Accelerating Multi-Output GBDTs with GPUs

Hanfeng Liu!, Xuemei Peng!, Zeyi Wen

1,2+«

'The Hong Kong University of Science and Technology (Guangzhou)
>The Hong Kong University of Science and Technology
{hliu174,xpeng558}@connect.hkust-gz.edu.cn,wenzeyi@ust.hk

ABSTRACT

Gradient Boosted Decision Trees (GBDTs) have demonstrated good
performance in many data science competitions. This paper studies
multidimensional output GBDT (GBDT-MO) training which can
handle complex dependencies between input features and multidi-
mensional outputs. Due to the multiple output dimensionality, the
training time and memory consumption of GBDT-MO are signifi-
cantly higher than those of the single-dimensional output GBDT
training, which makes training GBDT-MO challenging, especially
for large-scale datasets. In this paper, we propose a novel GPU-
accelerated GBDT-MO training system to speed up the training
while maintaining competitive model quality. Our system leverages
the GPU to efficiently construct decision trees, especially by dynam-
ically choosing efficient histogram building methods at different
stages of the training, enabling scalable and efficient GBRBDT-MO
training. Furthermore, our system supports multi-GPU training
on a single machine by partitioning features across GPUs and us-
ing communication-efficient synchronization strategies, allowing
further scalability for high-dimensional datasets. We evaluate the
performance of our proposed GBDT-MO system on several datasets.
Compared with CPU-based implementations, our system achieves
a speedup ranging from 30X to 190X. Moreover, our system out-
performs the state-of-the-art GPU-based baselines by a speedup
ranging from 1.7X to 170X, while maintaining strong predictive
performance compared with the state-of-the-art methods.

ACM Reference Format:

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'2. 2025. Accelerating Multi-Output
GBDTs with GPUs. In . ACM, San Diego, CA, 10 pages. https://doi.org/10.
1145/3754598.3754638

1 INTRODUCTION

Gradient Boosted Decision Trees (GBDTs) are a powerful ensem-
ble method in machine learning, widely used in computer vision,
natural language processing, and recommendation systems [29].
GBDTs excel at capturing complex feature interactions and have a
proven track record of delivering top-notch performance in both
data science competitions [12] and real-world applications [4, 8, 20].
Multidimensional output learning aims to simultaneously predict

“Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPP’25, September 2025, San Diego, CA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2074-1

https://doi.org/10.1145/3754598.3754638

multiple target variables, which has been employed in various tasks
such as multi-task learning [1], multi-label classification [18], and
multi-output regression [25]. Among the various multi-output mod-
els, GBDTs with multiple outputs (GBDT-MO) stand out due to their
ability to handle complex dependencies between input features and
multiple outputs, leading to improved predictive performance and
interpretability [23].

GBDT-MO offers several significant advantages over training
separate single-output GBDT (GBDT-SO) models for each output.
GBDT-MO can model the correlations and dependencies between
different output variables, which is particularly valuable in tasks
where outputs are related (e.g., predicting multiple disease outcomes
that share common risk factors). Notably, instead of training d sep-
arate tree ensembles for d output dimensions, GBDT-MO efficiently
constructs a single ensemble of trees with multi-dimensional leaf
outputs, reducing both memory footprint and computational train-
ing overhead. These advantages have enabled GBDT-MO to achieve
success in diverse real-world applications, including simultaneous
prediction of multiple disease outcomes in healthcare [30, 35], click
prediction in recommendation systems [29], and multi-step traffic
forecasting [31].

Efficient GPU implementations for GBDT-MO algorithms remain
underexplored [13], despite the significant advancements in accel-
erating single-output GBDT training using GPUs [5, 16, 28]. This
gap persists primarily due to several key challenges associated with
GBDT-MO. First, GBDT-MO requires more complex data structures
and algorithms to handle multiple outputs simultaneously. Second,
its memory requirements are significantly higher due to the need
to store gradient statistics for multiple outputs. Lastly, the com-
putational workload per tree in GBDT-MO is greater due to the
multi-dimensional nature of the outputs.

This paper addresses the gap by introducing an efficient GPU-
accelerated GBDT-MO training system. Unlike existing GPU-based
GBDT implementations such as LightGBM and XGBoost, our sys-
tem stands out in four key aspects: i) Multi-output focus: Unlike
existing systems that primarily target single-output problems, our
solution is specifically designed for multi-output scenarios, ad-
dressing the unique challenges they present. ii) Adaptive histogram
building: We identify that histogram building is the primary bottle-
neck in GBDT-MO training, accounting for approximately 70% of
the total training time. Our solution dynamically selects the most
appropriate histogram building method from multiple optimized
approaches based on the dataset characteristics and training stage.
iii) Memory efficiency: We redesign the complete training pipeline
(loss calculation, gradient computation, split evaluation) with GPU-
native operations. To handle the significantly higher memory re-
quirements of GBDT-MO, we adopt tiling to utilize shared memory
and bin packing to optimize memory access. iv) Multi-GPU training:
Our system supports multi-GPU training within a single node. By

https://doi.org/10.1145/3754598.3754638
https://doi.org/10.1145/3754598.3754638
https://doi.org/10.1145/3754598.3754638

ICPP’25, September 2025, San Diego, CA

distributing feature columns across GPUs and synchronizing par-
tial histograms via efficient collective communication, we enable
high-throughput training even for high-dimensional or large-scale
datasets.

The major contributions can be formally summarized as:

e We design a comprehensive GPU-accelerated system for
GBDT-MO, where all major components—including loss com-
putation, gradient calculation, gain evaluation, and predic-
tion—are implemented on the GPU using efficient parallel
primitives.

o We identify the histogram building process as a key bottle-
neck in GBDT-MO training and propose a parallel method
to construct histograms efficiently using both global and
shared memory on GPUs. We further optimize this process
with warp-level techniques, including data compression to
reduce bank conflicts.

e We benchmark our proposed GBDT-MO system across a
range of real-world datasets and observe acceleration from
30X to 190X over CPU-based counterparts, and from 1.7x
to 170X over the leading GPU-based systems. This demon-
strates that our system achieves superior training efficiency
while delivering strong predictive performance. The experi-
mental results under different parameter settings also demon-
strate the good scalability of our proposed system.

2 PRELIMINARY

In this section, we present the background knowledge of multi-
output GBDTs. We first formulate the learning objective of multi-
output GBDTs and then describe the process of finding split points.

2.1 GBDTs with multiple outputs

As illustrated in Figure 1, the learned trees of GBDTs with a single
output (GBDT-SO) and GBDTs with multiple outputs (GBDT-MO)
are notably different in their leaves. In regression tasks with a single
output, GBDT-SO is indeed a special case of GBDT-MO, where
they both produce identical tree structures. However, in multi-class
classification and multi-label classification tasks, they become much
more different, and the models trained by GBDT-MO are much
simpler. We take a multi-class classification task with d classes as
an example. GBDT-SO needs to train d X |T| trees, where |T| is the
number of trees trained for each class. In comparison, GBDT-MO
only requires training |T'| trees with the leaf nodes storing multiple
class information (cf. Figure 1). The model complexity of GBDT-SO
is d times higher than GBDT-MO, and its cost increases significantly
for high-dimensional problems.

