
FastPSO: Towards Efficient Swarm Intelligence Algorithm on
GPUs

Hanfeng Liu†§, Zeyi Wen‡1, Wei Cai†§1
kurt.liuhf@gmail.com,zeyi.wen@uwa.edu.au,caiwei@cuhk.edu.cn

†School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
§Shenzhen Institute of Artificial Intelligence and Robotics for Society, China

‡Department of Computer Science and Software Engineering, The University of Western Australia

ABSTRACT
Particle Swarm Optimization (PSO) has been widely used in various
optimization tasks (e.g., neural architecture search and autonomous
vehicle navigation), because it can solve non-convex optimization
problems with simplicity and efficacy. However, the PSO algorithm
is often time-consuming to use, especially for high-dimensional
problems, which hinders its applicability in time-critical applica-
tions. In this paper, we propose novel techniques to accelerate the
PSO algorithm with GPUs. To mitigate the efficiency bottleneck,
we formally model the PSO optimization as a process of element-
wise operations on matrices. Based on the modeling, we develop
an efficient GPU algorithm to perform the element-wise operations
in massively parallel using the tensor cores and shared memory.
Moreover, we propose a series of novel techniques to improve our
proposed algorithm, including (i) GPU resource-aware thread cre-
ation to prevent creating too many threads when the number of
particles/dimensions is large; (ii) designing parallel techniques to
initialize swarm particles with fast random number generation; (iii)
exploiting GPU memory caching to manage swarm information
instead of allocating new memory and (iv) developing a schema to
support customized swarm evaluation functions. We conduct ex-
tensive experiments on four optimization applications to study the
efficiency of our algorithm called “FastPSO". Experimental results
show that FastPSO consistently outperforms the existing CPU-
based PSO libraries by two orders of magnitude, and transcends the
existing GPU-based implementation by 5 to 7 times, while achieving
better or competitive optimization results.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms.

KEYWORDS
Particle Swarm Optimization, High Performance Computing, GPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472474

ACM Reference Format:
Hanfeng Liu†§, Zeyi Wen‡1, Wei Cai†§1. 2021. FastPSO: Towards Efficient
Swarm Intelligence Algorithm on GPUs. In 50th International Conference
on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472474

1 INTRODUCTION
Swarm Intelligencemimics the behaviors of social animals (e.g., ants
and bees), and exploits information exchanges among individuals
in the group to achieve intelligence. Recently, many researchers
believe that the advancement of Swarm Intelligence may lead to
the next evolution of Artificial Intelligence [4, 22]. Well-known
swarm intelligence algorithms include Ant Colony algorithm [5]
and Artificial Bee Colony algorithm [13]. Compared with other
types of optimization methods like Stochastic Gradient Descent
(SGD), Swarm Intelligence based optimizations have the advantages
in flexibility, robustness and simplicity of implementation [28].

Particle Swarm Optimization (PSO) is one of the most pop-
ular Swarm Intelligence algorithms [15]. PSO has been widely
used in many applications, such as neural network architecture
search [11, 12] and location management [8]. Figure 1 shows the
large number of scientific publications in recent years based on data
from Google Scholar. However, the optimization process of PSO is
often time-consuming, especially when dealing with a large number
of particles or with high-dimensional data. The reason is that when
the number of particles or dimensions increases, the number of
values within each particle of PSO increases and hence the update
cost on the values increases. There have been attempts to reduce
the time consumption of PSO [10]. The most common way to ac-
celerate PSO is to exploit hardware such as multi-core CPUs and
GPUs. In those algorithms with multi-core CPUs or GPUs, a thread
is dedicated to each particle, so that the swarm update process can
be solely performed within the thread. Such implementations on
GPUs are inefficient [10], because the number of particles may be
significantly smaller than the number of GPU cores.

To address the efficiency issues of PSO on GPUs, we first identify
that the bottleneck of PSO lies in the update of position and velocity
of each particle. Hence, we model the swarm update process of the
PSO algorithm as element-wise operations on matrices, which is
a finer granularity of parallelism compared to particle level paral-
lelism. Thus, we design a fine grain parallel algorithm on GPUs,
where a thread is dedicated to one or more element-wise operations
depending on the total number of element-wise operations and the
available GPU resources. Our proposed PSO can use GPU resources

1Corresponding author

https://doi.org/10.1145/3472456.3472474
https://doi.org/10.1145/3472456.3472474

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hanfeng Liu†§ , Zeyi Wen‡1 , Wei Cai†§1

0 10k 20k 30k 40k
Number of publications

10
11
12
13
14
15
16
17
18
19
20

Ye
ar

s (
20

**
)

Figure 1: Number of publications of PSO in recent years

more efficiently, since the number of element-wise operations is
significantly larger than the number of particles, which provides
more flexibility for parallelism in our algorithm. As a result, our
proposed PSO algorithm is more efficient, especially when dealing
with high-dimension optimizing problems. Moreover, we propose
a series of novel techniques to improve our proposed algorithm,
including the use of shared memory and tensor cores, the design of
parallel swarm initialization techniques with fast random number
generation, caching GPU memory to efficiently manage swarm in-
formation and supporting user-defined swarm evaluation functions
by a GPU kernel schema. To summarize, we make the following
major contributions in this paper.
• We accelerate the PSO algorithm on GPUs by modeling the
update process of PSO as element-wise multiplication opera-
tions on matrices, which brings higher degree of parallelism.
Our algorithm can take advantage of the tensor cores and
shared memory.
• We develop a series of novel techniques to further improve
our proposed PSO algorithm. First, we propose GPU resource-
aware thread creation to prevent the explosion of the number
of threads when handling problems with a large number of
particles or dimensions. Second, we design parallel tech-
niques to initialize swarm particles before PSO starts with
fast random number generation on GPUs. Third, we exploit
GPU memory caching to better manage swarm information
instead of allocating new memory in the optimization pro-
cess. Lastly, we provide a schema to support customized
swarm evaluation functions which are automatically paral-
lelized on GPUs.
• We conduct extensive experiments to study the efficiency
of our proposed PSO algorithm called “FastPSO" on four
common optimization problems. The experimental results
show that FastPSO can outperform the existing GPU-based
PSO implementation by 5 to 7 times. FastPSO is superior
especially when processing the high-dimension problems.
When compared with the existing CPU-based PSO libraries,
FastPSO is two orders of magnitude faster. To further in-
vestigate FastPSO, we implement the sequential version of
FastPSO and the parallel version of FastPSO with OpenMP.
Our study shows that FastPSO on the GPU is an order of
magnitude faster than the CPU-based versions, which indi-
cates our efficient use of the GPU resources. Additionally, we
perform a case study on searching for the best configuration
of thread/block dimensions a GPU-based machine learning

Figure 2: Updating position and velocity of 𝑖-th particle

library (i.e., ThunderGBM [32]). The accelerated PSO can
further reduce the training time of ThunderGBM by around
10% with better thread/block dimension configuration.

The rest of this paper is organized as follows. Section 2 intro-
duces the background of PSO. Section 3 elaborates the details of our
proposed PSO algorithm. Section 4 provides experimental results
on the efficiency, error and breakdown analysis of the accelerated
PSO. A case study of tuning block and thread dimensions on Thun-
derGBM is also shown in Section 4. Section 5 gives the related works
of PSO acceleration. Section 6 concludes the paper and presents
potential future research directions.

