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Abstract—Support Vector Machines (SVMs) are a widely
adopted data mining algorithm for binary and multi-class
classification due to their ability to handle high-dimensional
and non-linearly separable problems. However, SVM training
is computationally expensive because of the heavy kernel matrix
computation on large training datasets. Although much effort
has been made to accelerate the training of SVMs, we find
that existing libraries still suffer from inappropriate matrix
multiplication methods and inefficient memory access patterns.
In this paper, we propose a series of optimization approaches to
address these limitations, including (i) matrix partitioning based
on column density to achieve efficient kernel matrix computation;
(ii) optimizing high latency memory access patterns; and (iii)
dynamically selecting more suitable matrix multiplication meth-
ods based on the training dataset characteristics. Our proposed
methods demonstrate significant improvements in SVM training
performance without sacrificing accuracy, achieving a maximum
speedup of 52x over the state-of-the-art SVMs on GPUs. These
results highlight the effectiveness of our optimization in improv-
ing SVM training efficiency.

Index Terms—machine learning, SVM, kernel matrix, graphics
processing units

I. INTRODUCTION

Traditional machine learning methods such as Support Vec-
tor Machines (SVMs) still perform well in many application
scenarios, along with the tremendous success of deep learning
techniques [1], [2] in data mining. SVMs are one of the
most widely used data mining algorithms in many fields [3],
[4]. They are particularly good at tackling classification and
regression problems on high-dimensional datasets. Many deep
learning studies also consider incorporating SVMs as part of
their models [5] or using them as benchmark models [6],
[7]. Fig. 1 depicts the number of repositories using SVMs
on GitHub has exceeded thirty thousand. As one of the
well-known SVM libraries, LibSVM has also been attract-
ing increasing attention. However, training SVMs on large-
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Fig. 1. Growth of repo. using SVMs and that of stars of LibSVM on GitHub.

scale datasets is highly time-consuming. Training large-scale
datasets using LibSVM may require more than one or even
two days (e.g., epsilon and url combined dataset). Therefore,
the efficient training of SVMs on large-scale datasets remains
a topic of interest.

There are numerous libraries for efficient SVM training.
SVMLight [8] is the first SVM library based on the sequential
minimal optimization (SMO) algorithm. And LibSVM [9] is
the most famous one, which implemented parallel training
utilizing OpenMP. LibLINEAR [10] presented a fast dual
method to accelerate the training of linear SVMs. Thunder-
SVM [11] further optimized SVM training by improving SMO
on graphics processing units (GPUs). PSVM [12] considered
matrix approximation. TensorSVM [13] developed this thought
on GPUs. PLSSVM [14] applied the least square training
method on GPUs. Despite the considerable progress made by
these libraries, most of them only focused on algorithmic-level
optimizations. And some libraries trade off accuracy [12]–[14].
Regarding the aspect of kernel matrix multiplication, there are
still two challenges.

Firstly, it is inefficient in data representation and com-
putation. The aforementioned software libraries only utilize
compressed sparse row (CSR) [15] format or dense format to
store and compute various matrices, which sometimes results
in extra memory overhead and inefficient matrix multiplication
operations. The CSR format is suitable for sparse matrices and
stores the non-zero elements of the matrix in a compressed
form, which saves memory and reduces the number of com-
putation operations. However, it is not suitable for storing and



computing dense matrices. For instance, a dense matrix of
size 3 GB requires over 6 GB of space using sparse format.
The performance of sparse matrix multiplication is generally
significantly lower than dense matrix multiplication [16]. On
the other hand, the dense matrix format is also not suitable
for sparse matrices.

Secondly, there is low efficiency in memory access during
sparse matrix computation. The memory throughput of sparse
matrix multiplication in ThunderSVM on NVIDIA RTX 3090
is only around 60 GB/s, which is much lower than the GPU
bandwidth. Memory access efficiency is an important factor
affecting the performance of matrix multiplication. However,
many studies have not considered optimizing memory access
patterns. With the rapid growth in dataset size in the field of
data mining, there is a need for efficient implementations of
SVM training.

To address the above issues, we propose a series of methods
to optimize the time-consuming kernel function computation
in SVM training from both computational and memory access
aspects. We dynamically select the kernel matrix computation
method according to the distribution of non-zero elements and
dataset sizes. Furthermore, we specifically optimize memory
access in sparse matrix computation, thereby obtaining higher
computational performance. We conduct an analysis of perfor-
mance metrics such as FLOPS, memory throughput, and others
to demonstrate the effect of memory access optimization.
Overall, our key contributions in this paper are as follows.

• We propose a novel column density-based matrix par-
titioning method to improve the efficiency of matrix
multiplication during training. Depending on the size
and sparsity of each dataset, we dynamically choose a
more suitable matrix multiplication method to maximize
training efficiency.

• We optimize memory access patterns in sparse matrix
multiplication. We improve the continuity of memory
access in matrix multiplication by reordering the matrix
columns. Besides, we increase the effective bandwidth
during multiplication through matrix transposition and
other operations.

