, c5, c6 are 2, 3, 4, 3, 2 and 2, respectively.
Algorithm 1 gives the pseudo-code of NLC, where c.InfP
denotes the potential influence value of c. Straightforwardly,
the algorithm’s computational complexity is O(| F ||M | + |
C ||M | + | C | log(| C |)) = O(| F ||M | + | C ||M |).

Algorithm 1: Nearest Location Circle Algorithm
for all m ∈M do

for all f ∈ F do
if m.dist > d(f,m) then
m.dist← d(f,m)

for all c ∈ C do
for all m ∈M do

if m.dist ≥ d(c,m) then
c.InfP ++

sort C based on c.InfP

Fig. 3. An example for VAR on computing influence value for one c

B. A Voronoi-Approximate-Refinement (VAR) Algorithm

VAR tries to improve the query processing efficiency by
reducing the search space for finding candidate location’s
BRNNs. To compute the influence value of a candidate lo-
cation c, instead of considering all customer locations in M ,
VAR only checks the the customer locations that are close
to m, since customer locations faraway may be influenced
by the existing facilities and thus cannot be influenced by c.
The idea is that we use the geometric relationship between
c and the existing facilities to prune some customer locations
from influence value computation. Furthermore, since only the
existing facilities that are close to c can affect which customers
are influenced by c, we also use the restricted region on the
customer locations to prune faraway existing facilities when
finding which existing facilities affect the influence value of
c.

The detailed steps of VAR are as follows:

a) For each candidate location c, use c as the origin of
a coordinate system whose two axes parallel with the
original axes, , and find four nearest existing facilities in
the four quadrants.

b) Draw the perpendicular bisectors between c and the found
existing facilities. The four intersections between the
bisectors are called the Voronoi points.

c) Use the midpoints between c and the Voronoi points
as the centers and the distances between them as the
diameters to draw four circles. Bound these circles
with a minimal bounding rectangle (MBR), denoted as
MBRapp (cf. Fig. 3).

d) Double the distances between c and the lower left and
upper right vertices of MBRapp and form a new MBR,
denoted as MBRref .

e) For each existing facility f ∈ MBRref and customer
m ∈ MBRapp, compute m.dist and check whether
d(c,m) ≤ m.dist. If so, increase the influence value
c.InfP by 1.



f) After (a) to (e) are performed on every candidate location,
sort the candidate locations based on the influence values.

The following theorems guarantee the correctness of VAR.
Theorem 2. If a customer m is influenced by a candidate
location c, then m ∈MBRapp.

Proof If m is influenced by c, then according to Definition
2, m ∈ BRNN(c, F ∪ {c},M). According to the definition
of the Voronoi diagram, m is in the Voronoi diagram formed
by c and the existing facilities. Since this Voronoi diagram is
contained in MBRapp, m ∈MBRapp.

Theorem 3. Given a customer m ∈MBRapp, if an existing
facility f influences m, then f ∈MBRref .

Proof Assume that f is outside of MBRref and f influ-
ences m ∈ MBRapp. Let the midpoint between c and f
be p. Then p lies outside of MBRapp. Since f influences
m ∈ MBRapp, the bisector between c and f intersects with
the aforementioned diameters. Let o′ be the intersecting point,
R be the corresponding circle, and lc,p be the diameter. Points
p, c, and o′ form a right rectangle with circumscribing circle
R′ maintaining a diameter lc,o′ . Since o′ is between c and o, R
must contain R′. Thus, p ∈MBRapp which is in contradiction
with the assumption. Therefore, the theorem is proved.

According to Theorem 2 and Theorem 3, only the customers
in MBRapp and the existing facilities in MBRref are needed
by further computation. Since MBRs are supported natively
by the R-Tree, we can index M and F with two R-Trees,
and then perform range queries to retrieve relevant customers
and existing facilities when needed. Furthermore, instead of
computing all customers in MBRapp, we can additionally
perform pruning after retrieving a customer from the R-Tree by
checking whether it lies in the approximated Voronoi diagram
formed by the aforementioned 4 Voronoi points, since only
the customers in this region can be influenced by c. We call
the algorithm with this enhancement VAR-VE. An example
for VAR on computing the potential influence value for a
specific candidate location is shown in Fig. 3. Algorithm 2
gives the pseudo-code of VAR-VE. Simply ignoring line 6
of the algorithm will result in the algorithm of VAR. VAR-
VE’s computational complexity is between O(| C || F |) and
O(| C || F ||M |), depending on the pruning performance on
M and F .

Algorithm 2: Voronoi Approximate Refinement Algorithm
Index F and M with R-Trees
for all c ∈ C do

c as the origin, find nearest f in four quadrants
build MBRapp and MBRref as in Section IV.B
for all m ∈MBRapp do

if m lies in region formed by Voronoi points then
for all f ∈MBRref do

if m.dist > d(f,m) then
m.dist← d(f,m)

if m.dist ≥ d(c,m) then
c.InfP ++

sort C based on c.InfP
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Fig. 4. CPU time versus. Varying C, F=6000, M=24000
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Fig. 5. CPU time versus. Varying F , C=100, M=6000

V. EXPERIMENTS

We empirically study the performance of the proposed
algorithms using real datasets and synthetic datasets with
Uniform and Gaussian distributions.