2 PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) [15] is a global optimization
technique inspired by swarm behaviors found in nature (e.g., the
bee colony). The goal of PSO is to find the global optimum by a
group of particles (i.e., the swarm). Each particle has a velocity
and a position. We define 𝒗𝒊 ∈ R𝑑 and 𝒑𝒊 ∈ R𝑑 to represent the
velocity and position of 𝑖-th particle, where 𝑑 is the dimension of
the optimization problem. Each particle in the swarm has accesses
to two pieces of information: (i) the direction and distance to the
potential global optimum that the particle has seen locally (particle
memory information) and (ii) the direction and distance to the po-
tential global optimum which has been seen by the swarm globally
(swarm information).

We define 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 (i.e., the local particle best error and
global best error) to represent these two pieces of information
of the 𝑖-th particle. Then, each particle incrementally updates its
velocity by randomly weighting these two pieces of information
and combining them (i.e., combining 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 with random
weighting). Similarly, the position of each particle is essentially
updated by combining 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 with random weighting.
The swarm maintains a potential global optimum and the goal is
for this potential global optimum to converge to the true global
optimum. Figure 2 shows that update step of a particle. As shown
in the figure, the update of velocity is influenced by 𝑝𝑏𝑒𝑠𝑡𝑖 and
𝑔𝑏𝑒𝑠𝑡 in the current iteration. Once the new velocity is updated,
the particle moves to a new position with the new velocity.

Formally, PSO makes use of two key formulas: one for com-
puting/updating the velocity of each particle and the other for
computing/updating the position of each particle. Let 𝒑𝑖 denote
the current position of the 𝑖-th particle in the swarm. The update
formula for the velocity denoted by 𝒗𝑖 is given by Equation (1)

FastPSO: Towards Efficient Swarm Intelligence Algorithm on GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Algorithm 1: Particle Swarm Optimization
Input :𝑛: the number of particles;

𝜔, 𝑐1, 𝑐2: parameters of PSO;
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 : the number of iterations

Output :The optimal positions of the particles
// initialization of each particle

1 for 𝑖 ← 1 to 𝑛 do
2 initialize the 𝒑𝑖 and 𝒗𝑖 ;
3 end
4 for 𝑡 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

// evaluation and error update

5 for 𝑖 ← 1 to 𝑛 do
6 calculate current error 𝑝𝑒𝑟𝑟𝑜𝑟𝑖 ;
7 if 𝑝𝑒𝑟𝑟𝑜𝑟𝑖 < 𝑝𝑏𝑒𝑠𝑡𝑖 then
8 𝑝𝑏𝑒𝑠𝑡𝑖 ← 𝑝𝑒𝑟𝑟𝑜𝑟𝑖 ;
9 end

10 if 𝑝𝑒𝑟𝑟𝑜𝑟𝑖 < 𝑔𝑏𝑒𝑠𝑡 then
11 𝑔𝑏𝑒𝑠𝑡 ← 𝑝𝑒𝑟𝑟𝑜𝑟𝑖 ;
12 end
13 end

// particle update

14 for 𝑖 ← 1 to 𝑛 do
15 calculate 𝒗′

𝑖
with equation (1);

16 calculate 𝒑′
𝑖
with equation (2);

17 end
18 end

below.
𝒗
′
𝑖 = 𝜔𝒗𝑖 + 𝑐1𝒍𝑖 ⊙ (𝑝𝑏𝑒𝑠𝑡𝑖 · 𝒆 − 𝒑𝑖)

+𝑐2𝒈𝑖 ⊙ (𝑔𝑏𝑒𝑠𝑡 · 𝒆 − 𝒑𝑖)
(1)

where 𝜔 represents the particle momentum; 𝑐1 and 𝑐2 represent
preference to explore locally and globally, respectively; 𝒍𝑖 and 𝒈𝑖
are random weight vectors whose components are sampled from
𝑈 (0, 1); 𝒆 = [1, 1, . . . , 1] ∈ R𝑑 stands for the vector with all ele-
ments of 1; ⊙ denotes to the Hadamard product which performs
the element-wise multiplication of two vectors [9].

Once the velocity of a particle is computed, the position can be
updated by Equation (2) shown below.

𝒑
′
𝑖 = 𝒑𝑖 + 𝒗

′
𝑖 (2)

The progress of PSO is summarized in Algorithm 1. As can be
seen in the algorithm, the process of PSO are mainly divided into
three phases. The first phase is data initialization (Lines 1-3), which
is responsible for initializing the position and velocity of each par-
ticle for the swarm in a random manner. The second phase is used
for fitness computation and error update (Lines 5-13). Followed
by that, the last step is particle update (Lines 14-17), aiming to
finish the update of velocities and positions. As we can see from
Algorithm 1, there are many ‘for loops’ which is the main reason
why PSO is time-consuming. One of the characteristics of PSO is
that it searches globally for the optimum, although it does not have
a guarantee of convergence. In particular, initializing particles in a
subspace far from the global optimum may reduce the likelihood

Figure 3: The overview of FastPSO

of convergence to the global optimum, so the initialization step in
PSO is crucial (Lines 1-3).

3 OUR PROPOSED FASTPSO ALGORITHM
This section elaborates the technical details of our proposed FastPSO.
For ease of presentation, we divide the PSO optimization process
into four steps: (i) swarm initialization, (ii) swarm evaluation, (iii)
𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 update and (iv) swarm update. Figure 3 shows that
overview of FastPSO. The existing methods for accelerating PSO
work as follows. In each iteration of PSO, a thread for each particle
is created and the thread is responsible for the whole life-cycle
of the particle: the calculation of the target value of the particle,
the target value update, and updating the position and velocity
of the particle. However, the velocity and position vector of each
particle often contain a large number of elements while the number
of particles is much smaller than the number of GPU cores, which
makes the existing methods inefficient, especially when handling
high-dimensional data.

Different from existing methods, our proposed FastPSO algo-
rithm exploits finer granularity of parallelism. For example, in the
swarm update step, we model the procedure as element-wise mul-
tiplication operations on matrices. Based on this modeling, the
velocity and the position of a particle are divided into a set of ele-
ments. Then, we can allocate the workload to a thread in the unit
of elements instead of in the unit of particles. As a result, the work-
load allocation to each thread is more flexible, and the number of
threads to be used can be much larger. Thus, our proposed FastPSO
algorithm can make efficient use of the GPU resources, which leads
to excellent performance when dealing with high-dimensional data.

Moreover, we propose a series of techniques to make more ef-
ficient use of the GPU resources including shared memory and
tensor cores. In the 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 update step as well as the
swarm update step, a large number of threads needs to be created.
We develop the GPU resource aware thread creation to prevent
creation of too many threads. In the swarm initialization step, we
exploit parallel techniques to efficiently generate two coefficient
matrices with random numbers corresponding to the velocities

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hanfeng Liu†§ , Zeyi Wen‡1 , Wei Cai†§1

and positions. In the whole algorithm, we exploit GPU memory
caching to manage swarm information instead of allocating new
memory when needed. In the swarm evaluation step, we develop a
schema to support customized swarm evaluation functions, which
are automatically executed on GPUs in parallel. Next, we elaborate
the details of FastPSO.

