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Abstract—Given a classification problem with a large number
of classes, humans often compare features at different granu-
larities from coarse to fine to gradually recognize an object.
However, current deep models are generally trained to directly
make the final prediction, focusing on improving the ability of
the network to extract features without considering the inter-
pretability of the model. In this paper, we propose a multi-grained
interpretable network to imitate the reasoning process of humans.
The proposed network is equipped with techniques to assign
images with multi-grained labels, so as to train a tree-structured
classifier that learns features at different levels of granularity. The
proposed method can hierarchically classify objects in images
at different granularities, while providing a decision pathway
with multi-grained explanations for practitioners. Experimental
results demonstrate that our method achieves competitive pre-
diction accuracy on CUB-200-2011 and Stanford Cars datasets,
and simultaneously produces high-quality explanations of its
decisions. Moreover, our method shows higher robustness of the
learned features to adversarial examples generated by the FGSM
and PGD attacks.

I. INTRODUCTION

Despite their great success, the decision-making process of
current deep models lacks interpretability, which hinders their
applicability to high-stake problems in areas such as healthcare
and finance. To provide explanations for deep models, many
explainability methods [1], [2], [3] have been proposed to
decipher the predictions made by deep models. However,
these post-hoc methods are unable to provide sufficient de-
tails for explaining the complicated decision pathway of the
black-box model. Instead of explaining a black-box model,
many research works [4], [5], [6] aim to construct a self-
explainable model. Chen et al. [6] proposed a transparent
model by replacing the conventional extractive reasoning pro-
cess with a case-based reasoning process, which compares
the similarity between the input features and learned visual
feature vectors called “prototypes” to make predictions. Due
to the transparency of the case-based reasoning architecture,
the prototypes are also extended to other problems including
hierarchical classification and zero-shot classification [7], [8].
However, humans tend to hierarchically compare features of
different granularities to recognize objects [9], [10] as shown
in the top of Figure 1, which most of the current deep models
fail to imitate. Current deep learning models often make their
predictions for all the classes in a single go, as shown in the
bottom of Figure 1. Predicting classes in one layer without
distinction impedes the model to extract distinctive features
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Fig. 1. Comparison of the image recognition process performed by humans
and the deep model.

and hinders humans from understanding the decision-making
process of models.

In this paper, we propose a multi-grained interpretable
network to hierarchically classify objects at different granular-
ities. For an arbitrary dataset with a larger number of classes,
our method organizes the classes into different granularities
within a class hierarchy tree. In this tree, classes with similar
features are abstracted under the same parent node as a parent
class label of the input image. To simulate the process of
hierarchical recognition performed by humans, we construct
a tree-structured classifier based on the class hierarchy tree.
We initialize the prototype feature vectors for each node in
the class hierarchy tree to separately learn features at different
granularities. For each input example, our method looks for
the node where the input example belongs at each level of
the tree-structured classifier, and calculates the corresponding
loss at different granularities simultaneously during training.
When performing inference, our method first compares the
coarse-grained features to predict a high-level class label. Then
the fine-grained features are gradually exploited to achieve



the final precise prediction. Moreover, our method provides a
decision pathway with different granularity explanations for
practitioners.

We evaluate our method on two challenging fine-grained
classification datasets including CUB-200-2011 [11] and Stan-
ford Cars [12]. Experimental results show that our method
can achieve competitive performance compared to the state-
of-the-art methods. Moreover, our model is robust when
encountering adversarial examples generated by two popular
attacks: PGD [13] and FGSM [14]. To summarize, we make
the following three major contributions:

• We propose techniques to organize classes into different
granularities within a class hierarchy tree. In this tree, we
can assign multi-grained labels to input images.

• We develop a tree-structured classifier to hierarchically
classify input images, enabling the features to be learned
at different granularities. The prediction process provides
a decision pathway with different granularity explanations
for practitioners to interpret the decision-making process
of our model.

• We conduct experiments on two challenging datasets and
their corresponding adversarial examples to evaluate our
method. Experimental results show that our method im-
proves the predictive accuracy and provides high-quality
explanations, while learning robust features for resilience
to adversarial attacks.