A. Experimental Settings

The experiments are conducted on a personal computer with
a 2.1GHz CPU and 2.0 GB main memory. Implementations are
in Visual Studio 2008 using C++. Real datasets are locations
in US and Mexico retrieved from the R-Tree Portal [17].
Locations in synthetic datasets are generated in a domain of
2048 × 2048. We use both Uniform and Gaussian distributed
synthetic datasets. For Gaussian distribution, the parameters
used are µ = 0 and δ2 = 256. To confirm the effectiveness of
the enhancement on VAR of pruning customer locations using
approximated Voronoi diagrams, we test both VAR (without
line 6 in Algorithm 2) and VAR-VE.

B. Experiments on Real Datasets

Fig. 4 to 6 present the results on real datasets. In all
these figures, VAR-VE outperforms VAR by several orders
of magnitude, which verifies the effectiveness of the en-
hancement. In what follows, we will focus on comparing
NLC with VAR-VE. In Fig. 4, VAR-VE beats NLC by 5 to
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Fig. 6. CPU time versus. Varying F , C=100, M=6000
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Fig. 7. CPU time versus. Varying C, Uniform, F=10K, M=100K

10 times. Also, the performance of NLC varies little when
C grows. This is because NLC maintains a complexity of
O(| F ||M | + | C ||M |), and in scenario corresponding to
Fig. 4, C is constantly smaller than F , leaving | F || M | as
the major bottleneck.

In Fig. 5, it is observed that NLC beats VAR-VE when F
is relatively small, while it loses its advantages to VAR-VE
as F grows. Since VAR-VE relies on F to prune irrelevant
existing facilities and customers from further computations, it
is expected that the larger the F , the smaller the distances be-
tween each candidate location and its nearest existing facilities
in the 4 quadrants, and the smaller MBRapp and MBRref .
This promises better pruning efficiency and therefore enables
VAR-VE to improve its complexity from O(| C || F ||M |) to
O(| C || F |). Fig. 6 shows that the performance of both NLC
and VAR-VE degrades as M becomes larger, while VAR-VE
constantly outperforms NLC.

C. Experiments on Synthetic Datasets

The experimental results on Uniform datasets are presented
in Fig. 7 to 9, and the results on Gaussian datasets are shown
in Fig. 10 to 12.

As shown in these figures, all algorithms’ performance
degrades as datasets grow. VAR-VE again beats VAR with
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Fig. 8. CPU time versus. Varying F , Uniform, C=10K, M=100K
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Fig. 9. CPU time versus. Varying M ,Uniform, C=10K, F=10K

 1

 10

 100

 1000

5 10 50 100

el
as

p
ed

 t
im

e 
(s

)

candidate size, C (thousand)

NLC VAR VAR-VE

Fig. 10. CPU time versus. Varying C, Gaussian, F=10K, M=100K
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Fig. 11. CPU time versus. Varying F , Gaussian, C=10K, M=100K
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Fig. 12. CPU time versus. Varying M ,Gaussian, C=10K, F=10K

significant advantages.
In Fig. 8, as F becomes larger, the cost of VAR-VE first

decreases and then increases again. This trend is explained
as follows. As F grows, the pruning becomes more effective,
which reduces the complexity from O(| C || F || M |) to
O(| C || F |). But when F becomes huge, the growth of the
dataset size overweights the benefits it brings on computational
complexity. In Fig. 9, the performance of VAR-VE stays
almost static as M grows, which confirms the effectiveness
of pruning by using Voronoi-Approximate-Refinement and
Voronoi-pruning techniques. Consider Fig. 8 and Fig. 11. NLC
spends almost the same time on processing datasets of the
same sizes, while the performance of both VAR and VAR-
VE becomes uncompetitive in Gaussian datasets (Fig.10 to
12). This can be explained by the fact that VAR-VE relies
on range queries on R-Trees to prune unnecessary records
from computation, which means the cardinality of the range
query results influences the pruning performance. In Gaussian
distributed datasets, regions near the center of the distribution
may contain larger numbers of records, which affects the
efficiency of the Voronoi pruning process.

In summary, NLC is preferable when datasets are huge or
with Gaussian distribution (Fig. 10 to Fig. 12) since its per-

formance is almost irrelevant to dataset distribution, while in
other scenarios, (Fig. 4 to Fig. 9) VAR-VE is superior in terms
of CPU time. This enables us to choose a better solution when
facing different real-life application scenarios. Moreover, we
observe that no proposed algorithm achieves global superiority.
Thus there is considerable room of improvement for further
studies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the potential influence location
ranking query for new facility establishment. The study made
the contributions of formulating the query, proposing two
methods to process the query, and performing experiments
to validate the effectiveness of the proposed methods and
to show the algorithm efficiency. As for future work, we
will study ranking the candidate locations to support the
establishment of multiple new facilities at the same time,
and extending the query to other problem settings such as
considering movements of the customers or using network
distance in distance computation.
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