3.1 Step (i): Swarm initialization
Before the search for the global optimum starts, the PSO algorithm
needs to initialize the position and velocity of each particle. This
initialization step involves a large number of random number gen-
erations which can be done based on Thrust. These random number
generation processes include the initialization of velocities, posi-
tions and the random weight vectors (i.e., 𝒍𝑖 and 𝒈𝑖 in Equation (1))
for the swarm. In each iteration of PSO, both 𝒍𝑖 and 𝒈𝑖 need to be
generated for the 𝑖-th particle. Therefore, two 𝑑 ×𝑛 random number
matrices need to be generated in each iteration of PSO.

3.2 Step (ii): Swarm evaluation
Given the current state of the swarm, we can evaluate its quality.
Recall that the main goal of the PSO algorithm is to find the global
optimum for the applications of interest. In practice, the global
optimum is often unknown, since the ground truth of the given
applications is unknown. Nevertheless, practitioners know how
to evaluate a swarm for the given problem. To explain this, let
us consider using PSO for the neural network architecture search
problem as an example. The current state of the swarm in PSO
corresponds to a certain neural network architecture. Given a neural
network architecture the PSO has found, practitioners can evaluate
the architecture to measure the metric of interest like predictive
accuracy. The higher the predictive accuracy indicates the higher
quality of the swarm.

The swarm evaluation is also computationally expensive, be-
cause in every iteration of PSO, a swarm evaluation procedure
needs to be performed. On two popular CPU-based PSO libraries
(i.e., pyswarms and scikit-opt), the implementation of the evaluation
functions greatly affects the overall time consumption of PSO. If
parallelism is not well exploited in the implementation of the evalu-
ation functions, the libraries can be more than 10 times slower [19].
Thus, in order to maximize the performance of PSO on GPUs, we
dedicate a GPU thread to evaluate the quality of one or more parti-
cles depending on the number of particles in the swarm. Moreover,
different applications need to use different functions or metrics to
evaluate a swarm. Therefore, our proposed PSO algorithm allows
practitioners to customize the function/metric in the evaluation.
We design a CUDA schema kernel for user-defined loss functions,
which can be seen in code snapshot below.
template<typename L>
__global__ void evaluation_kernel(int dim, L lambda){
for(int i = blockIdx.x * blockDim.x + threadIdx.x;

i < dim; i += blockDim.x * gridDim.x) {
lambda(i);

}
}

In the above code snapshot, “lambda(·)” is the function that prac-
titioners can implement by themselves and pass to FastPSO. Fur-
thermore, FastPSO provides a series of built-in evaluation functions
with GPU acceleration. The built-in functions include commonly

used functions in Swarm Intelligence community, such as Sphere,
Griewank and Easom [20].

3.3 Step (iii): The 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 update
After the evaluation of the swarm, the next step of the PSO algo-
rithm is to update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 . In the process of updating 𝑝𝑏𝑒𝑠𝑡 ,
each particle needs to compare its new target value and its previ-
ous target value. If the new target value of the particle leads to a
better swarm, the 𝑝𝑏𝑒𝑠𝑡 value of the particle is updated. Otherwise,
the 𝑝𝑏𝑒𝑠𝑡 value of the particle stays unchanged. The comparison
between the new target value and the previous target value and the
update of 𝑝𝑏𝑒𝑠𝑡 involve only the individual particle. Therefore, the
update of 𝑝𝑏𝑒𝑠𝑡 can be done in massively parallel. In FastPSO, we
assign a GPU thread to each particle, and the thread is responsible
for completing the particle target value comparison and the 𝑝𝑏𝑒𝑠𝑡
update.

It is worth noting that the GPU thread workload during the 𝑝𝑏𝑒𝑠𝑡
update process is adapted depending on the size of the optimization
problem, so that the number of threads created is not exploded.
Specifically, the thread workload of 𝑝𝑏𝑒𝑠𝑡 update is 𝑛

𝑚𝑒𝑚 , where
𝑛 is the number of particles and𝑚𝑒𝑚 is the available memory of
the GPU. The update for 𝑔𝑏𝑒𝑠𝑡 of the swarm is a process of finding
the minimum and its corresponding index in all the 𝑝𝑏𝑒𝑠𝑡 of the
particles. We implement this update using a GPU-based parallel
reduction.

3.4 Step (iv): Swarm update
The last step of the PSO algorithm is to update the velocity and
position vectors of each particle (e.g., updating 𝒗𝑖 and 𝒑𝑖 of the 𝑖-th
particle). This step is the most time-consuming component of the
PSO algorithm. For example, 80% of the algorithm running time of
pyswarms is consumed in this step [19]. Our experimental results
in Section 4 confirm the percentage of the execution time during
the process of the PSO algorithm is used for updating the swarms,
including the position and velocity of each particle. Based on the
Amdahl’s law [7], if we can shorten the time of the swarm update,
the overall running time of the PSO algorithm can be reduced
by about 5 times theoretically. Therefore, this step needs to be
carefully accelerated on the GPU foremost. In PSO, the entire swarm
can be modeled as two matrices, denoted by P ∈ R𝑛×𝑑 and V ∈
R𝑛×𝑑 , respectively, where P is the matrix containing the position
information of all the particles andV is the matrix with the velocity
information of all the particles.

In order to maximize the parallelism of the swarm update, we
may assign a thread to each particle which is what the existing
methods do. However, such way of workload allocation limits the
degree of parallelism, because the number of particle may be much
smaller than the number of GPU cores. As swarm update is the
most time-consuming component of PSO, we further elaborate the
parallelism granularity by modeling the update as element-wise
multiplication operations on the two matrices (i.e., P andV). Based
on this idea, we assign the element of each dimension in the particle
to a thread for updating the element at that position. The advantage
of this is that it can improve the workload of each thread in the
GPU and achieve good scalability. As the number of elements in
the two matrices may be too large which can lead to extra cost on

FastPSO: Towards Efficient Swarm Intelligence Algorithm on GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

thread creation or leading to running out of GPU memory, FastPSO
can automatically allocate multiple elements to a thread when the
matrices are large. Formally, the GPU thread workload of FastPSO
can be formulated as the equation below.

𝑡𝑤 =
𝑛 × 𝑑
𝑚𝑒𝑚

(3)

where 𝑡𝑤 stands for the thread workload; 𝑛 denotes the number
of particles; 𝑑 denotes the particle dimension;𝑚𝑒𝑚 stands for the
available memory of a GPU (e.g., 16GB in a Tesla V100 GPU).

Formally, the update process of the velocities on thewhole swarm
can be calculated in matrix representation shown in the equation
below.

V ′ = 𝜔 · V + 𝑐1 · L ⊙ (E𝑙 − P) + 𝑐2 · G ⊙ (E𝑔 − P) (4)

where 𝜔 , 𝑐1 and 𝑐2 are the same as those in Equation (1); V and
P are the coefficient matrices corresponding to the velocities and
positions of all the particles, respectively; L and G stand for the
matrices of the randomly generated weights, where each row in
the matrix L and G corresponds to the vector 𝒍 and 𝒈, respectively,
in Equation (1); E𝑙 and E𝑔 are the matrices with values in each row
of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 , respectively. The more detailed representations
ofV , P, L, G, E𝑙 and E𝑔 are shown below.

V =


𝑣11 · · · 𝑣1𝑑
𝑣21 · · · 𝑣2𝑑
.
.
.

. . .
.
.
.

𝑣𝑛1 · · · 𝑣𝑛𝑑


, P =


𝑝11 · · · 𝑝1𝑑
𝑝21 · · · 𝑝2𝑑
.
.
.