• We conduct extensive experiments on datasets of varying
sizes and different sparsity to investigate the effectiveness
of our proposed methods called “BoostSVM”. The ex-
perimental results demonstrate that BoostSVM achieves
high performance without sacrificing accuracy on datasets
of different sizes and sparsity levels. Compared with the
CPU-based SVM, our methods are faster by one to two
orders of magnitude. Moreover, BoostSVM surpasses the
state-of-the-art SMO-based SVM on GPUs by up to 52
times. In terms of kernel matrix multiplication, our im-
plementation achieves more than twice the FLOPS of its
counterpart and over four times the memory throughput.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the fundamental knowl-
edge of SVMs and sequential minimal optimization algorithm.
Then, we discuss some related work.

A. Support Vector Machines

SVMs were originally introduced by Vapnik et al. [17] in the
1990s. The fundamental concept in Support Vector Machines
(SVMs) involves the identification of a hyperplane within a
high-dimensional space that effectively separates data points
belonging to distinct classes. The selection of this hyperplane
is based on the objective of maximizing the margin, defined
as the spatial gap between the hyperplane and the closest data
points, referred to as support vectors, within each class. For-
mally, given a set of training data x1, x2, . . . , xm where each
xi is an input vector and y1, y2, . . . , ym are the corresponding
output labels (either -1 or 1), the training process is equivalent
to solve the following optimization problem:

argmin
w,ξ,b

1

2
∥w∥2 + C

m∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi,

ξi ≥ 0,∀i ∈ {1, . . . ,m}

(1)

where w represents the normal vector of the hyperplane, C
denotes the penalty parameter, b signifies the bias associated
with the hyperplane, and ξ corresponds to the slack variables
that permit certain samples to be misclassified.

A notable advantage of SVMs lies in their capacity to
effectively handle non-linearly separable data by employing
various kernel functions. The kernel function transforms the
initial feature space into a higher dimensional feature space,
where it is possible to separate the data points linearly. In
general, we solve SVMs with kernel functions optimization
problems through dual problems as below:

argmin
α

1

2

m∑
i,j=1

yiyjαiαjK(xi, xj)−
m∑
i=1

αi

subject to 0 ≤ αi ≤ C, i ∈ {1, . . . ,m},
m∑
i=1

yiai = 0

(2)

where ai is the Lagrange multipliers of xi, K(xi, xj) is a
kernel function that is used to represent the similarity between
sample xi and xj . In a compact way, yiyjK(xi, xj) can be
represented as Qi,j , where Q stands for the m×m similarity
kernel matrix. And the selection of a kernel function will
influence the SVM’s performance. There are several popular
choices, such as the polynomial kernel, the Gaussian function
kernel, and the sigmoid kernel.

B. Sequential Minimal Optimization Algorithm

Although the SVM is a powerful algorithm, its training pro-
cess can be computationally intensive, especially in processing
large datasets. To address this problem, various techniques
have been proposed to optimize the SVM training process.
The SMO algorithm [18] is a popular method for solving
the SVM optimization problem, particularly for large-scale
datasets. SMO decomposes the whole quadratic optimization
problem into a sequence of easier sub-problems that can be
solved by optimizing two Lagrange multipliers and fixing the



rest at a time. This approach allows SVMs to converge faster
than traditional optimization methods.

Formally, in SMO, each training sample xi has a corre-
sponding optimality indicator, reflecting the optimal condition:

gi =

m∑
j=1

αjyjK(xi, xj)− yi (3)

where the first half of the formula on the right is the predicted
value of xi, and yi is the ground truth of xi. Now we will
introduce the process of using SMO to train a binary SVM.

The first step is to select a working set of two training
samples whose variable α need to be optimized. We employ
the working set selection method proposed by Fan et al. [19]
to find two training samples xi and xj . The selection formula
is as follows:

i =argmin
t
{gt|t ∈ Iup}

j =argmax
t

{
(gi − gt)

2

ηt
|gi < gt, t ∈ Ilow

} (4)

where kernel similarity variable ηt = K(xi, xi)+K(xt, xt)−
2K(xi, xt), i is the sample that most violates the KKT
condition, Iup and Ilow are defined as follows:

Iup = {t|αt < C, yt = 1 or αt > 0, yt = −1}
Ilow = {t|αt < C, yt = −1 or αt > 0, yt = 1}

The second step is to update the weights αi and αj

corresponding to xi and xj . The update formula is as follows:

αnew
j = αj +

yj(gi − gj)

η
,

αnew
i = αi −

yi(gi − gj)

η

(5)

where η = K(xi, xi) +K(xj , xj)− 2K(xi, xj). It should be
noted that the update of α needs to be constrained in [0, C].

The third step is to update all optimality indicators. The
update formula is as follows:

gnewt = gt +
(gi − gj)

η
(K(xj , xt)−K(xi, xt)) (6)

SMO loops the three steps until gi ≥ max{gt|gt ∈ Ilow}.
Although the SMO algorithm is effective in training SVMs,

the process of decomposing the problem into extremely small
sub-problems does not fit well with the structure of the GPU.
In order to fully utilize the effectiveness of SMO on GPUs,
Wen et al. [11] modified the SMO algorithm. The modified
process is as follows:

• Select a working set consisting of n samples from the
training dataset based on certain conditions.

• Compute the multiplication of the training dataset matrix
and the working set matrix to get a local kernel matrix.

• Use the SMO algorithm on this working set kernel matrix
to obtain a locally optimal solution.

