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Abstract—Cross-validation is a commonly used method for
evaluating the effectiveness of Support Vector Machines (SVMs).
However, existing SVM cross-validation algorithms are not scal-
able to large datasets because they have to (i) hold the whole
dataset in memory and/or (ii) perform a very large number of
kernel value computation. In this paper, we propose a scheme
to dramatically improve the scalability and efficiency of SVM
cross-validation through the following key ideas. (i) To avoid
holding the whole dataset in the memory and avoid performing
repeated kernel value computation, we precompute the kernel
values and reuse them. (ii) We store the precomputed kernel
values to a high-speed storage framework, consisting of CPU
memory extended by solid state drives (SSDs) and GPU memory
as a cache, so that reusing (i.e., reading) kernel values takes
much lesser time than computing them on-the-fly. (iii) To further
improve the efficiency of the SVM training, we apply a number
of techniques for the extreme example search algorithm, design a
parallel kernel value read algorithm, propose a caching strategy
well-suited to the characteristics of the storage framework, and
parallelize the tasks on the GPU and the CPU. For datasets of
sizes that existing algorithms can handle, our scheme achieves
several orders of magnitude of speedup. More importantly, our
scheme enables SVM cross-validation on datasets of very large
scale that existing algorithms are unable to handle.

I. INTRODUCTION

Support Vector Machines (SVMs) [1] are a popular super-
vised learning model for classification problems. To handle
non-linearly separable data, SVMs use a kernel function (e.g.,
the Gaussian kernel function [2]) to map the data from their
original space to a higher dimensional space where they may
become linearly separable. Cross-validation is a commonly
used method for evaluating the effectiveness of SVMs so as to
identify suitable hyper-parameters such as kernel parameters.
Figure 1 shows the overview of k-fold SVM cross-validation
that repeats the training and classification for k times. During
the training1 using popular algorithms such as Sequential
Minimum Optimization, the search for extreme training exam-
ples and the kernel value computation are repeated a number
(denoted by t in Figure 1) of times until convergence. The
kernel value computation with the time complexity of O(nd)
in each iteration is the most time consuming operation, where
n is the dataset cardinality and d is the data dimensionality. The
k-fold cross-validation is an even more expensive operation
with the time complexity of O(ktnd) and requires reading the

1Without confusion, we omit “SVM” in the rest of this paper, similarly for
SVM classification and SVM cross-validation.
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Fig. 1: k-fold SVM cross-validation

dataset kt times. To avoid reading the whole dataset from the
external memory in each training iteration, existing CPU-based
cross-validation algorithms have to hold the whole dataset in
memory and repeatedly perform the kernel value computation.
Consequently, prohibitive computation is the main impediment
to the scalability of CPU-based algorithms.

Some studies attempt to use Graphics Processing Units
(GPUs) to improve the efficiency of the training [3]. However,
the scalability of those algorithms is limited by the GPU
memory size as they require to hold the whole dataset in the
GPU memory, which means a space complexity of O(nd).
Even using a high-end NVIDIA GPU, GTX 780, which has
3GB GPU memory and assuming 4 bytes to store a value,
existing GPU-based algorithms can handle a dataset of only
40,000 examples with 20,000 dimensions (each dimension
of an example is a value). They are far from being able
to handle large datasets emerging in many new applications
such as the YouTube Multiview dataset (120,000 examples of
1,000,000 dimensions), the Webspam dataset (350,000 exam-
ples of 16,609,143 dimensions) and the Gas Sensor dataset
(18,000 examples of 1,950,000 dimensions)2. Note that it
is inefficient for those GPU-based algorithms to store the
datasets in the CPU memory, because frequent data transfers
(kt times of the whole dataset) from the CPU memory to
the GPU memory is too costly. In addition, some studies
tries to improve the efficiency and scalability of the training
using MapReduce [4] by producing approximated results. We
will discuss in Section II that the MapReduce framework is
not suited to the training. To summarize, the scalability of
existing cross-validation algorithms has been seriously limited
by expensive computation and the requirement of storing the
whole dataset in memory.

With the advent of big data, performing cross-validation
becomes prohibitive. However, there has been no study aiming
at improving the scalability of the cross-validation and this
is the first work dedicated to addressing this problem. To

2The datasets are found in LibSVM site and UCI repository.



approach this problem, we design a scheme that exploits
modern hardware’s high computation power (GPUs) and fast
access (SSDs), so we call our scheme Modern hArdware
enabled Svm CrOss-validaTion (MASCOT). Specifically, we
make the following contributions:

• To avoid holding the whole dataset in the memory and
avoid performing repeated kernel value computation,
we precompute the kernel values and reuse them.
We store the precomputed kernel values to a high-
speed storage framework, consisting of CPU memory
extended by SSDs and the GPU memory as a cache,
so that reusing (i.e., reading) kernel values takes much
lesser time than computing them on-the-fly.

• To further improve the efficiency of the training,
we apply a number of techniques for the extreme
example search algorithm, design a parallel kernel
value read algorithm, propose a caching strategy well-
suited to the characteristics of the storage framework,
and design better distribution of the tasks on the GPU
and the CPU.