. . .
.
.
.

𝑝𝑛1 · · · 𝑝𝑛𝑑


,

L =


𝑙11 · · · 𝑙1𝑑
𝑙21 · · · 𝑙2𝑑
.
.
.

. . .
.
.
.

𝑙𝑛1 · · · 𝑙𝑛𝑑


, G =


𝑔11 · · · 𝑔1𝑑
𝑔21 · · · 𝑔2𝑑
.
.
.

. . .
.
.
.

𝑔𝑛1 · · · 𝑔𝑛𝑑


,

E𝑙 =


𝑝𝑏𝑒𝑠𝑡1 · · · 𝑝𝑏𝑒𝑠𝑡1
𝑝𝑏𝑒𝑠𝑡2 · · · 𝑝𝑏𝑒𝑠𝑡2

.

.

.
. . .

.

.

.

𝑝𝑏𝑒𝑠𝑡𝑛 · · · 𝑝𝑏𝑒𝑠𝑡𝑛


, E𝑔 =


𝑔𝑏𝑒𝑠𝑡 · · · 𝑔𝑏𝑒𝑠𝑡

𝑔𝑏𝑒𝑠𝑡 · · · 𝑔𝑏𝑒𝑠𝑡

.

.

.
. . .

.

.

.

𝑔𝑏𝑒𝑠𝑡 · · · 𝑔𝑏𝑒𝑠𝑡


, where

𝑣𝑖 𝑗 and 𝑝𝑖 𝑗 stand for the 𝑗-th value of the velocity and position in
the 𝑖-th particle; 𝑙𝑖 𝑗 and 𝑔𝑖 𝑗 denote the two randomly generated
weights used to update the 𝑣𝑖 𝑗 in Equation (1), respectively. We
dedicate a GPU thread to update an element in the velocity ma-
trixV . More specifically, let us take the update process of 𝑣11 in
the matrix as an example. Initially, the dedicated GPU thread gets
the values of 𝜔 , 𝑣11, 𝑐1, 𝑐2, 𝑙11, 𝑔11, 𝑝11, 𝑝𝑏𝑒𝑠𝑡1 and 𝑔𝑏𝑒𝑠𝑡 . Then,
the element-wise calculation is performed based on the equation
𝑣
′
11 = 𝜔𝑣11 + 𝑐1 · 𝑙11 · (𝑝𝑏𝑒𝑠𝑡1 − 𝑝11) + 𝑐2 · 𝑔11 · (𝑔𝑏𝑒𝑠𝑡 − 𝑝11) which
is derived based on Equation (1).

The update on the velocity has a significant impact on the conver-
gence [2]. Therefore, the change of the velocity of a particle cannot
be too large. In our proposed FastPSO solution, we exploit the bound
constraint convergence [14] which can be specified by practitioners.
With the bound constraint, when the velocity of each particle is
updated, an upper and lower bound constraints are applied to limit
the updated velocities in a specific range. The constraint for the

𝑗-th velocity value of the 𝑖-th particle is formulated below.

𝑣𝑖 𝑗 =


𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗 if 𝑣𝑖 𝑗 < 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗 if 𝑣𝑖 𝑗 > 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗
𝑣𝑖 𝑗 otherwise

(5)

In Equation (5), 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗 and 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑖 𝑗 are the user
defined lower and upper bounds of 𝑗-th velocity value of 𝑖-th par-
ticle, respectively. The position update of each particle shown in
Equation (2) can be expressed in the matrix representation as well,
which is similar to the update of velocities, so we omit its matrix
representation here.

Although for GPU programs, more threads do not necessarily
bring better performance. A study [30] shows that one of the most
useful tricks to improve the performance of GPU programs is to in-
crease the number of outputs and reduce the number of independent
instructions per thread. As we already know, the position update
is dependent on the updated velocity. Thus, the above mentioned
method would increase the number of independent instructions
that result in more time consumption on thread synchronization
and the number of outputs is one per thread. In fact, position update
depends on the updated velocity, but the update of each position
element can be synchronized.

3.5 Exploiting GPU memory, tensor cores and
multi-GPUs

Exploiting the shared memory and the tensor cores can potentially
bring improvement in FastPSO. We make use of these GPU re-
sources and study their effect in the overall performance of FastPSO.

Supporting shared memory: The global memory is the biggest-
volume memory on GPU, and every thread on GPU is permitted to
access the global memory. We can store the velocity and position
vectors in the global memory in the PSO optimization process.
However, the latency of global memory is the highest in all kinds
of GPU memory. Thus, to increase the arithmetic intensity of our
kernel, we want to reduce as many accesses to the global memory
as possible. One of the most common tricks to further accelerate the
GPU programs by replacing global memory with shared memory.
In the step of swarm update, the size of matrices to be updated
is larger than the shared memory size. Therefore, the matrices
are firstly segmented into multiple sub-matrices whose shape is
(𝑇 𝐼𝐿𝐸_𝑆𝐼𝑍𝐸,𝑇 𝐼𝐿𝐸_𝑆𝐼𝑍𝐸). Then the sub-matrices are copied into
the shared memory. Finally, the outputs are transferred back to the
global memory after the element-wise operation

Supporting tensor cores: We also exploit tensor cores which are
Nvidia’s newest acceleration technique. Tensor cores enable mixed-
precision computing, dynamically adapting calculations to acceler-
ate throughput while preserving accuracy. It is specifically designed
for manipulating matrices so it can be utilized for swarm update.
When using tensor cores for swarm update, the element-wise ma-
trices multiplication is regarded as the wrap-level matrix multiply.
The matrices to be updated are first assigned to the fragment of
tenser cores. Then the calculation is done in each fragment, which
can be seen as a tiled matrix operation. Finally the outputs are
copied to global memory after the tensor core synchronization.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hanfeng Liu†§ , Zeyi Wen‡1 , Wei Cai†§1

Supporting multiple GPUs: There are two approaches to extend
FastPSO to multiple GPUs. The first approach is based on particle
splitting. It needs to specify a GPU card to store the global informa-
tion of the whole particle groups. Then the whole particle group
is split into multiple sub-groups. Each sub-group is assigned to
a card for optimization, and maintains its own local-global best
information. The global information of the whole group can be
updated in an asynchronous manner. The second approach is based
on tile matrix. It extends the element-wise swarm update operation
to multiple GPUs, where each GPU is responsible for computing
the updated information in a tile manner.

4 EXPERIMENTAL STUDIES
In this section, we present the experimental evaluation of our pro-
posed FastPSO solution. We also provide a case study on the applica-
tion on automatic block dimension setting with PSO for a machine
learning library of GPUs, namely ThunderGBM [32].

4.1 Experimental setup
We conducted our experiments on a workstation running Linux
on two Xeon E5-2640v4 10 core CPUs, 256GB main memory and
one Tesla Pascal V100 GPU of 16GB memory. We implemented the
FastPSO solution in CUDA-C. For better investigation of FastPSO,
we have implemented the sequential version and the parallel ver-
sion with OpenMP for FastPSO using C++. We denote them using
fastpso-seq and fastpso-omp, respectively. All the programs were
compiled with the -O3 option for efficiency optimization. We also
conducted experiments for the existing implementations on CPUs
including pyswarms [19] and scikit-opt1 [23], as well as the existing
implementations on GPUs namely gpu-pso [10] and hgpu-pso [31].
Among them, the gpu-pso is a pure-GPU implementation while the
hgpu-pso heterogeneous multicore CPU and GPU for PSO accelera-
tion. We compare FastPSO with pyswarms and scikit-opt, because
these two systems are the most popular open-source PSO libraries
in GitHub, which get more than 700 and 1700 stars respectively. In
all of our experiments, unless specified, the default number of par-
ticles and dimensions are 5000 and 200, respectively; the maximum
number of iterations of PSO is set to 2,000; the 𝜔 is set to 0.9; 𝑐1
and 𝑐2 are both set to 2. All experiments were repeated 10 times
and the experimental data are the averages.