II. RELATED WORK

Explainable artificial intelligence (XAI) has attracted much
attention within the deep learning community in recent years.
Many XAI research studies aim to develop approaches that
provide reasons behind a decision-making process. We can
categorize the XAI approaches into (i) post-hoc explainability
techniques and (ii) transparent models.

A. Post-hoc Explainability Techniques

Post-hoc techniques design algorithms to explain black-box
deep learning models including model-specific and model-
agnostic approaches. Model-agnostic approaches can be ex-
tended for applicability to any model. LIME [2] learns a
linear model locally around the prediction for its explainability.
SHAP [3] employs the game theory to assign each feature an
importance value for an individual prediction. In addition to
these local explanation methods, another method [15] trains a
transparent model, such as a decision tree, to approximate a
complex black-box model while maintaining high accuracy,
which is also model-agnostic. On the other hand, model-
specific approaches are proposed to explain specific models.
For example, DeconvNet was proposed to construct the max-
imum activation maps to locate the most effective parts of an
image for decisions made by a CNN [16]. To visualize the
strongest activations of the input image, many approaches [1],
[17], [18], [19] have been developed to generate a saliency
map by assigning an importance score for each input to explain
the prediction of deep models.

However, due to the complicated decision pathway of the
black-box model, it is difficult for the post-hoc methods
to provide sufficient details in their explanations. Therefore,
more research works focus on the development of transparent
models compared to post-hoc techniques.

B. Transparent Models

Transparent models aim to design transparent rules or
architectures to make the model self-explainable. Ross et al.
[4] trained models with input gradient penalties to change
the decision boundary. Thus, the method ensures that it can
make the right prediction based on the right reasons. Similarly,
Schramowski et al. [20] proposed an interactive learning
method to correct the model’s ambiguity related errors. To
construct a model with transparent rules, another line of work
[21] incorporates prior knowledge into the model training
process which enables the model to have strong generalization
ability and interpretability.

In addition to transparent rules, many research works focus
on improving the conventional architecture of deep models to
imitate the human reasoning process. Inspired by the human
vision system, a model named Saccader [22] combines both
the BagNet [23] and hard attention mechanism for classifica-
tion. To construct a model with reasoning process in a human-
understandable way, an autoencoder network [5] uses case-
based reasoning instead of conventional extractive reasoning
to generate explanations. Compared with the autoencoder
network, ProtoPNet [6] performs classification by learning
prototype feature vectors containing the local features in a
more flexible way. ProtoTree [24] is a variant of ProtoPNet,
which arranges the prototypes in a binary tree structure to
improve the interpretability. Inspired by the interpretability of
the prototype vectors, other methods [8], [7] extend the case-
based reasoning networks to other tasks including hierarchical
classification and zero-shot learning.

Our proposed method further improves the case-based rea-
soning process to simulate the hierarchical reasoning process
of humans. Although existing works [25], [26] also employ
cascade structure to improve the decision pathway of deep
models, our model trained with multi-grained labels exhibits
strong interpretability to provide hierarchical explanations.

III. METHODOLOGY

In this section, we elaborate the details of our proposed
multi-grained interpretable network. For obtaining multi-
grained labels to train a hierarchical classification network,
our method first organizes the classes into different granu-
larities with a class hierarchy tree. In this tree, the classes
are abstracted into parent classes with different granularities
as nodes in the tree, which enables an input image with a
fine-grained label to have multi-grained labels. Moreover, we
initialize the visual features named prototypes for each node
of the class hierarchy tree to construct a tree-structured clas-
sifier. The prototypes of our model are separately supervised
by multi-grained labels, which simultaneously decreases the
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(a) The merging process of the agglomerative clus-
tering is represented by a binary tree.
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(c) The constructed class hierarchy tree on CUB-
200-2011 dataset.

Fig. 2. A class hierarchy tree with a depth of 4 is built by merging the clustering binary tree with two distances.

coupling between features and enables prototypes to learn
more distinctive features.

During inference, our method first exploits the coarse fea-
tures to predict a high-level class label, and then gradually
absorbs finer features to reach a detailed level prediction. In the
process, we can find a branch of the tree that corresponds to a
decision pathway of the prediction. Consequently, our method
provides a decision pathway with multi-grained explanations
for practitioners to better understand the inference process of
the model. Below, we provide details of each key component
of our proposed network.