While GBDT-MO can keep the number of trees independent from
the number of classes, it is important to recognize that designing an
efficient GBDT-MO training algorithm is still challenging. For in-
stance, memory usage substantially escalates during the histogram
building phase because of the inclusion of the output dimension
(i.e., d). Consequently, the adaptation of GBDT-MO for GPU plat-
forms requires careful design to tackle the challenges related to
memory and computational efficiency effectively.

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'?

' GBDT with single output

= d@b ﬂf& 55& o’%f&

'GBDT with multiple outputs
o A0 A8 L 5
i class 1-d of e A

Figure 1: GBDTs with single output and multiple outputs.

2.2 Loss and objective function

A multi-output dataset with n training instances can be denoted
as {(xi,yi)jL,}, where x; € R™ is an m dimensional input and
yi € R% is a d dimensional output. The GBDT is a type of ensemble
learning method that trains a series of decision trees sequentially
to make predictions on unseen instances. Let f;(-) : R — R? be
the function of the ¢-th decision tree. According to the construction
of decision trees, f;(x) can be expressed by the following formula:

0= vy 10 =)

where v; is a d dimensional vector that belongs to the j-th leaf
and 1(q(x) = j) is an indicator function that takes the value 1 if
q(x) = j and 0 otherwise. The function g(-) : R™ — j, where L is
the number of leaves of the ¢-th decision tree and j € [1,L]. The
role of g(+) is to identify the leaf node corresponding to x.

Then, the objective function at the ¢-th iteration can be:

Li(f) =D WyiFi+ frx) +Q(f) ()

where [(-) is the loss function and §; = Z]t;} fr(x;) is the pre-
diction of the first (t — 1) trees. Q(f;) is the regularization term,
which constrains the model’s complexity and improves the model’s
generality.

The leaf nodes in a decision tree are independent of each other.
As a result, we can apply the objective function of Equation (1) to
each leaf j independently. Then for the leaf j of the decision tree ¢,
we have

Liv) = D Uygi+v) +Q(v))
q(xi)=j
We employ I, regularization, i.e., Q(v) = %||v||2, on leaf values

with a parameter A > 0. By using the second-order Taylor expansion
to approximate the loss function I(-), we can get

A 1 A
Liv)=), {l(Yi,yz')+giTVj+EVJTHiVj}+5|IVjII§ @)

q(xi)=j

Accelerating Multi-Output GBDTs with GPUs

alz. Training GBDTs is to minimize

the objective function iteratively. Then, we can set aLt

where g; = —~_ and H;

= 0 for

Equation (2), and we get the optimal values and ob)ectlve of the
leaf j as follows.

-1

vi=- Z H; + Al

q(xi)=j

Zgi

q(xi)=j

T -1

Z H; + I

q(xi)=j

" 1
Livp=-5| 2, &

q(xi)=j

Zgi

q(xi)=j

where I is an identity matrix.

To avoid computationally expensive matrix inversions, it is com-
mon practice to simplify the Hessians H to diagonal matrices. Thus,
the loss function [can be independently computed for each output.
For the k-th dimension, the optimal leaf values can be rewritten as:

Yq(xi)=j |8ilk

Vilk =175
ik Yq(xi)=j hilk + 4

where h; is a diagonal element of H; and | - |, denotes the k-th
element of the vector. Then, the overall objective can be obtained
by the sum of objectives for each output dimension as follows.

_ (Zq(xl]|gl|k)
o =3 S et

2.3 Gain of a split point

A crucial task when building decision trees includes identifying the
best split given a set of training instances. To determine these splits,
we consider all the candidate split points for a node pending to be
split, including left and right splits denoted by Sy and Sg. Then the
gain for each split is:

gain = L*(v) = (£L*(vp) + L*(VR))
1 {(G")2 (GR)?

2

(G +GR)? (3)
Hf + 2 Hk+A Hk+Hk+)L

where Gy 2q(x> —ry 18ilk: Gf = Sq(x)=Re |81l H = Zq(x)=Ry

Il and HE = 31000 il

2.4 Training GBDTs with multiple outputs

Here, we describe the training process of GBDTs with multiple
outputs (GBDT-MO), which can be summarized in Algorithm 1.
Similar to the single output GBDT (GBDT-SO), two key components
are added in the algorithm. The first component aims to find the best
split point given a tree node, as shown in Lines 5 to 13. The second
component is the process of splitting the instances in the parent
node into its children, as shown from Line 14 to Line 17. The key
difference between GBDT-MO and GBDT-SO training algorithms
is that GBDT-MO needs to calculate a g and h pair for each output,
which is shown in the for-loop (i.e., Line 11).

ICPP’25, September 2025, San Diego, CA

Algorithm 1: Training of GBDTs with multiple outputs

Input :7:aset of instances; d: the maximum depth;
y: threshold for valid splits; T the # of trees;
d_outputs: output dimension.

Output: 7 : a set of decision trees

17 «— g

2 repeat

3 InitTree(t): P < &, N « GetRootNode(t);

4 foreach n € N Adepth(n) < d do

5 1, « InstanceInNode(n);

‘ (g%.a%p") — (0,2,9);

7 foreach a € A do

8 YV, « AttributeValue(a, n);

9 foreach j € V, do

10 gain < 0;

11 for v € [1,d_outputs) do

12 L gain += CalculateGain(a, j, v);
13 (a*,g*, p*) < FindBestSplit();

14 if g* = 0 then

15 L RemoveLeafNode(n, N);

16 else

17 L UpdateLeafNode(N, SplitNode(n, a*, p*));
18 T «— T U{th

19 until [7] > T;

3 OUR PROPOSED SOLUTION

In this section, we present the design and implementation of our
GPU-accelerated GBDT-MO training system. Our solution is de-
veloped to address the computational and memory challenges of
training gradient boosted decision trees with multi-dimensional out-
puts, particularly on large-scale datasets. We begin with a high-level
overview of the system architecture and its modular components.
Then, we describe the core tree construction pipeline, including effi-
cient gradient computation and split evaluation techniques. We also
introduce several GPU-specific optimizations, such as histogram
building strategies and warp-level memory techniques, to improve
training efficiency. Finally, we discuss how our system scales to
support multiple GPUs and handles inference efficiently.

3.1 System overview

Figure 2 illustrates the overall workflow of our proposed GBDT-MO
system. The training pipeline is organized into three key stages: 1)
computing the gradients (¢g;) and second-order derivatives (h;) based
on task-specific loss functions such as mean squared error (MSE) or
cross-entropy, 2) producing candidate split points by enumerating
feature values and constructing histograms, and 3) selecting the
best split point that maximizes the gain and partitioning the data
accordingly to construct the tree.