We evaluate FastPSO and the other implementations presented
above in the following four optimization problems.
• Sphere: This problem arises from linear algebra and traffic
routing, where users need to find the minimum of a given
function in the form of 𝑓 (𝒙) = ∑𝑑

𝑖=1 𝑥
2
𝑖
. In our experiments,

we used PSO to find the minimum for the Sphere problem
with 𝑥 in the domain of (−5.12, 5.12).
• Griewank: The Griewank problem is used for performance
test of optimization algorithms. The problem is to find the
minimumof the function 𝑓 (𝒙) = 1

4000
∑𝑑
𝑖=1 𝑥

2
𝑖
−∏𝑑

𝑖=1 cos(
𝑥𝑖√
𝑖
)

+1. We used PSO to locate the minimal value of the Griewank
problem given 𝑥 in the domain of (−600, 600).
• Easom: The Easom problem is a non-convex function used
as a performance test problem for optimization algorithms.

1https://github.com/guofei9987/scikit-opt

The target function is 𝑓 (𝒙) = −(−1)𝑑 (∏𝑑
𝑖=1 cos

2 (𝑥𝑖)) exp[−∑𝑑
𝑖=1 (𝑥𝑖 − 𝜋)2] with 𝑥 in the domain of (−2𝜋, 2𝜋).

• ThreadConf: We used PSO to find the best thread and block
configuration for a GPU machine learning library namely
ThunderGBM. We aim to compare the default thread and
block configuration with the configuration obtained by PSO,
and investigate whether PSO can find a better configuration
than the default one.

Next, we first present the experimental results on the overall
efficiency of the various implementations. Then, we provide results
on sensitivity study by varying the number of particles and by
varying the number of dimensions of the optimization problems.
We also investigate the breakdown of the elapsed time on different
components of FastPSO, in order to provide a better insight of its
efficiency and speedup. Finally, we demonstrate the effectiveness
of FastPSO by a case study on the ThreadConf problem.

4.2 Overall comparison

In the overall evaluation of FastPSO, we compare the execution
time of FastPSO, the sequential version of FastPSO, the parallel
version of FastPSO with OpenMP, pyswarms, scikits-opt and gpu-
pso as well as hgpu-pso (i.e., the existing GPU-based PSO systems
[10, 31]). The experimental results are shown in Table 1. As can be
seen from the “speedup” columns of the table, our proposed FastPSO
achieves about 100 times speedup over pyswarms and scikit-opt.
Compared with the existing GPU implementations of PSO, FastPSO
is 5 to 7 times faster. When comparing FastPSO with its sequential
implementation and OpenMP implementation, FastPSO is an order
of magnitude faster. Another observation on the sequential version
of FastPSO and the OpenMP version of FastPSO is that the execution
time of the sequential version can be reduced by about 50% using
OpenMP.

We also evaluate the results found by different PSO implements.
We compare the values found by FastPSO and other implementa-
tions against the optimal value of the problems. The results are
shown in Table 2. As we can see from the table, FastPSO can find
the values extremely close to the optimal ones, while the values
found by pyswarms and scikit-opt are much further away from the
optimal ones. These results demonstrate that FastPSO is not only
faster than the existing libraries, but also produces much higher
quality solutions.

In order to get a better insight of our proposed method, we eval-
uate the FLOPs and memory bandwidth of our method. As shown
in Table 3, compared with other implementations (i.e., gpu-pso and
hgpu-pso), the memory bandwidth of our method (which is over 100
GB/s) is much higher than the benchmark GPU implementations.
In terms of FLOPs, all the implementations are based on the original
PSO algorithm. As a result, the FLOPs of each implementation is
similar.

4.3 Effect of the number of particles and
dimensions on efficiency

In order to study the scalability of FastPSO, a series of experiments
on the four problems were carried out by changing the number of
particles and the dimensions of particles.

FastPSO: Towards Efficient Swarm Intelligence Algorithm on GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 1: Overall comparison of FastPSO against other implementations

problem elapsed time (sec) speedup
pyswarms scikit-opt gpu-pso hgpu-pso fastpso-seq fastpso-omp fastpso pyswarms scikit-opt gpu-pso hgpu-pso fastpso-seq fastpso-omp

Sphere 129.67 88.98 4.90 6.01 11.56 8.74 0.67 194.41 133.40 7.34 9.01 17.33 13.10
Griewank 80.94 172.17 5.08 7.32 13.78 9.58 0.66 123.38 262.46 7.74 11.16 21.00 14.60
Easom 126.89 12.77 5.07 7.22 33.91 24.71 0.87 146.35 14.72 5.85 8.33 39.11 28.50

TheadConf 117.670 81.320 4.498 5.477 11.459 6.736 0.47 251.97 174.13 9.63 11.73 24.54 14.42

Table 2: Errors to the optimal values

implementation reference Sphere Griewank Easom
pyswarms Miranda [19] 1031.99 2965.27 0.00
scikit-opt Pedregosa et al. [23] 2483.61 8892.36 0.00
gpu-pso Hussain et al. [10] 23.72 0.69 0.00
hgpu-pso Wachowiak et al. [31] 15.06 0.31 0.00
fastpso-seq ours 26.98 0.66 0.00
fastpso-omp ours 22.01 0.72 0.00

fastpso ours 23.62 0.71 0.00

Table 3: FLOPs and memory bandwidth

metrics dram_read_throughtput (GB/s) GFLOPs
gpu-pso 61.83 5.82
hgpu-pso 57.41 5.81
fastpso 106.94 5.82

Varying the number of particles: We varied the number of par-
ticles from 2000 to 5000, while fixing the number of dimensions
at 50. Figure 4a, 4c, 4e and 4g show the effect of the number of
particles on the efficiency of FastPSO and other implementations
among four problems. As we can see from the figures, FastPSO
consistently outperforms the other implementations in different
numbers of particles. Moreover, increment of the number of par-
ticles greatly increases the execution time of the other implemen-
tations, while FastPSO tends to be stable (i.e., the elapsed time is
almost unchanged). This demonstrates that FastPSO is suitable to
problems with a large number of particles.

Varying the number of dimensions of the particles: When con-
ducting this set of experiments, we varied the dimensions of the
particles from 50 to 200, while fixing the number of particles to
2000. Figures 4b, 4d, 4f and 4h give the results. When varying the
dimensions of the particles, FastPSO is rather stable as the number
of dimensions of the particles increases. The time consumption
of FastPSO is around 0.5 seconds. In comparison, the execution
time of the other implementations increases dramatically as the
number of dimensions increases. This is due to the fact that when
the number of dimensions increases, the number of values in the
velocity/position vector to be updated within the swarm increases.
As a result, the computation cost increases. For example, it takes
pyswarms more than 100 seconds to finish the optimization process
when the number of dimensions reaches 200.