• Repeat the above steps until the conditions are met.

C. Related Work
Mainstream training algorithms for SVMs include SMO

[18], least squares [20] and kernel approximation [21].
1) Training SVMs Using SMO on CPUs: SMO algorithm

is one of the most widely used SVM training algorithms. In
the early stages, the implementation and optimization of SMO
are mainly focused on CPU platforms. Many SVM libraries,
such as SVMLight [8], LibSVM [9], and WEKA [22], are
based on this algorithm on the CPU platform. As an extension
of LibSVM, LibLINEAR [10] optimizes the performance of
linear SVM. With the development of computer systems and
architectures, many studies chose to use distributed systems for
SVM training, such as MPI SVMs [23] and MapReduce SVMs
[24], but the inherent communication overhead also makes the
training efficiency of SVMs low.

2) Training SVMs Using SMO on GPUs: With the devel-
opment of GPUs and the inherent suitability of graphics pro-
cessors for parallel computing, how to use GPUs to accelerate
SVM training has become a hot topic. Catanzaro et al. [25]
are the first to introduce GPUs into the SVM training process.
Herrero-Lopez et al. [26] implemented a multi-class SVM on
GPUs. Athanasopoulos et al. [27] used GPUs to accelerate
the computation of the kernel function during training. These
studies require computing the entire kernel matrix, and since
GPU memory is much smaller than the host memory, they
can only handle datasets that are not very large. In order to
enable GPUs to process larger sparse datasets, Cotter et al. [28]
utilized a sparse format for training data storage and proposed
a clustering method to take advantage of data sparsity. Another
work [29] compared various implementations of SVMs on
GPUs, provided benchmark results, and proposed a training
algorithm specifically designed for binary classification tasks.
Wen et al. [11] proposed ThunderSVM, which solves the
problem of high memory latency on GPUs through batch
processing and kernel value reuse.

3) Least Squares SVM Training: Suykens et al. [20] pro-
posed the least squares support vector machine (LS-SVM),
which trains SVMs using the least squares method to simplify
the optimization problem. To train the LS-SVM, a suitable
kernel function is chosen to describe the similarity between
data points. By constructing a kernel matrix, the classification
problem is transformed into a linear regression problem. Thus,
a linear regression model can be used to train the LS-SVM and
obtain the coefficients and intercept of the model. And they
extended the LS-SVM by introducing weights [30] and im-
plementing support for multi-class [31] and sparse structures
[32]. Do et al. [33] exploited GPUs to accelerate this approach,
but their implementation was limited to datasets no more than
200 data points. Craen et al. [14] implemented LS-SVM on
GPUs and relaxed the requirement for dataset size.

4) Training SVMs with Kernel Approximation: Kernel ap-
proximation methods are able to approximate the kernel func-
tion in SVMs to reduce the computational cost and memory
usage during training. These methods aim to approximate
the kernel matrix by using a low-dimensional feature space,
which reduces computational complexity. Fine et al. [21]
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Fig. 2. The percentage of each part in SVM training. Kernel matrix
multiplication accounts for the largest proportion.

proposed an SVM training algorithm based on low-rank Gram
matrix approximation. Nystrom’s method [34] and LLSVM
[35] further extended this thought. PSVM [12] considered
using MPI parallel implementation for these methods. Zhang
et al. [13] developed this thought on GPUs. They utilized
TensorCore to accelerate the training process.

5) Comparison of SVM Training Algorithms: Although
using algorithms such as least squares and kernel approxi-
mation can speed up the training of SVMs compared with
SMO, there are also inevitable drawbacks. For the LS-SVM,
training results are more prone to overfitting, its solution is
not sparse, and the model accuracy is difficult to compare
with the SVM trained by SMO. Also, constructing the kernel
matrix during LS-SVM training can be computationally ex-
pensive and memory-intensive for large-scale data. For kernel
approximation, this approach also reduces the accuracy of
the model results, and different datasets require the selection
of different approximation parameters, which requires a deep
understanding and rich experience of the data. In general, the
SMO algorithm is still the best choice in terms of universality
and model accuracy. Besides that, we can observe that due
to the inherent advantage of GPUs in multi-core parallelism,
an increasing number of works are considering implementation
on GPUs. Therefore, our methods choose to optimize the SMO
algorithm on GPUs.

III. METHODOLOGY

In this section, we first analyze the characteristics of kernel
matrix multiplication in the SVM and identify the associated
challenges. Then we describe the approaches to optimize ma-
trix multiplication: column density-based matrix partitioning,
memory access optimization, and dynamic strategy selection.

A. Kernel Matrix Multiplication Analysis

In the process of utilizing SVMs, datasets are commonly
represented in matrix form, with each row representing a train-
ing sample and each column representing a feature dimension.
In the SMO algorithm, the multiplication between the training
set matrix and the working set matrix in the kernel function has
always been the bottleneck in the training process of SVM.
This is because the kernel matrix is usually too large to be
directly stored in memory. Assuming there are 105 samples
in the training dataset, the size of the kernel matrix will be
105×105, which will occupy about 40GB of memory footprint.
This is not feasible for most GPU devices. Therefore, we need
to compute the required parts of the kernel matrix in real time
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during the training iteration. Fig. 2 illustrates the percentage of
training time in different parts using ThunderSVM, indicating
that the time spent on kernel matrix multiplication almost
exceeds 90% for the whole training process.