To enhance computational efficiency, particularly on GPU archi-
tectures, our system integrates a suite of optimization techniques
tailored for different stages of the pipeline. These include sparsity-
aware computation, histogram-building strategies (global memory,

ICPP’25, September 2025, San Diego, CA

shared memory, and sort-and-reduce), as well as warp-level opti-
mizations. Each of these techniques is designed to address specific
bottlenecks, such as memory access inefficiencies or thread-level
conflicts, and is tightly integrated into the tree construction process.
Notably, in multi-class or multi-label learning scenarios, GBDT-
MO achieves significant computational advantages by training a
single set of trees with multi-dimensional outputs at the leaf nodes.
In contrast, traditional single-output GBDTs (GBDT-SO) require
training k separate tree ensembles—one per class or label—where
k is the number of outputs. This consolidation in GBDT-MO leads
to substantial reductions in both computational cost and memory
usage, making it especially suitable for large-scale learning tasks.

3.1.1 Computing g and h for each instance. To compute the gain for
candidate split points, we first calculate the first- and second-order
derivatives, g; and h;, for each instance. To ensure the system’s
flexibility and general applicability, GBDT-MO is designed to ac-
commodate user-defined loss functions [11]. In this paper, we select
mean squared error as our loss function for demonstration pur-
poses, yielding g; = 2(§; — y;) and h; = 2. The predicted value 3j;
can be updated incrementally by reusing results from previous trees,
rather than recomputing from scratch via full tree traversal. This
avoids excessive irregular memory accesses on GPUs. To further
reduce overhead, we exploit the observation that training instances
eventually reside in leaf nodes. Thus, we skip traversal altogether
and directly retrieve the leaf weights for prediction, significantly
improving computational efficiency.

3.1.2 Producing split point candidates. Once we have obtained the
values of g; and h;, we need to enumerate all feature values for the
current node to generate candidate split points. For each candidate
split points, we calculate Gy, G, Hy, and Hg, where Gy and G are
the gradient sums of the left and right node, respectively; similarly,
Hj and Hp, are their Hessian value sums respectively, as defined in
Equation (3). This enumeration allows us to consider each possible
feature value as a potential split point. Alternatively, we can build
histograms of the feature bins, which helps in efficiently identify-
ing the most promising candidate split points. Since the attribute
values are sorted in the training data, we can easily consider all the
instances to the left or right of a candidate split point as belonging
to the corresponding left or right node. Consequently, we can ef-
ficiently compute the aggregated g; and h; values for the left and
right nodes (i.e., G1, and Gg). The Gy, and Gg can be calculated by
enumerating all possible feature values or by leveraging cut points
generated in the histogram construction phase.

3.1.3 Selecting the split point with maximum gain. We use the
the histograms constructed in the previous phase to compute the
gain as shown in Equation (3). The computation of Gy and Hy, for
each node can be achieved using a segmented prefix sum, so that
multiple gains can be computed concurrently on the GPU. After
computing the gain for all candidate split points, we select the best
split for each feature within a node using segmented and global
parallel reduction techniques. Segmented reduction enables parallel
gain comparison across multiple feature-node pairs, where each
pair forms a segment. This is critical for high-throughput multi-
output GBDT training. A naive one-block-per-segment mapping
becomes inefficient on high-dimensional datasets due to kernel

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'?

launch overhead. To address this, we adopt an adaptive strategy
that determines the number of segments per block based on the
dataset and hardware: 1 + % X C, where C is a tunable
constant and SMs is the number of GPU streaming multiprocessors.
This approach balances resource usage and improves scalability.
Finally, gain values are computed using the histograms constructed
earlier. Segmented reduction identifies the best threshold within
each feature, and a global reduction finds the overall best split
across all features in the current node.

Multi-Output GBDT Training

1@ "Compute gradients and second order derivative | nistograms of feature f;:

\ find the best gain \ all reduce
i

(5}
L
=
=
x
[[l
f= . |
b . sparsity aware
S H !
§ @ Selection split point with maximum gain ' global memory
S = d enerated tree: o !
o compute gain ‘Gain: Zk gaina g e shared memory H
v = & i
'
'
'
'
'
'
'
g

split data into two nodes ‘

Figure 2: Overview of the proposed system.

3.2 Sparsity-aware data storage in GBDT-MO

The training dataset of GBDT-MO can be represented in two pri-
mary forms: dense and sparse. The dense representation is essen-
tially a matrix, which offers high efficiency when accessing attribute
values for a given instance. For instance, finding the third attribute
of the fourth instance (i.e., a3 of x4) is as simple as locating it at the
intersection of the third column and the fourth row in the matrix.
However, one drawback of this approach is its substantial memory
consumption. On the other hand, the sparse representation only
stores non-zero elements, making it more memory-efficient when
the training data is sparse. It comes with a higher overhead when
locating attribute values for the instances. As an illustration, we
consider a training dataset with five instances: xg, x1, x2, x3, and
x4, and we present both the dense and sparse representations for
this training dataset.

dense sparse
xo | <0,0,3,0,0> | (az:3)
x1 | <2,0,0,0,7> | (ao: 2); (aq: 7)
x2 | <0,6,0,0,0> | (az:6)
x3 | <0,0,0,0, 0>
x4 | <1,0,0,0, 8>

(ao: 1); (as: 8)

Sparse data is common in many real-world applications, such
as natural language processing and computer vision [6]. Given the
inefficiency of dense representations in terms of computational
and storage resources, especially for large and sparse datasets,
GBDT-MO adopts the sparse data representation in the form of the
Compressed Sparse Column (CSC) format. The CSC representation
consists of three arrays: the non-zero values, the row indices of

Accelerating Multi-Output GBDTs with GPUs

these values, and the column pointers. For non-zero values, we
traverse the matrix column-wise.

values = [2,1,6,3,7, 8]
For row indices, we store the row number of each non-zero value.
row_indices = [1,4,2,0, 1, 4]

The column pointer array has an additional element indicating the
end of the last column. The i*" element in the column pointer array
indicates the index in the value array where the ith column starts.

col_pointers = [0,2,3,4,4,6]

Hence, the CSC representation of the training data is given by the
three arrays: values, row_indices, and col_pointers. The use of the
CSC format in our solution provides an efficient and compact way to
store and access sparse data, thereby enhancing the performance of
our subsequent analyses. Moreover, by reducing memory usage, the
CSC format enables our method to work with larger datasets that
would otherwise be impractical with the dense data representation.
Column-wise data distribution for GPU parallelism. To effectively
leverage the massive parallel computing capabilities of GPUs, our
proposed solution assigns computational tasks based on attribute
columns. Specifically, each GPU thread block is responsible for com-
putations related to one or more specific attribute columns. Within
each thread block, warps (groups of 32 threads) concurrently pro-
cess different training instances of these assigned attribute columns.
For example, suppose that we have m features and n training in-
stances. These m columns are distributed across the GPU thread
blocks. Within each block, threads or warps perform parallel com-
putations on instances corresponding to their assigned columns.