Based on this set of experiments, we demonstrate that FastPSO
can not only far exceed other implementations in efficiency, but also
scale to large problems with high dimensionality and cardinality.
This is manifested in changing the number of particles and dimen-
sions while keeping the total execution time almost unchanged.

25

50

75
pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

2000 3000 4000 50000

1

2

3

tim
e

el
ap

se
d

(s
ec

)

(a) varying # particles (Sphere)

50
100

180
pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

50 100 150 2000

1

2

3

tim
e

el
ap

se
d

(s
ec

)

(b) varying #dimensions (Sphere)

25

50

75
pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

2000 3000 4000 50000

1

2

3

tim
e

el
ap

se
d

(s
ec

)

(c) varying #particles (Griewank)

50
100

175
pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

50 100 150 2000

1

2

3

tim
e

el
ap

se
d

(s
ec

)

(d) varying #dimensions (Griewank)

25
50
75

pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

2000 3000 4000 50000

1

2

3

tim
e

el
ap

se
d

(s
ec

)

(e) varying #particles (Easom)

50
100
135

pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

50 100 150 2000

1

2

3
tim

e
el

ap
se

d
(s

ec
)

(f) varying #dimensions (Easom)

50
100

pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

2000 3000 4000 50000

1

2

3

tim
e
el
ap

se
d
(s
ec

)

(g) varying #particles (ThreadConf)

50
100
135

pyswarms
scikit-opt
gpu-pso
hgpu-pso

fastpso-seq
fastpso-omp
fastpso

50 100 150 2000

1

2

3

tim
e
el
ap

se
d
(s
ec

)

(h) varying #dimensions (ThreadConf)

Figure 4: Effect of the number of particles and dimensions

4.4 Elapsed time of each step in FastPSO
In order to investigate more details of the efficiency of FastPSO, we
conducted more experiments on measuring the execution time of
each step in FastPSO. In this set of experiments, the number of the
particles was set to 5000 and the number of dimensions was set

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hanfeng Liu†§ , Zeyi Wen‡1 , Wei Cai†§1

1.4

5.0

10.3 fastpso-seq
fastpso-omp
fastpso

init eval
pbest gbest

swarm
0.0
0.1

0.3

0.5

tim
e

el
ap

se
d

(s
ec

)

(a) breakdown tests (Sphere)

1.0
3.0
5.6

11.4
fastpso-seq
fastpso-omp
fastpso

init eval
pbest gbest

swarm
0.0
0.1

0.3

0.5

tim
e

el
ap

se
d

(s
ec

)
(b) breakdown tests (Griewank)

1.0
5.8

10.0

15.0
18.0 fastpso-seq

fastpso-omp
fastpso

init eval
pbest gbest

swarm
0.0
0.1

0.3

0.5

tim
e

el
ap

se
d

(s
ec

)

(c) breakdown tests (Easom)

1.4

5.0

10.3
fastpso-seq
fastpso-omp
fastpso

init eval
pbest gbest

swarm
0.0
0.1

0.3

0.5

tim
e

el
ap

se
d

(s
ec

)

(d) breakdown tests (ThreadConf)

Figure 5: Breakdown tests of FastPSO

to 200. The results are presented in Figures 5a, 5b, 5c and 5d. We
decompose the PSO algorithm into 5 steps (cf. Section 3) including
(i) swarm initialization, (ii) swarm evaluation, (iii) 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡
update and (iv) swarm update. The steps are tagged as 𝑖𝑛𝑖𝑡 , 𝑒𝑣𝑎𝑙 ,
𝑝𝑏𝑒𝑠𝑡 ,𝑔𝑏𝑒𝑠𝑡 and 𝑠𝑤𝑎𝑟𝑚𝑠 in the figure, where 𝑝𝑏𝑒𝑠𝑡 and𝑔𝑏𝑒𝑠𝑡 update
were measured individually. It can be seen that more than 80% of
the execution time of the CPU-based FastPSO (both the sequential
version and OpenMP version) is taken by the swarm update. It
takes the sequential version of FastPSO more than 10 seconds to
finish the swarm update process, while FastPSO on GPUs only
takes less than 0.1 second. The results and observations on four
problems are consistent. Therefore, we can conclude that the key
reason why FastPSO can speed up over other implementations is
the optimization of swarm update process which is modeled as
element-wise multiplication operations on matrices and can be
done in massively parallel. In addition, the results also indicate that
different optimization problems may slightly affect the execution
time of FastPSO.

In order to manage and reuse GPU memory in a better manner,
FastPSO exploits memory caching rather than reallocating GPU
memory when managing swarmmemory. The core idea of our GPU
memory management is to allocate a large fixed-size memory on
the GPU at the first time of memory allocation. Then when new
GPU memory is need to be allocated later, the memory manager
can direct the memory allocation request to the earlier allocated
memory. Table 4 shows the efficiency of using memory reallocation
and using memory caching. As can be seen from the table, the use
of the memory caching can further improve FastPSO efficiency by
3.7% to 5% times.

4.5 Different optimizations on swarm update
As we mentioned earlier, swarm update is the key bottleneck of the
PSO efficiency. In this subsection, we study different techniques

Table 4: Efficiency of FastPSO with memory caching

problem w/ caching w/ reallocation speedup
Sphere 0.62 0.59 5.08%

Griewank 0.66 0.63 4.76%
Easom 0.84 0.81 3.70%

0.0 0.3 0.5

Sphere

Griewank

Easom

TheadConf

5 101520
time elapsed (sec)

for-loop
OpenMP
global-mem
shared-mem
tensorcore

Figure 6: Comparison of different swarm update techniques

that are used for swarm update acceleration. The techniques in-
clude OpenMP, global memory on GPU, shared memory and tensor
cores. We used the “for-loop” based implementation on CPUs as the
baselinAtificiale in this set of experiments. The results are shown
in Figure 6. The elapsed time of the “for-loop” based implemen-
tation on CPUs is more than 10 seconds in four problems, while
it is reduced to less than 0.3 second by using GPU acceleration
techniques. The observation of the results also indicates that the
efficiency improvement of using global memory, shared memory
and tensor cores are similar in comparison with the baseline.

4.6 Case study on thread configuration for
GPU programs

To verify the effectiveness of FastPSO in finding the best value for
practical problems, we conducted a case study that applies FastPSO
to automatically tune the numbers of threads and block size of a
GPU program. In the CUDA programmingmodel on GPUs, the GPU
scheduler manages parallelism at the thread block level. Each GPU
kernel function needs to configure the number of blocks to be used
as well as the block size, so as to determine how many threads to
be used. Generally, different thread configuration leads to different
efficiency improvement of a GPU kernel function [25]. In this case
study, we used ThunderGBM [32] which is a GPU-based machine
learning library as the test GPU program for FastPSO. We set the
number of trees to 40 and the tree depth to 6 in ThunderGBM and
the other parameters usedwere the default settings of ThunderGBM.
We used FastPSO to automatically set the number of threads for 25
GPU kernel functions of ThunderGBM. Each GPU kernel function
needs to set the dimensions of blocks and the number of blocks
to determine the total number of threads. In the context of PSO,
to configure the GPU kernels, the number of dimensions of the
velocity vector and the position vector of each particle in PSO for

FastPSO: Towards Efficient Swarm Intelligence Algorithm on GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

ThunderGBM was 50. On the other hand, the number of particles
used to search the best thread configuration of ThunderGBM can
be any number. In our case study, we used 5000 particles in FastPSO,
although other numbers of particles can work just fine. For training
ThunderGBM, we used the datasets presented in the original paper
which can be found and downloaded in the UCI data repository2.
The statistical information of the datasets and the experimental
results are shown in Table 5.