When it comes to the implementation of matrix multi-
plication in existing SVM libraries such as LibSVM and
ThunderSVM, only sparse matrix representations (like CSR
format) and sparse matrix computations are considered. Com-
pared with the dense matrix multiplication that calculates
each element through a traversal loop, sparse matrix mul-
tiplication only computes the product of non-zero elements.
Taking the CSR format sparse matrix as an example, the non-
zero elements are first found through the row pointer array
and the column index array and then multiplied accordingly.
Although sparse matrix multiplication can reduce the number
of operations when handling sparse matrices, it is not suitable
for storing and computing dense matrices. Under equiva-
lent computational loads, dense matrix multiplication usually
outperforms sparse matrix multiplication. Fig. 3 depicts the
performance differences between dense matrix multiplication
and sparse matrix multiplication on dense square matrices.
As the matrix size increases, the time required for sparse
matrix multiplication increases exponentially. On NVIDIA
RTX 3090, the computational performance of dense matrix
multiplication is around 20 TFLOPS, while the performance
of sparse matrix computation is around 1 TFLOPS. This
is because, in many cases, sparse matrix multiplication is
memory-bound. Using row pointer arrays and column index
arrays to locate elements incurs many additional high-latency
memory accesses. Obtaining the corresponding element in a
dense matrix only requires one memory access. However, in
a sparse format matrix, it requires three.

In data mining, there is a great difference in the sparsity
of matrices, which is due to the infrequent features that
matrices express in different fields. Therefore, leveraging the
advantages of both dense matrix multiplication and sparse
matrix multiplication will be crucial in optimizing matrix
multiplication in SVMs.

B. Column Density-based Matrix Partitioning

In order to achieve more efficient memory access in matrix
multiplication for SVMs, we partition the matrix into sparse
and dense two sub-matrices based on column density and
perform matrix multiplication on each separately.



Common Features

Infrequent Features

0 20k 40k 60k 80k 100k 120k 140k

16k
14k 
12k 
10k 
8k 
6k 
4k 
2k 

0

D
at

a 
sa

m
pl

es

Feature dimensions

Fig. 4. Non-zero element distribution in e2006.train. The blue dot indicates
the feature value of a sample on the that feature is non-zero.

Column density 

statistics

Column sort

Matrix 

partitioning

Dense 
sub-matrix

Sparse 
sub-matrix

Fig. 5. Column density-based matrix partitioning overview

For a certain dataset, The frequencies of different features
are non-uniform. In this paper, we refer to the features that
are present in more than 50% of the samples as common
features, while those that appear in less than 50% are referred
to as infrequent features. Taking the e2006.train dataset as an
example, we present the non-zero element distribution of this
dataset in Fig. 4, where the horizontal axis represents different
features, the vertical axis represents different samples, and the
blue data points indicate the distribution of non-zero element.
As we can see, the density of non-zero elements in different
feature columns varies greatly. Although the density of non-
zero elements in this dataset is only 0.82%, there are dense
sub-matrices within the sparse matrix due to the common
features shared among most samples. We can represent and
compute this dense sub-matrix using the dense matrix format.
Compared with a large amount of random memory access
in sparse matrix multiplication, the sequential memory access
pattern in dense matrix multiplication will effectively improve
the utilization of bandwidth and improve the overall efficiency
of matrix multiplication. Therefore, we propose a partitioning
method that divides the matrix into two parts: dense sub-
matrix and sparse sub-matrix, based on column density. After
that, we employ sparse matrix multiplication to handle the
sparse sub-matrix and dense matrix multiplication to handle
the dense sub-matrix. The partitioning process is visually
summarized in Fig. 5. Algorithm 1 presents the pseudocode
for the proposed approach. We can obtain the column grouping
array dense flag, indicating the category to which each
column feature belongs.

In Algorithm 1, we take the training dataset X and related
row-column information as input. X is a two-dimensional
array, where the first dimension represents the number of
training samples and the second dimension represents the
number of features in each sample. During the execution of

Algorithm 1: Column Density Matrix Partitioning
Input: training dataset X , row m, column n
Output: dense col, dense flag, col index

1 dense col← n, sparse sum← 0;
2 for i← 1 to n do // parallel
3 col num[i]← 0, col index[i]← i;
4 dense flag[i]← true;
5 for i← 1 to m do // parallel
6 for j ← 1 to X[i].size() do
7 col num[X[i][j].col] += 1; // atomic
8 sort(col index, col num); // sort col_index
9 for i← 1 to n do

10 current col← col index[i];
11 total sparse += col num[current col];
12 sparse sum += m;
13 ratio← total sparse÷ sparse sum;
14 if ratio > 0.05 or

col num[current col]÷m > 0.5 then
15 break;
16 dense col −= 1;
17 dense flag[current col]← false;