3.3 Histogram building optimization

1
1
E raw data gradients feature bids |
' fo f1 dy dy dy dy fo f1 '
| o 01 -3 1 0 iy 0.1 0 iy 0 0
A 02 -2 0 1 fh 01 03 fi 0 0
I i 03 0 1 0 h 0 0 iy 1 0o
| i3 04 1 0 0 is 01 0 is 1 1
\ iy 02 4 1 0 i 0 02 i 0 10
E_ w o | 3 [a | a is 01 0 is 0 1 E
______________________ & -

global memory N shared memory :E all reduce

i 1
blocky block, block, l: block, block,; block, l: generate keys
thread, thread, thread, :. Y Y :I |

1
1
1
1
’ |
1 1
thread, thread, | chread, " local local local !
1
1
1
|

A RE R TSRS

i 1"
I—i—l I I
i h Copy by keys

_______________________ &I
' Outputs 03 mhin0 = binl 0.6 mbin0 ®bin 1 |
1 0.2 I 0.4 I]
! 0.1 I I 0.2 !
' 0 = 0 in !
| feature 0 feature 1 feature 0 feature 1 1
1 1

Figure 3: Histogram building process on the GPU.

ICPP’25, September 2025, San Diego, CA

Histogram building is a critical and computationally intensive
step in training GBDT-MO, aiming to aggregate gradient statis-
tics efficiently for optimal split-point identification. The process
is depicted in Algorithm 2. By summarizing gradient and Hes-
sian values into discrete bins for each feature, histogram-based
approaches significantly reduce computational complexity. Figure 3
presents a visualization of the histogram construction pipeline in
GPU-accelerated decision tree training. It elucidates the complete
workflow from raw data discretization to gradient aggregation,
highlighting three divergent GPU memory utilization strategies.
Through its multi-stage representation, the figure shows: (1) in-
put data preparation with feature-value bin mapping, (2) parallel
histogram construction via global memory access, shared mem-
ory optimization, and sort-and-reduce approaches, and (3) final
aggregated histograms for split finding.

Algorithm 2: Histogram building in GBDT training

Input :8: training instances in node n;
m: number of features;
#bins: maximum number of bins
Output: Hist: generated histogram
1 Init(Hist);
2 fori € [0,m) do
3 for j € [0,d_outputs] do

4 for k € [0, #instances] do

5 bid « GetBid(xt);

6 Hist.g[bid][j] < Hist.g[bid][j] + g «;
7 Hist.h[bid][j] < Hist.h[bid][j] + A jx;

3.3.1 Performance analysis. As illustrated in Figure 4, we break
down the total training time and quantify the portion spent on
histogram building for each dataset. The grey bars represent the
total training time, while blue bars denote the histogram building
time and the red annotations indicate the percentage attributable to
histogram construction. Our analysis shows that histogram building
remains the dominant time consumer across nearly all datasets.
Notably, in Delicious, NUS-WIDE, and MNIST, this step accounts
for 88.5%, 88.3%, and 78.5% of the total training time, respectively.
Even for medium-scale datasets like Caltech101 and MNIST-IN, the
ratios are 67.2% and 77.9%. These findings reaffirm that histogram
building is the primary computational bottleneck in GBDT-MO
training, motivating our targeted GPU-based optimizations.

3.3.2 Global memory approach. The global memory approach lever-
ages GPU global memory combined with atomicAdd operations

to safely aggregate updates from multiple threads. Each thread

independently processes an instance-feature pair: it computes the

bin ID from the input feature value, then directly updates the cor-
responding gradient and Hessian accumulators in global memory.
This approach offers implementation simplicity and scalability for

moderate workloads. However, when many threads access and mod-
ify the same bin concurrently, contention over global memory leads

to performance degradation due to atomic operation serialization

and memory bank conflicts. This makes the method more suitable

for small- to medium-scale datasets.

ICPP’25, September 2025, San Diego, CA

Histogram building time vs. the total training time

0.00 5.00 10.00 15.00 20.00
Delicious]]]] 17.79 88.5%
RF1 0.45 50.1%
Helena 2.35 59.1%
SF-Crime 434 65.2%
Otto 0.70 20.1%
NUS-WIDE I I I 1522 88.3%
MNIST-IN | 326 77.9%
Caltech101 I 6.14 67.2%
MNIST I 5.06 78.5%

elapsed time (sec.) hist time (sec.)

Figure 4: Histogram building time vs. the total training time.

3.3.3 Shared memory approach. To alleviate global memory con-
tention, the shared memory approach exploits the low-latency,
high-bandwidth shared memory on GPUs. Since shared memory
is limited in size (typically 48 KB per thread block), we adopt a
tiling strategy: the full histogram is divided into sub-histograms
(tiles) that fit within shared memory. Threads in a block collabo-
ratively initialize a local histogram, accumulate gradient statistics
into it, and then synchronize to flush the results back into the global
histogram. This method significantly reduces atomic conflicts and
improves memory access patterns. The tiling parameters—chunk
size and bin offset—are computed dynamically per block, enabling
the method to handle moderately large datasets and feature dimen-
sions efficiently.

3.3.4 Sort-and-reduce approach. The sort-and-reduce approach
bypasses atomic operations altogether. Each thread constructs a
unique key for its instance-feature-bin combination using the bin ID
and a precomputed feature offset. These keys and associated gradi-
ent pairs are stored in temporary arrays. A parallel sort_by_key op-
eration groups identical keys together, followed by a reduce_by_key
to accumulate gradient and Hessian values. Finally, the reduced
results are copied into the final histogram structure. While this
method introduces the overhead of sorting, it avoids write con-
tention entirely, making it ideal for high-dimensional or large-scale
datasets where atomic conflict is severe.

Each approach presents trade-offs between simplicity, memory
efficiency, and contention resilience, as reflected in Figure 3. Our
system dynamically selects the most appropriate histogram building
method from multiple optimized approaches based on the dataset
characteristics and training stage, enabling scalable and efficient
GBDT-MO training.

3.4 Warp-level and multi-GPU optimization

We implement additional optimizations through two key techniques
to enhance system efficiency: warp-level memory optimization and
multi-GPU parallel execution.

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'?

3.4.1 Warp-level optimization. On GPUs, threads are grouped into
warps (typically 32).This design allows all threads within a warp to
perform simultaneously, forming the foundation of GPU parallel
processing. In GBDT training implementations like XGBoost [5],
the maximum number of bins is normally set to 256. While this
constraint allows efficient storage of bin IDs using single-byte char
type, it creates memory access inefficiencies on GPUs. Modern GPU
memory controllers are optimized for 4-byte (32-bit) or 8-byte (64-
bit) transactions, making the single-byte memory accesses required
for bin ID retrieval suboptimal for hardware utilization.

To improve memory efficiency, we propose a "bin packing" tech-
nique: multiple 1-byte bin IDs are packed into a 4-byte integer. This
allows fetching multiple bin IDs in a single memory transaction,
reducing bandwidth usage and improving cache locality. Threads
within a warp extract their respective bin ID using lightweight bit
operations (shifts and masks). With proper memory layout, shared
memory bank conflicts are also minimized.

Bin packing involves two steps: i) Packing — multiple bin IDs
are combined during preprocessing; ii) Unpacking — threads ex-
tract their bin ID during histogram construction. This optimiza-
tion notably reduces memory overhead and accelerates the most
compute-intensive stage of GBDT-MO training.