Table 5: Execution time w/ and w/o FastPSO

data sets performance
card # dim tgbm tgbm+pso speedup

covtype 0.58M 54 0.9 0.9 0.96
susy 5M 18 5.6 4.72 1.19
higgs 11M 28 14.51 13.94 1.04
e2006 16K 150361 7.37 5.88 1.25

As we can see from the results in Table 5, we can find that
FastPSO can further optimize the training efficiency of ThunderGBM
on the three datasets higgs, susy and e2006, by using better thread
block configurations for the GPU kernels. However, we notice that
using FastPSO in ThunderGBM on the covtype dataset leads to
the same efficiency as the original ThunderGBM. This is because
the default thread configuration of ThunderGBM is as good as the
thread configuration found by FastPSO. Overall, FastPSO can help
the tested GPU program set a better thread configuration.

5 RELATEDWORKS
Swarm Intelligence usually requires a large number of function
evaluations to achieve convergence, even in medium and certain
small size problems. Since population based swarm intelligence
methods are highly parallelizable, many existing algorithms exploit
different types of available parallel architectures such as CPUs and
GPUs. In this section, we review the related works of parallelized
PSO and briefly discuss how the existing studies accelerate the
execution time of PSO.

5.1 Acceleration of PSO on CPUs
A CPU-based parallelized PSO was first introduced by Gies and
Yahya [6]. They implemented the algorithm containing a swarm
with 10 particles, and hence the algorithm ran on 10 independent
node cluster. The algorithm converges 8 times faster than its serial
counterpart, when 10 computers nodes were used. Further, Schutte
et al. [26] implemented a master-worker communication model, in
which the master node exclusively performs the algorithm opera-
tions and the worker nodes perform the particle evaluation. The
communications in the model are achieved with MPI. These stud-
ies mentioned above are based on synchronous communications.
Another synchronous PSO implementation was proposed by Chu-
sanapiputt et al. [3]. The implementation organizes the swarm into
multiple sub-swarms in a hierarchical structure. The velocity update
of particles was performed synchronously within the sub-swarms.
In this strategy, after exploring all the neighborhoods in the sub-
swarm, the sub-swarm sends its best position and corresponding
2https://archive.ics.uci.edu/ml/datasets.php

velocity to the high-level sub-swarms in the hierarchical structure.
Finally, a subset of the best velocities from the sub-swarms is se-
lected by the root swarm, and the next move of the optimization is
decided accordingly by the root swarm.

A few asynchronous versions of parallel PSO were introduced
such as asynchronous parallel PSO algorithms [16, 27, 29]. The
asynchronous versions of parallel PSO aim to improve the perfor-
mance of the synchronous PSO by reducing the communication
cost. In synchronous implementations, each particle in the parallel
process waits for all the particles to complete the process before
moving to the next iteration. In asynchronous implementations,
the particles do not need to wait for other particles to complete
the process. Therefore, no idle CPU processors are left during the
process, and the parallel speed are greatly improved in asynchro-
nous versions. McNabb et al. [18] developed PSO on the MapReduce
parallel programming model in Hadoop.

5.2 Acceleration of PSO on GPUs
The development of GPU technologies provided an efficient way
to accelerate PSO system in the last decade. A survey [1] provides
a complete picture of parallel swarm intelligence algorithms and
a thorough review of literature up to year 2013. In a more recent
survey [28] reviewed a large number of contributions on Swarm
Intelligence, particularly algorithms implemented on GPUs, which
covers various of Swarm Intelligence methods besides PSO, in-
cluding Ant Colony Optimization and Bee Algorithms. The survey
also describes the implementation issues and discusses the classi-
cal performance metrics. Since the contributions on parallelized
implementations of Swarm Intelligence are overwhelming, only
the most related studies are mentioned in the rest of this section.
A special emphasis is devoted to studies that involve PSO accel-
eration on GPUs. Specifically, Laguna et al. [17] proposed three
parallel variants for the PSO algorithm with different degrees of
parallelization.

Mussi et al. [21] presented two different parallel implementations
of the PSO algorithm: basic and multi-kernels. The first implemen-
tation allows the use of a threads block to simulate a swarm, which
is efficient from a memory use standpoint but does not fully exploit
the GPU resources. The multi-kernel version uses several blocks to
simulate several swarms simultaneously, but requires more infor-
mation exchange at a memory level. Hence, the communication cost
is higher compared to the first implementation. Performance was
investigated with typical bound constrained benchmark functions
with three different kinds of particle number and the results showed
better better efficiency comparing with previous implementations.
Roberge et al. [24] presented a fully optimized implementation on
the GPU. The experimental results showed impressive speedups
on the benchmark functions and on an application of interest to
modern military aviation. In contrast to previous approaches, they
focused on how to utilized GPUs to compute the objective function.
Besides, every key step of the standard PSO algorithm is paral-
lelized in this implementation. More recently, Hussain et al. [10]
proposed a new GPU-based implementation of PSO. The authors
used the coalescing memory in GPUs to further accelerate PSO.
The experimental results on different benchmark functions show
the efficiency of the implementation compared with the CPU-based

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hanfeng Liu†§ , Zeyi Wen‡1 , Wei Cai†§1

implementation. Hussain et al.’s PSO algorithm on GPUs achieves
the state-of-the-art results. Therefore, we use it as a baseline in our
experiments.

6 CONCLUSION AND FUTUREWORK
GPU accelerations have become a fundamental research topic for
improving the efficiency of machine learning and artificial intelli-
gence algorithms. This paper develops a novel GPU-based parallel
Particle Swarm Optimization (PSO) algorithm namely “FastPSO” to
speed up the optimization process of the PSO algorithm, which is
a key Swarm Intelligence algorithm and has been widely used in
many applications. Although GPUs have much higher computa-
tional power and memory bandwidth than CPUs, it is non-trivial
to fully exploit GPUs for the PSO algorithm. In this paper, we have
managed to use GPUs to address the efficiency bottleneck of the
PSO algorithm. Our key idea is by treating the optimization pro-
cess as element-wise multiplication operations on matrices and by
increasing the utilization of the GPU resources. We have conducted
a series of experiments to fully test the efficacy of FastPSO. The
experimental results show that FastPSO can achieve the best speed
on common optimization problems comparing with the existing
implementations. FastPSO is 5 to 7 times faster than the existing
GPU-based algorithm, and is two orders of magnitude faster than
the existing CPU-based libraries. To further investigate the speedup
of FastPSO, we have implemented the sequential version of FastPSO
and the parallel version of FastPSO with OpenMP. Our study has
shown that FastPSO on the GPU is an order of magnitude faster
than the CPU-based versions, which indicates our efficient use of
the GPU resources. As the new hardware (e.g., FPGA) and opti-
mization technologies on GPUs (e.g., tensor core) are gradually
emerging, we aim to use more new hardware features to optimize
the PSO algorithm in the future.