Algorithm 1, we first initialize the required variables. col num
is used to count the number of non-zero elements in each
column of the training matrix, col index stores the initial
position of each column, and dense flag is used to indicate
whether the current column belongs to the sparse sub-matrix
or dense sub-matrix. After counting non-zero elements in each
column, we sort the column indices in ascending order using
the sort function in line 8 based on the number of non-zero
elements and store the results in col index. By traversing
col index, we partition each column into either the sparse
or dense sub-matrix based on thresholds. Specifically, we set
the threshold to make the number of non-zero elements in the
sparse sub-matrix will not exceed 5% of the total elements in
the sparse sub-matrix. This is because, in the implementation
of sparse matrix multiplication, we use NVIDIA’s cuSPARSE
library [36] as the backend, which is designed to handle sparse
matrices with a sparsity level of no more than 5%. And
compared with dense matrix multiplication, the sparser the
matrix, the better the performance of sparse matrix multipli-
cation. In addition, we also use column density as another
criterion for matrix partitioning. Assuming that there are z
non-zero elements in a column of the training set, the CSR
format matrix representation will store additional 2z elements
(element values and column indices). If the size of z exceeds
half the number of rows m in the training set, the memory
consumption of CSR format storage will be greater than that
of dense format (2z > m). As the GPU memory is often
much smaller than the host memory, to save the GPU memory
consumption in matrix storage, we also partition the feature
columns with a density greater than 50% into the dense sub-
matrix. After that, we use the dense flag array to construct
sparse and dense sub-matrices.



Algorithm 2: Construction of Sparse Sub-matrix
Input: training dataset X , column map array

sparse map, tag array dense flag
Output: sparse val, sparse ptr, sparse index

1 for i← 1 to m do // parallel
2 for j ← 1 to X[i].size() do
3 if dense flag[X[i][j].col] = false then
4 sparse ptr[i+ 1] += 1;
5 for i← 1 to m do
6 sparse ptr[i+ 1] += sparse ptr[i];
7 for i← 1 to m do // parallel
8 begin pos← sparse ptr[i];
9 offset← 0;

10 for j ← 1 to X[i].size() do
11 if dense flag[X[i][j].col] = false then
12 new col = sparse map[X[i][j].col];
13 sparse val[begin pos+ offset] =

X[i][j].val;
14 sparse index[begin pos+ offset] =

new col;
15 offset += 1;

Although the matrix partitioning only needs to be done
once at the beginning of SVM training and incurs minor
overhead, we parallelize the matrix partitioning algorithm im-
plementation to minimize unnecessary overhead. For obtaining
col num array in algorithm 1, we use the OpenMP library
for parallelization and atomic operations for possible write
conflicts. For the sub-matrix construction process, we optimize
it with the GPU asynchronous execution. We use the CPU to
construct the dense sub-matrix and the GPU to construct the
sparse sub-matrix. The dense sub-matrix construction can be
easily parallelized using the OpenMP library, but due to the de-
pendency of the sparse matrix elements’ positions in the CSR
format, simple loop traversal cannot be effectively parallelized.
Therefore, we adopt a multiple traversal method to construct
the sparse sub-matrix and achieve high parallelization. The
relevant pseudocode is shown in Algorithm 2. First of all, we
parallelize the process of counting the number of non-zero
elements in each row of the matrix. Then, we assign values to
sparse ptr, which has dependencies between its values. Next,
we parallelize the assignment of values to sparse val and
sparse index. This stepwise approach increases the degree
of parallelism in the code implementation.

After completing the matrix partitioning, we need to per-
form matrix multiplication to construct the kernel matrix used
in the SVM training. Fig. 6 illustrates the process of the
original matrix multiplication in the existing work and the
matrix multiplication after partitioning. In the original matrix
multiplication, it first needs to extract a working set matrix of
size n × k from the m × k training set matrix (the working
set matrix used here is stored in dense matrix format). The
working set matrix consists of several training samples in the
training set matrix. And then, we multiply the two matrices
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Fig. 6. Comparison of kernel matrix multiplication

to get a result matrix of size n × m. In this process, only
values in the same column are multiplied. Therefore, after
the column partitioning of the training set matrix, we only
need to construct the working set matrix from each of the
two sub-matrices separately. Once the two sub-matrices and
their corresponding working set matrices have been computed,
two n ×m result matrices are obtained. Due to the absence
of computation dependencies between elements in two sub-
matrices, we only need to add the two n × m sub-matrices
together to restore the required result.

C. Memory Access Optimization

During SVM training, Sparse matrix multiplication (SpMM)
is a fundamental operation for calculating the kernel matrix. In
this process, the sparse matrix is multiplied by another dense
matrix, and the result is stored in a dense matrix. The effi-
ciency of this operation depends heavily on the memory access
pattern, which determines the number of times the processor
accesses the memory. Therefore, we consider optimizing the
memory access in SpMM.