A. Class Hierarchy Tree Construction

Current deep models are often trained to output an accurate
prediction from a large number of classes in one layer, which
not only degrades their performance but also increases the
coupling between the learned features. To train a network
to imitate the reasoning process of humans, we organize
the classes into different granularities to obtain multi-grained
labels for each input image.

To organize the classes into different granularities, the
representation of each class needs to be obtained first. Similar
to the ProtoPNet [6], we train prototypes in a classification
task to learn the local features of a class. The prototype can be
viewed as a generalized convolution, which computes distance
instead of the inner product of the conventional convolution.
Compared with the general convolution, the prototype is
trained to be close to the local features of a certain class, which
more directly represents the corresponding class in a latent
space. Therefore, we initialize m prototypes from {pi}mi=1 to
learn the local features of a class c. We employ the weights
of the last fully connected layer wfc as the feature importance
to aggregate the prototypes. For the prototype pi of a class c,
we compute the centroid of prototypes to represent the class

as

rc =

∑(c+1)·m
i=c·m pi · w(i,c)

fc∑(c+1)·m
i=c·m w

(i,c)
fc

, pi ∈ Pc, (1)

where the representation rc is defined for the class c.
After obtaining the representations of classes, we organize

the classes into different granularities based on their similarity.
We employ the agglomerative clustering method to group the
classes. Agglomerative clustering is one of the most widely
used hierarchical clustering algorithms where clustering is per-
formed using a bottom-up approach. Agglomerative clustering
successively merges two clusters with the smallest distance
and the final clusters are obtained by constraining the number
of merges by a given distance. The merging process of the
agglomerative clustering can be represented by a binary tree
as shown in Figure 2a. The color of the node containing two
branches from light to dark indicates the distance from small
to large when the two clusters are merged.

The distance of the agglomerative clustering can be regarded
as the tolerance of the example dissimilarity within the cluster.
The clusters generated by different distances can be considered
to belong to different levels of granularities. To determine the
distances for organizing classes, we draw a curve (see Figure
2b) to show the relationship between the increasing distance
and the number of clusters. Since choosing the points around
the knee of a curve is a common heuristic in mathematical
optimization, we select two distances v1 and v2 around the
inflection point which means that shrinking rewards are not
worth the additional cost.

Next, we construct a class hierarchy tree through the inter-
relationship between the clusters. We can observe a property
of the agglomerative clustering from Figure 2a that cluster
results built by a small distance v2 (orange dashed line) is the
subset of the results built by v1 (red dashed line). Thus, we can
transform the binary tree of Figure 2a to a non-binary class
hierarchy tree by gradually merging the classes into a root
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Fig. 3. Architecture of the proposed multi-grained interpretable network.

class, as shown in Figure 2c. It can be observed from the label
names that the clustering results can effectively group similar
classes into one cluster on CUB-200-2011 [11]. For example,
the birds named Tern and Gull are grouped into different parent
nodes respectively.

In the class hierarchy tree, we organize classes into differ-
ent granularities. For each fine-grained class, we can find a
pathway from a coarse granularity to a fine granularity from
the tree. As a result, we can assign each fine-grained class
with labels at different levels of granularity.

B. Multiple Grained Tree-Structured Classifier

Considering the recognition process where humans hi-
erarchically compare features at different granularities, our
method mimics this decision-making process by constructing a
multi-grained tree-structured classifier. Similar to the decision-
making process for a classification problem of humans, the
proposed classifier gradually absorbs finer information to reach
a more detailed level prediction.

The architecture of the proposed multi-grained interpretable
image recognition network is shown in Figure 3. Given an
input image containing a bird named Western Gull, a deep
convolutional neural network f is first employed to extract
deep features fh(x) in different scaled feature maps for
training features in the h-th granularity. We further construct
a top-down architecture to fuse different scaled feature maps
for extracting richer features. Then, we initialize the prototypes
for each node of the class hierarchy tree to construct a tree-
structured classifier T . For the k-th node in the h-th level of
the classifier T , we initialize m prototypes {p(h,k)i }mi=1. These
prototypes only learn features at the granularity of the h-th
level of the tree to refine the input to a finer granularity.