3.4.2 Multi-GPU execution for training and inference. To further
accelerate GBDT-MO, our system supports multi-GPU execution
on a single machine. During training, we apply feature-level par-
allelism by partitioning feature columns across GPUs. Each GPU
constructs histograms for its assigned features using local data and
independently evaluates splits. Partial histograms are then aggre-
gated via CUDA-aware collective operations to form a global view
for split selection. Since only summary statistics are exchanged,
this method scales well with the number of GPUs and maintains
low communication overhead.

Inference in GBDT-MO is tightly integrated with training, as
prediction results are required to compute gradients (g) and second-
order derivatives (h) for new trees. Our implementation supports
both instance-level and tree-level parallelism. In instance-level par-
allelism, each GPU thread processes a different instance, while in
tree-level parallelism, predictions across trees can be computed
concurrently. The prediction algorithm recursively traverses the
tree structure for each instance, using the split conditions to reach
the corresponding leaf node. These optimizations ensure efficient
training and inference at scale without compromising the predictive
performance of the model.

4 EXPERIMENTS

In this section, we present an experimental analysis to evaluate
the efficiency of our system compared with existing GBDT sys-
tems. Through a series of experiments, we explore and discuss the
scalability and predictive accuracy of our system across diverse
configurations.

4.1 Experimental setup

Implementation details. Our system was implemented in C++
and CUDA. The program was compiled with the -O3 optimization
level flag. The experiments were conducted on a workstation with
1024 GB of main memory and 8 NVIDIA RTX 4090 GPUs.

Accelerating Multi-Output GBDTs with GPUs

Parameter settings. Unless otherwise specified, we use the follow-
ing default parameter settings for all experiments: number of trees
=100, maximum tree depth = 7, learning rate = 1, minimum number
of instances in a node = 20, and maximum number of bins = 256.
These parameters were chosen based on preliminary experiments
and are consistent with common settings in the literature. For all
compared methods, we use their recommended default parameters
when not specified otherwise.

Datasets. To ensure a comprehensive evaluation, we employ four
real-world datasets, identical to the ones used in GBDT-MO [34] and
SketchBoost [13]. These datasets cover different domains, offering
diverse challenges to the GBDT models. Detailed information about
these datasets is presented in Table 1. For datasets that already
include a test set, no additional preprocessing is performed. For the
rest, we randomly selected 20% of the training instances from the
original dataset to create a test set.

Table 1: Detailed information of datasets

Dataset ‘ #instances ‘ #features ‘ #outputs ‘ task
Otto 61,878 93 9 multiclass
SF-Crime 878,049 10 39 multiclass
Helena 65,196 27 100 multiclass
Caltech101 6,073 324 101 multiclass
MNIST 50,000 784 10 multiclass
MINIST-IN 50,000 200 24 multiregress
RF1 9,125 61 16 multiregress
Delicious 16,105 500 983 multilabel
NUS-WIDE 161,789 128 81 multilabel

Baselines. Our proposed solution is compared against a mix of
single-output and multi-output GBDT models. For single-output
tasks, we benchmarked against XGBoost [5], LightGBM [16],
and CatBoost [7]. These models are currently considered state-
of-the-art and are capable of running on both multi-core CPUs
and GPUs. For multi-output tasks, we benchmark against Sketch-
Boost [13] and GBDT-MO [34]. SketchBoost is a GPU-accelerated
multi-output GBDT system that has optimized the split-finding step,
making it one of the most efficient multi-output GBDT systems
currently available. GBDT-MO, implemented in C++, leverages
parallel computing to speed up computations. It provides a useful
benchmark to assess the effectiveness of GPU acceleration in our
system. We used both CPU versions: mo- full which is GBDT-MO
using dense representation (“mo-fu” for short); mo-sparse which is
GBDT-MO with sparse representation (“mo-sp” for short).

4.2 Overall comparison

In this set of experiments, we comprehensively evaluate various
GBDT systems on both CPU and GPU platforms, focusing on train-
ing efficiency and predictive performance. The compared systems
include CPU-based implementations (mo-fu and mo-sp [34]), as
well as GPU-accelerated baselines such as CatBoost [7], Light-
GBM [16], XGBoost [5], and SketchBoost [13].

4.2.1 Training efficiency. Table 4 and Table 2 report the training
times on CPU and GPU platforms. Our method delivers substantial

ICPP’25, September 2025, San Diego, CA

Table 2: Training time (seconds) comparison on single GPU
and dual GPUs.

GPU ‘Dataset ‘catboost lightgbm xgboost sk—boost‘ ours

MNIST 20.13 42.88 16.51 28.61 5.04
Caltech101 21.55 32.54 18.31 28.61 6.16
MNIST-IN 5.54 74.27 21.08 26.61 3.28
. NUS-WIDE 79.17 174.81 34.48 43.88 3.91
Single
GPU Otto 1.78 34.24 1.28 22.58 0.22
SF-Crime 15.08 18.06 17.51 32.57 2.07
Helena 4.67 39.24 8.63 4.09 1.69
RF1 2.71 9.53 12.95 21.76 0.43
Delicious 135.40 610.30 116.96 302.93 17.79
MNIST 8.31 42.26 4.59 7.69 2.92
Caltech101 9.70 33.22 6.95 16.31 3.24
MNIST-IN 4.56 57.92 9.86 5.88 2.04
NUS-WIDE 75.29 124.41 24.76 23.45 8.79
Dual
GPUs Otto 1.33 11.19 1.91 11.40 0.91
SF-Crime 3.58 24.18 9.45 12.16 3.78
Helena 453 40.37 8.76 4.12 2.14
RF1 2.57 1.05 1.41 1.13 0.63
Delicious 133.31 794.65 107.33 286.26 11.27

Table 3: Testing accuracy or RMSE on GPU-based methods

Dataset | catboost lightgbm xgboost sk-boost | ours
MNIST 95.98 97.57 96.94 96.26 96.25
Caltech101 51.11 55.38 44.44 51.36 49.31
MNIST-IN 1.67 0.31 0.36 0.27 0.28
NUS-WIDE 7.49 15.04 6.78 6.78 6.80
Otto 0.77 0.77 0.82 0.74 0.80
SF-Crime 0.16 0.17 0.17 0.16 0.21
Helena 0.22 0.23 0.23 0.22 0.23
RF1 3.87 0.26 2.94 2.5 2.96
Delicious 0.07 0.02 0.08 0.07 0.13

Table 4: Training time (seconds) and testing accuracy/RMSE
on CPU-based methods vs. our system

Dataset ‘ Training time (s) ‘ Speedup ‘ Accuracy / RMSE
‘ mo-fu mo-sp ‘ ours ‘ VS mo-sp ‘ mo-fu mo-sp ‘ ours
MNIST 202.90 258.81 5.04 51.3%x 96.69 96.25 96.25

Caltech101 | 669.84 1,154.88 | 6.16 187.4X 49.38 48.72 | 49.31
MNIST-IN 14936 200.03 | 3.28 61.0x 0.28 0.29 0.28
NUS-WIDE | 401.30 747.37 | 3.91 191.2x 13.21 13.21 6.80

speedups over CPU-based baselines. For example, on Caltech101,
mo-sp takes 1,154.88 seconds, while our method finishes in just 6.16
seconds—a speedup of 187X. Similar improvements are observed
on NUS-WIDE (191x) and MNIST-IN (61x), clearly demonstrating
the advantage of GPU acceleration. Compared to other GPU-based
systems, our method consistently achieves the fastest training time
across all datasets. On MNIST-IN, our method takes only 3.28 sec-
onds, significantly outperforming xgboost (21.08 s) and sk-boost
(26.61 s). Even on challenging datasets like Delicious, our system
completes training in 17.79 seconds, much faster than catboost
(135.40 s), xgboost (116.96 s), and lightgbm (610.30 s). In addition,
with dual GPUs, the training time is further reduced. For example,
on MNIST, it decreases from 5.04 seconds to 2.92 seconds, showing
good scalability of our system with multiple GPUs.