Algorithm 3: A Row-wise Implementation of SpMM
Input: sparse matrix A[M ][K], dense matrix B[K][N ]
Output: dense matrix C[M ][N ]

1 for i← 1 to A.rows do
2 for j ← A.row ptr[i] to A.row ptr[i+ 1]− 1 do
3 for n← 1 to N do
4 C[i][n] +=

A.value[j]×B[A.col index[j]][n];

Algorithm 3 demonstrates a general implementation of
sparse matrix multiplication (CSR format). The algorithm
iterates through the rows of A, and for each non-zero element
in the row, it performs a dot product operation between
the non-zero element and the corresponding row of B, then
accumulates the result in the corresponding entry of C. This
algorithm leverages the sparsity structure of matrix A by only
performing computations on non-zero elements, reducing the
overall computational complexity of the operation. Although
it is difficult to change the memory access pattern of the CSR
format sparse matrix during the multiplication process, the
order of column indices in the sparse matrix can be changed to
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Fig. 7. Comparison of memory access pattern. Continuous non-zero elements
can reduce memory span.

affect the memory access continuity of the dense matrix. Fig.
7 illustrates the difference in accessing the working set matrix
during multiplication for sparse matrices with different orders
of non-zero elements, namely non-contiguous and contiguous
orders. Assuming that the matrix is row-major stored in mem-
ory, the placement of non-zero elements in the sparse matrix
has a significant impact on the access pattern of the working
set matrix during multiplication. Specifically, if the majority of
non-zero elements are stored contiguously in adjacent columns
in a data sample, it greatly reduces the access span of the dense
matrix during multiplication and enhances cache continuity. In
the case of sequential access, where data is stored in order,
memory can utilize prefetching techniques to read and cache
the next block of data in advance, thereby speeding up access.
Sequential access is usually faster than random access in a
large number of consecutive read operations. Therefore, in the
matrix partitioning process, we construct the sparse sub-matrix
according to the column density order, arranging columns
with similar densities together. This makes the local non-zero
elements denser and improves the memory access continuity
of the working set matrix.

As for the implementation of sparse matrix multiplication
on the GPU, we also optimize memory access. Coalesced
memory access is a technique used to optimize memory access
patterns. It refers to the process of accessing contiguous blocks
of memory by threads within a warp. When obtaining the
working set matrix, we coalesce the accesses using column-
major storage to obtain a dense n×k matrix. We then multiply
this matrix with the m × k training set matrix to obtain an
m×n dense result matrix, which is then transposed to obtain
an n ×m dense target matrix. Compared with obtaining the
target matrix directly through multiplication, obtaining the
transpose of the target matrix first and then performing the
conversion can remarkably reduce data transfer from global
memory. In our test, this can reduce the amount of data transfer
by approximately 50%.

D. Dynamic Strategy Selection

As mentioned earlier, the size and sparsity of the training
matrix vary greatly, and a single kernel matrix computation
method is difficult to perform well on all datasets. We adopt a
strategy of dynamically selecting matrix computation methods
to minimize the SVM training time as much as possible.
Based on the dataset size, we dynamically choose between
column density-based matrix partitioning multiplication and

Start
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columns 

> 𝑻𝑻𝑻𝑻

matrix 
partitioning

dense 
conversion

matrix 
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Fig. 8. Workflow of strategy selection

TABLE I
DATASETS FOR PERFORMANCE EVALUATION

Name Cardinality Dimension Data density
url combined 2396130 3231961 0.0036%
news20.binary 19996 1355191 0.034%
rcv1 test.binary 677399 47236 0.15%
real-sim 72309 20958 0.24%
e2006.train 16087 150360 0.82%
mnist.scale 60000 780 19.22%
ijcnn1.t 91701 22 56.52%
gisette 6000 5000 99.08%
epsilon 400000 2000 100%

dense matrix multiplication. Fig. 8 illustrates the selection
process for different strategies.

Once the training data matrix is obtained, we first check
the size of the matrix samples and features. If it exceeds
threshold T1, we choose the matrix partitioning computation
method. Otherwise, we select the dense matrix multiplication.
Although employing a dense matrix representation for sparse
matrices leads to an increase in multiplication operations, the
peak performance of dense matrix computations surpasses
that of sparse matrix multiplication. Besides that, it can be
observed that, in general, the matrices of small-scale datasets
are not highly sparse. Therefore, when dealing with small-
scale datasets, dense matrix multiplication generally requires
less time. As the size of the datasets increases, we apply matrix
partitioning multiplication to balance the advantages between
dense matrix multiplication and sparse matrix multiplication.

IV. EXPERIMENTAL STUDY
In this section, we have empirically evaluated the perfor-

mance of the proposed optimization methods. We compare
the training time and training results with existing relevant
works and perform separate comparative analyses on various
optimization techniques. We use BoostSVM to refer to the
proposed optimization methods.

A. Experimental Setup

1) Platform: All experiments have been conducted on a
workstation running Ubuntu 20.04 with an Intel(R) Core(TM)
i9-10900K 10-core CPU, 128GB of memory, and an NVIDIA
RTX 3090 GPU with 24GB global memory. The g++ compiler
version is 9.4.0, the NVIDIA driver version is 530.30.02,
and the CUDA version is 11.7. Our optimization methods
are implemented using CUDA C++. In the implementation
of matrix multiplication and matrix transposition, we use
NVIDIA’s cuSPARSE library for sparse matrix multiplication
and the cuBLAS library [37] for dense matrix multiplication
and matrix transposition.