The detailed reasoning process is shown in the bottom of
Figure 3. Firstly, the distance between the prototype p

(h,k)
i

with each patch of the extracted features fh(x) is computed
to produce a heatmap. Instead of computing the inner product,
the heatmap is computed by calculating the Euclidean distance
between the different patches of the features fh(x) and the
prototype p

(h,k)
i . Then a pooling operation is used to find

patches that have the closest distance with different prototypes.
An activation function is defined as follows to convert a small
distance to a large similarity score s

p
(h,k)
i

.

s
p
(h,k)
i

= max
fh
i (x)∈patch(fh(x))

log(
(∥fh

i (x)− p
(h,k)
i ∥22 + 1)

(∥fh
i (x)− p

(h,k)
i ∥22 + ϵ)

) (2)

At last, a fully connected layer of the k-th node in the h-
level of classifier T gathers the similarity score as the final
prediction score for a precise class.

To summarize, we construct a tree-structured classifier to
imitate the hierarchical reasoning process of humans. Given
an input image containing a bird Western Gull, the network
classifies the input into a rough child class Seabird in the
first level of T . Then the input is further classified into a
more precise type named Gulls by the child node classifier of
Seabird. In the last level, the network distinguishes Western
Gull from Gulls by comparing the fine-grained features. Since
the prototype learns features in a set of similar classes,
the prototypes are able to learn discriminative features to
distinguish similar classes.

C. Training Algorithm

Here, we provide the details of the training algorithm for our
proposed multi-grained explainable network. In our method,
the loss function is calculated at all levels of the multi-grained



network. For a batch of n images with labels {(xi, yi)}ni=1,
the loss function ℓ that we aim to optimize defined as follows.

ℓ = min
chk(yi)∈c(h,k)

(
1

n

n∑
i=1

E(fh(xi) · p(h,k), chk(yi))) (3)

where E denotes a cross-entropy loss in the h-th level, which
is used to punish the error between the prediction results and
labels in each hierarchy. chk() is a function to generate the
multi-grained label of yi for training the h-th level and the
k-th node of the classifier T . The term c(h, k) is a target label
set for the branch in the h-th level and the k-th node. If the
input label chk(yi) belongs to this branch, a cross-entropy loss
is computed between the prediction fh(xi) · p(h,k) and the
label chk(yi).

For the optimization process, we employ a two-stage opti-
mization. In the first stage, we load the pre-trained parameters
of the backbone network and learned prototype vectors from
ProtoPNet [6] to initialize our tree-structured classifier. Then
we fix the backbone network and train the prototypes and
newly added layers. In the second stage, we jointly optimize
the prototypes and the convolution neural network. In this way,
the prototypes can be calibrated by using multi-grained labels.

IV. EXPERIMENTS

We conduct experiments on two widely used datasets to
evaluate the predictive accuracy and interpretability of our
proposed method. Then we conduct experiments on adversarial
examples to study the robustness of our method.

A. Experiment on CUB-200-2011

Caltech-UCSD Birds dataset (CUB-200-2011) [11] is
a challenging fine-grained classification dataset containing
11,788 images of 200 bird species. We crop the images using
the provided bounding boxes and resize them to 224×224. For
a fair comparison, all compared methods are trained and tested
on the same images. In addition, we set the same number of
prototypes for each class for both our model and ProtoPNet
[6].

To evaluate the performance of our method, we compare
its accuracy with both ProtoPNet and ProtoTree [24]. Pro-
toTree is also an interpretable network that trains prototypes
to explain the reasoning process of the model. For a fair
comparison, all the models are both trained and tested on the
same cropped images. Table I shows the accuracy comparison
between our method and the other two explainable models on
both VGGNet-19 [27] and ResNet-34 [28]. We can observe
that our method outperforms ProtoPNet by 2.0% and 0.8%
on the two backbone networks, respectively. Compared with
ProtoPNet, the prototypes of our model are separately learned
in different granularities to hierarchically classify objects,
which effectively improves the performance of our model.
Although ProtoTree employs additional datasets iNaturalist
[29] and more powerful network ResNet-50, our method can
also achieve competitive results. We also achieve a competitive
accuracy of 81.2% in comparison with the state-of-the-art
black-box models such as PA-CNN [30] and MG-CNN [31]

with the accuracy of 82.8% and 83.0% respectively. In addi-
tion, compared with the long decision pathway of ProtoTree,
the shallow non-binary tree structure of our model is easier
for humans to understand.