ICPP’25, September 2025, San Diego, CA

4.2.2 Predictive performance. Tables 3 and 4 report predictive per-
formance, measured by accuracy or RMSE depending on task types.
Experimental results show that our system achieves competitive
or superior performance across all tasks. On classification datasets
such as MNIST and Otto, our accuracy reaches 96.25% and 0.80,
respectively—on par with xgboost and catboost. For regression and
multi-output tasks, such as MNIST-IN and RF1, our RMSE of 0.28
and 2.96 matches or exceeds the best-performing baselines. On
NUS-WIDE, our RMSE (6.80) is nearly identical to the best GPU
methods (sk-boost and xgboost, both 6.78).

4.3 Sensitive study

Here, we aim to assess the scalability of our proposed system
through a comprehensive evaluation of training times across vari-
ous factors on RTX 3090, including different numbers of trees, tree
depths, histogram building methods, and a range of class counts.

= MO-Full LightGBM ~&— MO-Full LightGBM
9000{ ==~ MO-Sparse SKesoost s I 2000\ MO-Sparse SHetoos -
—i- CatBoost == Ours - —A- CatBoost == Ours s
— - —
15 %}
[Q
L R2A
o o 1000
£ £
o o
[Q
2 2 .
P Y L
s I
2 //
0 100 200 300 400 500 0 100 200 300 400 500
number of trees number of trees
(a) Caltech101 (b) MNIST
1500{—=— Mo-Ful LightGBM 7000 = MoO-Full LightGBM
—8= MO-Sparse SK-Boost - —m= MO-Sparse SK-Boost ,—"
—a= CatBoost s Ours P —a= CatBoost —— Ours -
34000
Q
<
o
£ 1000
el
2 80
S
o
40

o

100 200 300 400 500
number of trees

(c) MNIST-IN

100 200 300 400 500
number of trees

(d) NUS-WIDE

Figure 5: Training time (in seconds) varies as the number of
trees (#trees) is adjusted across four distinct datasets.

4.3.1 Scalability with respect to the number of trees. Figure 5 illus-
trates the training time as the number of trees increases from 100
to 500 across four representative datasets. As expected, training
time grows with the number of trees for all methods. However, the
growth rate and absolute runtime differ significantly across systems.
CPU-based implementations (mo-fu and mo-sp) consistently incur
the highest cost, with training times increasing sharply—especially
on large datasets like Caltech101 and NUS-WIDE. In contrast, GPU-
based methods show substantially lower runtimes. Among them,
our approach consistently achieves the fastest training time across
all tree counts and datasets. For instance, even at 500 trees, our
method remains below 100 seconds on all datasets, while sk-boost,
catboost, and lightgbm incur noticeably higher costs. Moreover, our
system exhibits near-linear scalability with respect to the number

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'?

of trees, indicating efficient GPU resource utilization and minimal
overhead accumulation as model size grows. These results further
validate the efficiency and scalability of our implementation for
large-scale GBDT-MO training.

80 EX3 MNIST [EE CatBoost SK-Boost

370 B2 Caliechl01 1000 XGBoost Ours

2 6 MNIST-IN -~

~ NUS-WIDE 2500

250 2

£ T L

S 40 g

=3 3 5

2 30 k=]

520 2

510 A ETEN IR i]

o] :
0 oLE : : 2 :
gmem all-reduce smem 05 o 5 10 25 50 100 250 500

(a) Histogram building methods (b) Number of classes
Figure 6: Effects of different histogram building methods and
the number of classes on training time.

4.3.2 Effect of histogram building methods. Figure 6a compares
the training time of five histogram building strategies across four
datasets. Here, “gmem” and “smem” refer to global and shared
memory methods, “all-reduce” denotes sort-and-reduce, and “+wo”
indicates the use of warp-level optimization. Without warp opti-
mization, “gmem” performs best on MNIST and MNIST-IN, while
“smem” is more efficient on Caltech101 and NUS-WIDE. The sort-
and-reduce method consistently incurs the highest cost, highlight-
ing its overhead in sorting and reduction. With warp optimiza-
tion, both “gmem+wo” and “smem+wo” show substantial improve-
ments—especially on larger datasets like NUS-WIDE, where train-
ing time drops by nearly 50%. These results underscore the impor-
tance of tailoring histogram building strategies to dataset character-
istics, and demonstrate that warp-level optimization is particularly
effective at scale.

4.3.3 Effect of the number of classes. Figure 6b shows the training
time of four methods on synthetic datasets with increasing numbers
of classes (from 5 to 500). All experiments use 100 trees of depth 6,
and datasets are generated using scikit-learn’s multi-class API.
We observe that both catboost and xgboost exhibit steep increases in
training time as the number of classes grows, suggesting scalability
limitations in multi-class settings. In contrast, sk-boost remains
relatively stable, but at a consistently higher runtime. Our method
shows a moderate increase in training time with class count, but
remains the fastest across all settings—demonstrating better scala-
bility to large-output tasks. Additionally, we find that sk-boost is
significantly more sensitive to class count and tree depth in terms
of memory usage, while our method remains stable, further con-
firming its robustness.

4.3.4 Scalability with respect to tree depth. Figure 7 shows the im-
pact of increasing tree depth on training time. As expected, deeper
trees lead to higher computation costs. CPU-based methods (mo-
fu and mo-sp) are consistently the slowest and often run out of
memory at greater depths. GPU-based methods handle deeper trees
more efficiently, and our approach achieves the lowest training
time across all depths and avoids out-of-memory failures mostly.
This confirms the scalability and robustness of our method under
increasing model complexity.

Accelerating Multi-Output GBDTs with GPUs

7500

= MO-Full LightGBM

85000 @4 MO-Sparse SK-Boost '
\99’1 B CatBoost Ours '
92500 B d g
S o a6 - Ig' -
o]
® 50
S 9 <]
[6 7 8 9 10
tree depth
(a) Caltech101
3000 '
m MO-Full LightGBM I
’gzooo ®w4 MO-Sparse SK-Boost P
K23 B CatBoost Ours '
©1000 '
-.g 100 —— —— - ‘ Hw
3 % % % % %
o)
e B W BB
" 0
[6 7 8 9 10
tree depth
(c) MNIST-IN

ICPP’25, September 2025, San Diego, CA

4000 ' ' '

= MO-Full LightGBM]
o @4 MO-Sparse SK-Boost '
;3/2000 W CatBoost Ours '
o g
£ — I | T I‘I m_ _
i SOUEI Iil Iil Iil ’
(2]
Q.
3 9
o 6 7 8 9 10

tree depth
(b) MNIST
3000 ' ' '

== MO-Full LightGBM %
‘02000 @4 MO-Sparse SK-Boost [l '
bl %
k23 mmm CatBoost Ours ' ' '
gi00| 'ﬂ |! |!
'g .A_ W ‘_ ‘_ - _
i SOUEI Iil Iil Iil Iil
(2] =
o Q
S 9 °©
o 6 7 8 9 10

tree depth

(d) NUS-WIDE

Figure 7: Training time (in seconds) varies as the depth of trees (depth) is adjusted across four distinct datasets.