TABLE II
EFFICIENCY COMPARISON AMONG LIBSVM, THUNDERSVM, AND OUR BOOSTSVM

Dataset
Training time (sec) Speedup over

LibSVM ThunderSVM TensorSVM BoostSVM LibSVM ThunderSVM TensorSVM

url combined 8.91× 104 4.16× 104 OOM 6.92× 103 12.81 6.01 -
news20.binary 117.89 6.50 OOM 3.09 38.15 2.10 -
rcv1 test.binary 1.23× 104 348.58 OOM 93.76 107.33 3.72 -
real-sim 97.97 3.80 21.71 1.97 49.73 1.93 11.02
e2006.train 451.96 13.86 - 3.10 145.79 4.48 -
mnist.scale 1.49× 103 53.69 - 25.40 58.71 2.11 -
ijcnn1.t 3.98 1.17 2.72 0.84 4.74 1.39 3.24
gisette 80.67 2.75 1.02 0.58 139.09 4.74 1.76
epsilon 1.72× 105+ 2.28× 103 66.98 43.67 3956+ 52.25 1.53
Average 500+ 8.75 4.39

2) Datasets: We select nine publicly available datasets
based on their data size and sparsity from the LibSVM
dataset repository1. Because existing SVM implementations
are already fast on small-scale datasets, we primarily fo-
cus on their performance on large-scale sparse datasets.
The dataset information is sorted by sparsity in Table
I. In this section, url combined is the abbreviation for
url combined normalized, while epsilon is the abbreviation
for epsilon normalized. mnist.scale is a multi-class classifi-
cation dataset consisting of ten classes. And e2006.train is a
regression dataset. Others are all binary classification datasets
with significant differences in size and sparsity. Except for the
epsilon normalized and e2006.train, which have parameters of
(C = 0.01, γ = 1) and (C = 256, γ = 0.125) respectively, the
parameters for all other datasets are set to (C = 100, γ = 0.5).

3) Baselines: We have compared BoostSVM with LibSVM
[9] (OpenMP version), ThunderSVM [11] (GPU version), and
TensorSVM [13] to provide a comprehensive evaluation. Both
ThunderSVM and LibSVM also use the SMO algorithm to
train SVM, which enables us to demonstrate the effectiveness
of our proposed methods directly. TensorSVM is an SVM
implementation based on kernel approximation on GPUs.
Since TensorSVM only offers binary classification SVM, we
tested it on binary classification datasets. We used the default
approximation rank (rank = 32) and enabled the tensor-core
in TensorSVM. The threshold T1 in BoostSVM is 5 × 104,
which is selected empirically. All other parameters are kept
the same during training, and the Gaussian kernel function is
used in all experiments.

B. Efficiency Comparison

Table II compares the time spent and speedup on training
SVMs over different implementations on nine datasets. The
experimental results are represented in seconds and rounded to
two decimal places. OOM is the abbreviation for “out of mem-
ory”. The results show that our BoostSVM achieves the best
performance on all test datasets. The training time required
for BoostSVM is generally one to two orders of magnitude

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets

less than that of LibSVM. Compared with ThunderSVM and
TensorSVM, it also significantly reduces the training time.

1) Comparison with ThunderSVM: From the table II, it
can be seen that BoostSVM is 8.75 times faster on average
than ThunderSVM. On the epsilon dataset, the speedup of
BoostSVM exceeds 52 times over ThunderSVM. This is
because the training set is a very dense dataset, and the matrix
multiplication method provided in ThunderSVM is not suitable
for this dataset. After the optimization of matrix partitioning in
BoostSVM, the whole dataset is computed using dense matrix
multiplication. This can increase the memory throughput from
46 GB/s to 111 GB/s and the computational performance from
462 GFLOPS to 23 TFLOPS. In addition to a significant
improvement on dense datasets, BoostSVM can also bring
multiple improvements on sparse datasets. For example, on
the url combined dataset, although the data density of this
dataset only reaches 0.0036%, there are still dense common
feature columns in this dataset. After partitioning, we can
obtain a dense matrix with a non-zero elements density of
up to 74% and a sparser sparse matrix, then let the two sub-
matrices perform multiplication separately. With the support
of memory access optimization for sparse matrix operations,
the final speedup can exceed 6 times over ThunderSVM.

2) Comparison with TensorSVM: BoostSVM is 4.39 times
faster on average than ThunderSVM. TensorSVM is an SVM
implementation based on kernel approximation on GPUs.
Despite using different training algorithms from BoostSVM,
we also compared our methods with TensorSVM to provide
a more comprehensive analysis and comparison. Theoreti-
cally, kernel approximation needs less training time than the
SMO algorithm. However, from the table II, we can observe
that BoostSVM shows better training efficiency because of
high hardware-based computational optimizations. This further
demonstrates the effectiveness of our optimization. As for the
result accuracy, typically, the results of kernel approximation
are inferior to those of the SMO algorithm. For instance,
on the ijcnn1.t dataset, BoostSVM achieved an accuracy of
95.96% on the test dataset, while TensorSVM only reached
64.37%. Besides that, BoostSVM also exhibits stronger ro-
bustness. TensorSVM fails to execute on large datasets such



TABLE III
COMPARISON BEFORE AND AFTER MEMORY OPTIMIZATION

Dataset ThunderSVM(GPU)
w/o memory optimization w/ memory optimization

real-sim 3.80 s 2.69 s
rcv1 test.binary 348.58 s 100.27 s
e2006.train 13.86 s 7.02 s

as url combined due to exceeding the available GPU memory,
and it only supports binary classification tasks. But BoostSVM
successfully trains under the same circumstances and supports
multi-class tasks and regression tasks. Overall, the training
results on the nine datasets demonstrate the effectiveness of
the optimization in BoostSVM.