TABLE I
ACCURACY COMPARISON ON CUB-200-2011 DATASET.

Model Backbone Accuracy Depth
Our Model VGG-19 78.8±0.1% h=4
ProtoPNet VGG-19 78.0±0.2% h=1
Our Model ResNet-34 81.2±0.1% h=4
ProtoPNet ResNet-34 79.2±0.1% h=1
ProtoTree (+iNaturelist) ResNet-50 82.2±0.7% h=9

B. Experiment on Stanford Cars

The Stanford Cars is another challenging fine-grained clas-
sification dataset [12] containing 16,185 images of 196 types
of cars. Table II shows the accuracy comparison between our
model and another two explainable models including ProtoP-
Net and ProtoTree. It can be seen that our method outperforms
ProtoPNet and ProtoTree on both ResNet-34 and VGGNet-19.
Compared with two state-of-the-art black-box models such
as MDTP [32] and PA-CNN with the accuracy of 92.5%
and 92.8%, our model can achieve a competitive accuracy of
89.2% without using any other part level annotations.

TABLE II
ACCURACY COMPARISON ON STANFORD CAR DATASET.

Model Backbone Accuracy Depth
Our Model VGGNet-19 89.2±0.2% h=4
ProtoPNet VGGNet-19 87.4±0.3% h=1
Our Model ResNet-34 87.4±0.1% h=4
ProtoPNet ResNet-34 86.1±0.1% h=1
ProtoTree ResNet-50 86.6±0.2% h=11

C. Experiment on Adversarial Examples

The susceptibility of deep networks to adversarial attacks
is a serious concern [33]. Adversarial examples contain care-
fully crafted perturbations that are quasi-imperceptible to the
human observer but drastically change the network decisions
to incorrect labels. Hence, it is important to test the robustness
of deep models to adversarial examples.

Here, we examine two popular attack methods FGSM [14]
and PGD [13] to generate the adversarial examples. FGSM
and PGD both need to access the gradients of the model to
generate the examples. Unlike FGSM, which uses the gradient
of one iteration to perturb the original example, PGD uses
multiple iterations to generate perturbations. PGD is consid-
ered as one of the strongest attacks [33]. For the adversarial
examples generated by FGSM, we set the value of perturbation
magnitude ϵ to 0.02 for both our model and ProtoPNet on
CUB-200-2011 and Stanford Cars respectively. For the PGD
attack method, we set ϵ to 0.03 and 0.001 to generate the
perturbation on CUB-200-2011 and Stanford Cars respectively.
Accuracy comparison on adversarial examples generated by
both FGSM and PGD attacks is presented in Table III. After
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the attack by FGSM and PGD, ProtoPNet degrades accuracy
by 29.3% and 26.5%, which is more significant than our
method at 25.5% and 24.4% on CUB-200-2011 dataset. On
Stanford Cars dataset, our method degrades accuracy by 29.8%
and 23.9%, which outperforms the accuracy decay of the
ProtoPNet by 68.5% and 51.6% by a large margin. Since
both our model and the ProtoPNet are all trained on original
images of the Stanford Cars dataset, the images contain more
noise from larger background regions in comparison with
the cropped images of the CUB-200-2011 dataset. Therefore,
the accuracy of the ProtoPNet degrades significantly on the
Stanford Cars Dataset. However, our multi-grained network
enables the model to learn more robust features for resilience
to adversarial attacks. Moreover, the structure of our model
does not depend on the single last layer to make a prediction,
which is more robust for the gradient-based attack.

TABLE III
EXPERIMENTAL RESULTS ON ADVERSARIAL EXAMPLES GENERATED BY

TWO ATTACKS ON RESNET-34.