5 RELATED WORK

In this section, we discuss the literature related to multi-output mod-
els, GBDTs with multi-outputs (GBDT-MO), and the acceleration
techniques for these models.

Multi-output models. Multi-output learning is an established
area of machine learning that focuses on the simultaneous predic-
tion of multiple target variables [15]. These models are particularly
effective in contexts where output variables are interdependent or
correlated, such as in multi-task learning [26], multi-label classi-
fication [3], and multi-output regression [25]. Over the years, the
field has seen the development of a variety of multi-output models,
such as multi-output Support Vector Machines (SVMs) [33], multi-
output neural networks [21], and multi-output random forests [24].
Each of these models presents unique advantages, with SVMs pro-
viding a strong theoretical foundation, neural networks offering
high expressive power, and random forests ensuring robustness and
interpretability. However, the increasing complexity and scale of
multi-output tasks are presenting new challenges for these models
in terms of computational efficiency and scalability.

Multi-output GBDTs. The multi-output GBDT (GBDT-MO) is
an extension of the traditional GBDT algorithm that is capable of
managing multiple outputs, capturing intricate dependencies be-
tween input features and multiple target variables [34]. The poten-
tial of GBDT-MO has been demonstrated in various tasks including
image segmentation [17], multi-label classification, and multi-task
learning. In recent years, enhancements to GBDT-MO have been
proposed, such as output feature sharing and correlation-guided
tree construction [31]. These innovations have further improved the
predictive performance and interpretability of GBDT-MO. Nonethe-
less, the computational burden associated with training these mod-
els, especially for large-scale problems, remains a significant hurdle.

Acceleration for GBDTs and multi-output models. Given
the computational complexity of GBDT-MO and multi-output mod-
els, researchers have explored different acceleration techniques.
Some studies have focused on parallel and distributed computing
for multi-output models, such as distributed multi-output SVMs [19]
and parallel multi-output neural networks [9]. These approaches
have shown great potential in large-scale settings but are often con-
strained by communication overheads and synchronization issues.
On the other hand, Graphics Processing Units (GPUs) have been
adopted to accelerate single-output GBDT training algorithms. A
variety of systems have been proposed to support efficient GBDT
training, such as XGBoost [5], LightGBM [16, 32], CatBoost [7],
DimBoost [14], and ThunderGBM [28]. All of these existing sys-
tems except DimBoost support GBDT training on GPUs. [22] pro-
poses a new GBDT learning algorithm for high dimensional out-
puts. [2] developed parallel decision trees for stream data using
approximation. A more recent study investigates the performance
of the different GBDT systems [10]. Except for GBDT systems for
single output, SketchBoost [13] utilizes GPUs to accelerate the
training of multiple-output GBDTs. Besides, approximate strate-
gies for gradient reduction are proposed to further speed up the
training process. However, the GBDT training is memory bound so
that the efficiency improvement is limited due to irregular mem-
ory accesses [27]. There are also issues with histogram building
in the training of GBDT-MO pending to be solved. For instance,
the memory consumption of histogram building of GBDT-MO is a
magnitude larger than that of GBDT-SO.

Based on the aforementioned, this work proposes a GBDT-MO
system, which leverages the parallelism of GPUs to speed up the
training process. We also optimize the histogram building pro-
cess in GBDT-MO training. We build upon the advancements in
GPU-accelerated single-output GBDTs and extend them to handle

ICPP’25, September 2025, San Diego, CA

multiple outputs efficiently. We evaluate our proposed solution on
various real-world datasets and compare it with the state-of-the-art
methods, demonstrating the effectiveness of our proposed solution.

6 CONCLUSION

Multi-output learning has attracted increasing attention due to its
ability to handle complex dependencies between input features and
multiple outputs. Among various multi-output models, the multi-
output Gradient Boosted Decision Tree (GBDT-MO) has demon-
strated remarkable performance and interpretability in a wide range
of applications. However, the computational complexity of GBDT-
MO training poses challenges in large-scale datasets. In this paper,
we have proposed a GPU-accelerated GBDT-MO training system
that significantly speeds up the training process while maintaining
competitive model performance. Our system leverages the highly
parallel architecture of GPUs to efficiently compute gradient up-
dates and construct decision trees, enabling scalable and efficient
multi-output GBDT training. Extensive experiments across diverse
datasets show that our system achieves speedup over 30X on CPU-
based baselines and up to 170X acceleration compared with leading
GPU-based methods, while delivering comparable predictive perfor-
mance. These results confirm the scalability and effectiveness of our
system for practical, large-scale multi-output learning scenarios.

ACKNOWLEDGMENTS

This work is supported by the Guangzhou Industrial Information
and Intelligent Key Laboratory Project (No. 2024A03]0628). It is also
funded by the NSFC Project (No. 62306256) and the Natural Science
Foundation of Guangdong Province (No. 2025A1515010261).

REFERENCES

[1] Stephan Allenspach, Jan A Hiss, and Gisbert Schneider. 2024. Neural multi-task
learning in drug design. Nature Machine Intelligence 6, 2 (2024), 124-137.

Yael Ben-Haim and Elad Tom-Tov. 2010. A streaming parallel decision tree
algorithm. Journal of Machine Learning Research (JMLR) 11, Feb (2010), 849-872.

Deblina Bhattacharjee, Tong Zhang, Sabine Siisstrunk, and Mathieu Salzmann.
2022. Mult: An end-to-end multitask learning transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12031-12041.

[4] Jodo Bravo. 2024. NRGBoost: Energy-Based Generative Boosted Trees. arXiv
preprint arXiv:2410.03535 (2024).

[5] Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data mining (SIGKDD). 785-794.

[6] Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng
Wang, and Yingyan Lin. 2023. Vitality: Unifying low-rank and sparse approx-
imation for vision transformer acceleration with a linear taylor attention. In
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 415-428.

[7] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gra-
dient boosting with categorical features support. arXiv preprint arXiv:1810.11363
(2018).

[8] Lei Du, Haifeng Song, Yingying Xu, and Songsong Dai. 2024. An Architecture as
an Alternative to Gradient Boosted Decision Trees for Multiple Machine Learning
Tasks. Electronics 13, 12 (2024), 2291.

[9] Martin Ferianc and Miguel Rodrigues. 2023. MIMMO: Multi-input massive multi-
output neural network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 4564-4569.