C. Impact of Individual Optimizations

In this section, we first illustrate the strategy selection in ex-
periments, then analyze the effect of matrix partitioning and its
overhead. Finally, we assess the memory access optimization.

1) Strategy Selection: Regarding the results in Table II,
BoostSVM selects dense matrix multiplication on small-scale
datasets such as mnist.scale, gisette and ijcnn1.t, and matrix
partitioning multiplication on the other datasets. When the
training set matrix is not large, regardless of the sparsity
level of the matrix, using dense matrix multiplication con-
sistently achieves better performance. This is because matrix
multiplication is typically memory-bound. On small matrices,
the computational savings achieved by sparse matrix multi-
plication cannot cover the impact of non-contiguous memory
accesses. On the ijcnn1.t dataset, the training time is 1.081s
using matrix partitioning, which is slower than direct dense
matrix multiplication. Therefore, we directly apply the dense
matrix multiplication for small-scale training matrices. As for
the overhead of strategy selection, it is negligible because it
evaluates the dataset only once before the start of training.

2) Analysis of Matrix Partitioning: Even on highly sparse
datasets, matrix partitioning multiplication achieves significant
acceleration by balancing dense matrix multiplication and
sparse matrix multiplication. On the e2006.train dataset, the
time can be optimized to 5.96 s only using matrix partitioning
multiplication. This is twice as fast as ThunderSVM. On the
url combined dataset, the time is 1.31× 104 s, which is four
times faster than ThunderSVM. The results in Table II have
already included the time of matrix partitioning in BoostSVM.
Under parallel computing optimization, the overhead of this
portion is negligible. For example, on the url combined dataset
with the longest training time, the matrix partitioning overhead
is 2.72s, accounting for approximately 0.04% of the total
training time. On the rcv1 test.binary dataset, the matrix
partitioning overhead is 0.42s, accounting for approximately
0.44% of the total.

3) Memory Access Optimization: Table III illustrates the
effect of memory access optimization. We optimize the GPU
version of ThunderSVM to demonstrate the importance of

TABLE IV
DETAILED MATRIX MULTIPLICATION COMPARISON

real-sim GFLOPs Memory
throughput (GB/s)

Compute
Utilization

ThunderSVM 419.75 61.11 0.42
ours 1123.8 221.4 0.48

rcv1 test.binary
ThunderSVM 425.65 55.41 0.41

ours 1187.18 206.93 0.51

TABLE V
ACCURACY COMPARISON WITH BOOSTSVM

Dataset Accuracy
LibSVM ThunderSVM BoostSVM

gisette scale 50% 50% 50%
real-sim 86.0% 86.0% 86.0%
ijcnn1.t 99.1% 99.1% 99.1%
epsilon 81.7% 81.7% 81.7%
rcv1 test.binary 97.8% 97.8% 97.8%
url combined 98.6% 98.6% 98.6%

memory access patterns. We are able to reduce the training
time on these two sparse training sets only through memory
access optimization. Among all memory access optimization
methods, the optimization approach that gets the transpose
matrix of the result first in the sparse matrix multiplication
process, followed by transposing the result, has achieved the
greatest improvement. To further investigate changes in rele-
vant performance metrics, we used NVIDIA’s Nsight Compute
profiling tool to obtain detailed performance information, and
the relevant results are shown in Table IV. We can see that
both FLOPs, memory throughput, and compute utilization
have been greatly improved. Taking the real-sim dataset as
an example, the FLOPs metric increases from 419.75 GB
to 1123.8 GB, and memory throughput increases from 61.11
GB/s to 221.40 GB/s. The data transfer from the GPU global
memory has also significantly decreased from 2.31 GB to 1.26
GB. As for rcv1 test.binary, the data transfer decreased from
29.04 GB to 15.75 GB.

D. Accuracy Comparison

We compare the training results with LibSVM and Thun-
derSVM to ensure the correctness of our BoostSVM training
results. Table V shows the accuracy of 2-fold cross-validation.
We can see that the accuracy results are completely consistent.
Since the change in the computation order during floating-
point operations, the objective function values may have slight
differences, which are generally less than 0.3%. But this does
not affect the final accuracy. Therefore, LibSVM, Thunder-
SVM, and BoostSVM produce the same SVMs overall. This
verifies the correctness of our optimization methods.

V. CONCLUSION

In this paper, we have optimized the training speed of GPU-
based SVMs on large-scale datasets. The main bottleneck of
SVM training lies in the computation of kernel functions,



where the heavy random memory access causes performance
degradation. Based on the analysis of non-zero element distri-
bution in the SVM training dataset, we have proposed column
density-based matrix partitioning and memory access opti-
mization to reduce the number of random memory accesses
and improve multiplication efficiency. Experimental results
show that our method has a significant improvement compared
with existing works. Especially on large-scale dense datasets,
our methods surpass the state-of-the-art SMO-based SVM on
GPUs by up to 52 times, while retaining the same predictive
accuracy. Meanwhile, our matrix partitioning method is appli-
cable to optimizing matrix multiplication in other scenarios.
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