Model Attack Method Bef. Attack Aft. Attack Dataset
Our Model FGSM 81.2% 55.7% CUB
Our Model PGD 81.2% 56.8% CUB
ProtoPNet FGSM 79.2% 49.9% CUB
ProtoPNet PGD 79.2% 52.7% CUB
Our Model FGSM 87.4% 57.6% Cars
Our Model PGD 87.4% 63.5% Cars
ProtoPNet FGSM 86.1% 17.6% Cars
ProtoPNet PGD 86.1% 34.5% Cars

D. Providing Explanations

We visualize the prototypes to provide both global and local
explanations of our model. For each prototype, we first scan
the images of the training dataset to find which image patch is
the most similar to the prototype in the latent space. Then we
use the most similar patch of the image in the RGB space to
represent the visualization of a prototype. The reason is that
if an image patch is the most similar to the prototype in the
latent space, the patch of the image can be highly activated by
the prototype in the latent space during the inference process.
Specifically, we employ a bounding box to mark the top 5%

activated regions in the heatmap to represent the visualization
of a prototype.
Global Explanations. The global explanations aim to provide
an understanding of how the network recognizes a specific
category. Figure 4a shows visualization of prototypes in three
hierarchies for three species of birds including Cardinal, Pine
Grosbeak and Summer Tanager. We can observe that our
method learns prototypes with distinctive features in different
hierarchies. For the prototypes in the first hierarchy, The feath-
ers of the birds in the first column have more vivid colors. In
its three child classes, different birds are divided into different
groups according to their colors. Finally, the prototype can
learn their own distinctive features among the three similar
red birds. For example, the prototypes of Cardinal show the
head in red and black. On the other hand, prototypes of Pine
Grosbeak show bodies with patterns of red and black.
Local Explanations. The local explanation aims to provide
explanations for an individual prediction. Figure 4b shows
three most similar prototypes on three hierarchies for pre-
dicting the input Crested Auklet. We can observe that our
model can gradually learn more detailed features in different
hierarchies for the input Crested Auklet.

V. CONCLUSION

In this paper, we have proposed a multi-grained inter-
pretable network to imitate the hierarchical reasoning process
of humans. The proposed model can gradually absorb finer
information to make a final prediction. We further propose
a method to organize classes into different granularities to
assign each input image with multi-grained class labels en-
abling the features to be optimized in different granularities.
Thus, our method can provide practitioners with multi-grained
explanations of the decision-making process. Experimental
results have shown that our method can learn robust features
in different granularities to improve classification accuracy
while providing high-quality explanations as well as higher
resistance to adversarial attacks.
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[17] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[18] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” International Journal of Computer Vision,
vol. 128, no. 2, pp. 336–359, 2020.

[19] M. A. A. K. Jalwana, N. Akhtar, M. Bennamoun, and A. Mian,
“CAMERAS: enhanced resolution and sanity preserving class activation
mapping for image saliency,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2021.

[20] P. Schramowski, W. Stammer, S. Teso, A. Brugger, F. Herbert, X. Shao,
H.-G. Luigs, A.-K. Mahlein, and K. Kersting, “Making deep neural
networks right for the right scientific reasons by interacting with their
explanations,” Nature Machine Intelligence, vol. 2, no. 8, pp. 476–486,
2020.

[21] G. Erion, J. D. Janizek, P. Sturmfels, S. M. Lundberg, and S.-I.
Lee, “Improving performance of deep learning models with axiomatic
attribution priors and expected gradients,” Nature Machine Intelligence,
pp. 1–12, 2021.

[22] G. F. Elsayed, S. Kornblith, and Q. V. Le, “Saccader: Improving accuracy
of hard attention models for vision,” in Advances in Neural Information
Processing Systems, 2019.

[23] W. Brendel and M. Bethge, “Approximating cnns with bag-of-local-
features models works surprisingly well on imagenet,” in International
Conference on Learning Representations, 2019.

[24] M. Nauta, R. van Bree, and C. Seifert, “Neural prototype trees for
interpretable fine-grained image recognition,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

[25] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of
detection cascades of boosted classifiers for rapid object detection,” in
Pattern Recognition, 2003, pp. 297–304.

[26] L. D. Bourdev and J. Brandt, “Robust object detection via soft cascade,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[29] G. V. Horn, O. M. Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam,
P. Perona, and S. J. Belongie, “The inaturalist species classification and
detection dataset,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[30] J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition
without part annotations,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[31] D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang, “Multiple
granularity descriptors for fine-grained categorization,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[32] Y. Wang, J. Choi, V. Morariu, and L. S. Davis, “Mining discriminative
triplets of patches for fine-grained classification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[33] N. Akhtar and A. S. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, 2018.