7 ACKNOWLEDGMENTS
This work was supported by Project 61902333 supported by Na-
tional Natural Science Foundation of China, by the Shenzhen Insti-
tute of Artificial Intelligence and Robotics for Society (AIRS). This
research is also supported by Oracle for Research, Australia.

REFERENCES
[1] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. 2013. Parallel metaheuris-

tics: recent advances and new trends. International Transactions in Operational
Research 20, 1 (2013), 1–48.

[2] Emilio Fortunato Campana, Matteo Diez, Giovanni Fasano, and Daniele Peri.
2013. Initial particles position for PSO, in bound constrained optimization. In
International Conference in Swarm Intelligence. Springer, 112–119.

[3] Songsak Chusanapiputt, Dulyatat Nualhong, Sujate Jantarang, and Sukumvit
Phoomvuthisarn. 2005. Relative velocity updating in parallel particle swarm op-
timization based lagrangian relaxation for large-scale unit commitment problem.
In TENCON 2005-2005 IEEE Region 10 Conference. IEEE, 1–6.

[4] Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. 2020. A survey of
swarm and evolutionary computing approaches for deep learning. Artificial
Intelligence Review 53, 3 (2020), 1767–1812.

[5] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-
tion. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39.

[6] Dennis Gies and Yahya Rahmat-Samii. 2003. Reconfigurable array design using
parallel particle swarm optimization. In IEEE Antennas and Propagation Society
International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North
American Radio Sci. Meeting (Cat. No. 03CH37450), Vol. 1. IEEE, 177–180.

[7] John L Gustafson. 1988. Reevaluating Amdahl’s law. Commun. ACM 31, 5 (1988),
532–533.

[8] Hashim A Hashim and Mohammad A Abido. 2019. Location management in LTE
networks using multi-objective particle swarm optimization. Computer Networks
157 (2019), 78–88.

[9] Roger A Horn. 1990. The hadamard product. In Proc. Symp. Appl. Math, Vol. 40.
87–169.

[10] Md Maruf Hussain, Hiroshi Hattori, and Noriyuki Fujimoto. 2016. A CUDA
implementation of the standard particle swarm optimization. In 2016 18th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE, 219–226.

[11] Jing Jiang, Fei Han, Qinghua Ling, Jie Wang, Tiange Li, and Henry Han. 2020. Effi-
cient network architecture search via multiobjective particle swarm optimization
based on decomposition. Neural Networks 123 (2020), 305–316.

[12] Francisco Erivaldo Fernandes Junior and Gary G Yen. 2019. Particle swarm
optimization of deep neural networks architectures for image classification.
Swarm and Evolutionary Computation 49 (2019), 62–74.

[13] Dervis Karaboga. 2010. Artificial bee colony algorithm. Scholarpedia 5, 3 (2010),
6915.

[14] Massimiliano Kaucic. 2013. A multi-start opposition-based particle swarm op-
timization algorithm with adaptive velocity for bound constrained global opti-
mization. Journal of Global Optimization 55, 1 (2013), 165–188.

[15] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4. IEEE,
1942–1948.

[16] Byung-Il Koh, Alan D George, Raphael T Haftka, and Benjamin J Fregly. 2006.
Parallel asynchronous particle swarm optimization. Internat. J. Numer. Methods
Engrg. 67, 4 (2006), 578–595.

[17] Gerardo A Laguna-Sánchez, Mauricio Olguín-Carbajal, Nareli Cruz-Cortés, Ri-
cardo Barrón-Fernández, and Jesús A Álvarez-Cedillo. 2009. Comparative study
of parallel variants for a particle swarm optimization algorithm implemented on
a multithreading GPU. Journal of Applied Research and Technology 7, 3 (2009),
292–307.

[18] Andrew W McNabb, Christopher K Monson, and Kevin D Seppi. 2007. Parallel
PSO using MapReduce. In 2007 IEEE Congress on Evolutionary Computation. IEEE,
7–14.

[19] Lester James Miranda. 2018. PySwarms: a research toolkit for particle swarm
optimization in Python. Journal of Open Source Software 3, 21 (2018), 433.

[20] Marcin Molga and Czesław Smutnicki. 2005. Test functions for optimization
needs. Test Functions for Optimization Needs 101 (2005), 48.

[21] Luca Mussi, Fabio Daolio, and Stefano Cagnoni. 2011. Evaluation of parallel
particle swarm optimization algorithms within the CUDA-TM architecture. In-
formation Sciences 181, 20 (2011), 4642–4657.

[22] Anand Nayyar and Nhu Gia Nguyen. 2018. Introduction to swarm intelligence.
Advances in Swarm Intelligence for Optimizing Problems in Computer Science
(2018), 53–78.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of Machine Learning Research 12 (2011), 2825–2830.

[24] Vincent Roberge and Mohammed Tarbouchi. 2012. Parallel particle swarm
optimization on graphical processing unit for pose estimation. WSEAS Trans.
Comput 11, 6 (2012), 170–179.

[25] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone, David B
Kirk, and Wen-mei W Hwu. 2008. Optimization principles and application
performance evaluation of amultithreadedGPUusing CUDA. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
73–82.

[26] JF Schutte, BJ Fregly, RT Haftka, and AD George. 2003. A parallel particle swarm
optimizer. Technical Report. FLORIDA UNIV GAINESVILLE MECHANICAL
AND AEROSPACE ENGINEERING.

[27] Andrea Serani, Cecilia Leotardi, Umberto Iemma, Emilio F Campana, Giovanni
Fasano, and Matteo Diez. 2016. Parameter selection in synchronous and asyn-
chronous deterministic particle swarm optimization for ship hydrodynamics
problems. Applied Soft Computing 49 (2016), 313–334.

[28] Ying Tan and Ke Ding. 2015. A survey on GPU-based implementation of swarm
intelligence algorithms. IEEE Transactions on Cybernetics 46, 9 (2015), 2028–2041.

[29] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. 2006. Parallel particle
swarm optimization algorithm accelerated by asynchronous evaluations. Journal
of Aerospace Computing, Information, and Communication 3, 3 (2006), 123–137.

[30] Vasily Volkov. 2010. Better performance at lower occupancy. In Proceedings of
the GPU Technology Conference, GTC, Vol. 10. San Jose, CA, 16.

[31] Mark P Wachowiak, Mitchell C Timson, and David J DuVal. 2017. Adaptive
particle swarm optimization with heterogeneous multicore parallelism and GPU
acceleration. IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017),
2784–2793.

[32] Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen.
2020. ThunderGBM: Fast GBDTs and Random Forests on GPUs. Journal of
Machine Learning Research 21, 108 (2020), 1–5.

	Abstract
	1 Introduction
	2 Particle Swarm Optimization
	3 Our Proposed FastPSO Algorithm
	3.1 Step (i): Swarm initialization
	3.2 Step (ii): Swarm evaluation
	3.3 Step (iii): The pbest and gbest update
	3.4 Step (iv): Swarm update
	3.5 Exploiting GPU memory, tensor cores and multi-GPUs

	4 Experimental Studies
	4.1 Experimental setup
	4.2 Overall comparison
	4.3 Effect of the number of particles and dimensions on efficiency
	4.4 Elapsed time of each step in FastPSO
	4.5 Different optimizations on swarm update
	4.6 Case study on thread configuration for GPU programs

	5 Related Works
	5.1 Acceleration of PSO on CPUs
	5.2 Acceleration of PSO on GPUs

	6 Conclusion and Future Work
	7 Acknowledgments
	References