[10] Fangcheng Fu, Jiawei Jiang, Shaoxia Ying, and Bin Cui. 2019. An Experimental

Evaluation of Large Scale GBDT Systems. Very Large Data Bases (VLDB) (2019).

[11] Yusheng Huang, Jiexing Qi, Xinbing Wang, and Zhouhan Lin. 2023. Asymmetric
Polynomial Loss for Multi-Label Classification. In ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
1-5.

Carlos Huertas. 2024. Gradient Boosting Trees and Large Language Models for
Tabular Data Few-Shot Learning. arXiv preprint arXiv:2411.04324 (2024).

[2

3

[12

Hanfeng Liu', Xuemei Peng!, Zeyi Wen'?

[13] Leonid Iosipoi and Anton Vakhrushev. 2022. SketchBoost: Fast Gradient Boosted
Decision Tree for Multioutput Problems. arXiv preprint arXiv:2211.12858 (2022).

[14] Jiawei Jiang, Bin Cui, Ce Zhang, and Fangcheng Fu. 2018. DimBoost: Boosting

gradient boosting decision tree to higher dimensions. In International Conference

on Management of Data (SIGMOD). ACM, 1363-1376.

Karin Joan, Robyn Irawan, and Benny Yong. 2025. APPLICATION AND PER-

FORMANCE COMPARISON OF MULTI-OUTPUT MACHINE LEARNING FOR

NUMERICAL-NUMERICAL AND NUMERICAL-CATEGORICAL OUTPUTS.

BAREKENG: Jurnal Ilmu Matematika dan Terapan 19, 2 (2025), 1421-1432.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting

decision tree. In Advances in Neural Information Processing Systems (NeurIPS).

3149-3157.

Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen

Chen, and Yixuan Yuan. 2025. U-kan makes strong backbone for medical image

segmentation and generation. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 39. 4652-4660.

Chengliang Liu, Jinlong Jia, Jie Wen, Yabo Liu, Xiaoling Luo, Chao Huang, and

Yong Xu. 2024. Attention-induced embedding imputation for incomplete multi-

view partial multi-label classification. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 38. 13864-13872.

Peng Lu, Lin Ye, Wuzhi Zhong, Ying Qu, Bingxu Zhai, Yong Tang, and Yongning

Zhao. 2020. A novel spatio-temporal wind power forecasting framework based

on multi-output support vector machine and optimization strategy. Journal of

Cleaner Production 254 (2020), 119993.

[20] Jiaqi Luo, Yuan Yuan, and Shixin Xu. 2025. Improving GBDT performance

on imbalanced datasets: An empirical study of class-balanced loss functions.

Neurocomputing 634 (2025), 129896.

Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D Nowak. 2024. Vari-

ation spaces for multi-output neural networks: Insights on multi-task learning

and network compression. Journal of Machine Learning Research 25, 231 (2024),

1-40.

[22] Si Si, Huan Zhang, S Sathiya Keerthi, Dhruv Mahajan, Inderjit S Dhillon, and
Cho-Jui Hsieh. 2017. Gradient boosted decision trees for high dimensional sparse
output. In International conference on machine learning. PMLR, 3182-3190.

[23] Gokul Swamy, Anoop Saladi, Arunita Das, and Shobhit Niranjan. 2024. PEM-

BOT: Pareto-ensembled multi-task boosted trees. In Proceedings of the 30th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining. 5752-5761.

Yin Wan, Ding Liu, and Jun-Chao Ren. 2024. A modeling method of wide random

forest multi-output soft sensor with attention mechanism for quality prediction

of complex industrial processes. Advanced Engineering Informatics 59 (2024),

102255.

Andong Wang, Yuning Qiu, Mingyuan Bai, Zhong Jin, Guoxu Zhou, and Qibin

Zhao. 2024. Generalized Tensor Decomposition for Understanding Multi-Output

Regression under Combinatorial Shifts. Advances in Neural Information Processing

Systems 37 (2024), 47559-47635.

[26] Dong Wang, Shaoguang Yan, Yunqing Xia, Kavé Salamatian, Weiwei Deng, and

Qi Zhang. 2022. Learning Supplementary NLP Features for CTR Prediction

in Sponsored Search. In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 4010-4020.

Zeyi Wen, Bingsheng He, Ramamohanarao Kotagiri, Shengliang Lu, and Jiashuai

Shi. 2018. Efficient gradient boosted decision tree training on GPUs. In Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 234-243.

[28] Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen.

2020. ThunderGBM: Fast GBDTs and Random Forests on GPUs. Journal of

Machine Learning Research (JMLR) 21, 108 (2020), 1-5.

Jiahuan Yan, Jintai Chen, Qianxing Wang, Danny Z Chen, and Jian Wu. 2024.

Team up GBDTs and DNNs: Advancing Efficient and Effective Tabular Prediction

with Tree-hybrid MLPs. In Proceedings of the 30th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 3679-3689.

ZhenZhe Ying, Zhuoer Xu, Zhifeng Li, Weigiang Wang, and Changhua Meng.

2022. MT-GBM: A Multi-Task Gradient Boosting Machine with Shared Decision

Trees. arXiv preprint arXiv:2201.06239 (2022).

Xingbin Zhan, Shuaichao Zhang, Wai Yuen Szeto, and Xiqun Chen. 2020. Multi-

step-ahead traffic speed forecasting using multi-output gradient boosting regres-

sion tree. Journal of Intelligent Transportation Systems 24, 2 (2020), 125-141.

Huan Zhang, Si Si, and Cho-Jui Hsieh. 2017. GPU-acceleration for Large-scale

Tree Boosting. arXiv preprint arXiv:1706.08359 (2017).

Xianxia Zhang, Gang Zhou, Hanyu Yuan, and Bing Wang. 2025. Online Three-

Dimensional Fuzzy Multi-Output Support Vector Regression Learning Modeling

for Complex Distributed Parameter Systems. Applied Sciences 15, 5 (2025), 2750.

https://doi.org/10.3390/app15052750

Zhendong Zhang and Cheolkon Jung. 2020. GBDT-MO: gradient-boosted decision

trees for multiple outputs. IEEE transactions on neural networks and learning

systems 32, 7 (2020), 3156-3167.

Xin Zhou and Qiquan Ran. 2023. Optimization of Fracturing Parameters by

Modified Genetic Algorithm in Shale Gas Reservoir. Energies 16, 6 (2023), 2868.

[15

[16

(17

[18

[19

[21

[24

[25

[27

[29

[30

[31

[32

[33

(34

'S
&

https://doi.org/10.3390/app15052750

	Abstract
	1 Introduction
	2 Preliminary
	2.1 GBDTs with multiple outputs
	2.2 Loss and objective function
	2.3 Gain of a split point
	2.4 Training GBDTs with multiple outputs

	3 Our proposed solution
	3.1 System overview
	3.2 Sparsity-aware data storage in GBDT-MO
	3.3 Histogram building optimization
	3.4 Warp-level and multi-GPU optimization

	4 Experiments
	4.1 Experimental setup
	4.2 Overall comparison
	4.3 Sensitive study

	5 Related work
	6 Conclusion
	Acknowledgments
	References