• We conduct extensive experiments and the results
show that MASCOT is scalable to large datasets while
the existing algorithms either become extremely slow,
or totally fail due to the limited memory size. For
datasets of sizes that existing algorithms can handle,
MASCOT achieves an order of magnitude of speedup
over the state-of-the-art GPU-based algorithm and two
orders of magnitude of speedup over the CPU-based
algorithm. More importantly, MASCOT enables the
cross-validation on datasets of very large scale that
existing algorithms are unable to handle.

The rest of this paper is organized as follows. We discuss
the related work in Section II, and present preliminaries in
Section III. We describe MASCOT in Section IV. In Section V,
we show detailed experimental results. We conclude the paper
in Section VI.

II. RELATED WORK

A. SVM Cross-validation

Athanasopoulos et al. [5] proposed the first GPU-based
algorithm for accelerating the cross-validation. Their method
is difficult to scale due to two reasons. First, the algorithm
requires all the kernel values to be stored in the GPU memory,
which is not feasible for large datasets. Second, their method
does not make full use of the computational capability of the
GPU since it is only used for kernel value precomputation
while the CPU handles the rest of the work. A more recent
study [6] uses the GPU to run multiple cross-validation tasks
at the same time for improving the efficiency, but it does
not improve the scalability of the cross-validation because
the multiple cross-validation tasks require even more memory.
Other studies [7], [8] use a technique called “alpha seeding”
to improve the efficiency of the leave-one-out cross-validation
which is a special case of the k-fold cross-validation when k
equals to the dataset cardinality. Our study focuses on improv-
ing the scalability and efficiency using modern hardware.

B. SVM Training

Accelerating each training iteration: The techniques
used in CPU-based algorithms for accelerating each training
iteration can be adapted to GPU-based algorithms, so we focus
our discussion on algorithms specially designed for GPUs.
Catanzaro et al. [3] used the GPU to compute kernel values and
update the weights of the training examples in each iteration of
the training. A recent work [9] adopted the algorithm for semi-
supervised SVM training. Catanzaro et al. also proposed an
algorithm for the classification based on the GPU, which can
be adapted for the classification phase of the cross-validation.
Catanzaro et al.’s algorithms serve as our GPU-based baseline
algorithm and we describe the details in Section III.

Other studies have different goals or settings from ours. For
example, Cotter et al. [10] proposed a GPU-tailored approach
for the training using a clustering technique. This approach is
designed for sparse datasets which can be stored entirely in
the GPU memory.

Accelerating convergence: Joachims [11] proposed a
training algorithm using the cutting-plane approach to im-
prove the efficiency, but this algorithm only applies to linear
SVMs. “Pegasos” [12] is another training algorithm for linear
SVMs. Osuna et al. [13] proposed a training algorithm based
on decomposition, and Platt [14] improved Osuna et al.’s
algorithm by proposing the Sequential Minimal Optimization
(SMO) training algorithm. SMO is generic and widely used
in implementations such as LibSVM [15], WEKA [16] and
Catanzaro’s GPU-based SVMs, so we use the SMO algorithm
in our scheme.

Attempts to accelerate the training by MapReduce:
MapReduce is not suited to the training because SVM training
is a global optimization process. If we partition training exam-
ples, then each mapper can only obtain support vectors locally
based on the examples in one partition. After the reduce phase,
the locally obtained support vectors put together are unlikely to
correspond to those of the globally optimal SVM. Hence, it is
difficult for a single round of MapReduce based training pro-
cess to meet the termination condition, leading to many rounds
of MapReduce jobs and no guarantee of convergence. Previous
work attempts using MapReduce to accelerate the training by
sacrificing accuracy or by only handling some special cases.
Specifically, Some studies [17], [18] attempts to improve the
training efficiency by producing approximated results. Catak
and Balaban [4] proposed algorithms used multiple rounds of
the MapReduce training to gradually make the approximation
more accurate until the globally optimal SVM is obtained, but
this method does not guarantee convergence.

C. Kernel Value Caching

In the training, the same kernel values may be used in
different iterations, so we may cache some kernel values and
avoid reading them from the CPU memory or the SSD to the
GPU memory. Popular SVM libraries such as SVMlight [19]
and LibSVM adopt the Least Recently Used (LRU) replace-
ment strategy for caching kernel values between different
iterations. Our later analysis will show that LRU is not efficient
for the training because it does not suit the kernel values’
access pattern. Another caching strategy [20] replaces the
kernel values of the examples with weights of 0 in the current



iteration. This replacement strategy requires a linear search to
find the examples whose weights equal to 0, which is even
less efficient than LRU.

III. PRELIMINARIES

For ease of presentation, we focus our discussion on k-fold
cross-validation for binary classification, although our tech-
niques can be applied to multi-class classification and SVM
regression [21] straightforwardly. The k-fold cross-validation
evenly divides the dataset into k subsets. One subset is used
as the test set Xv while the rest (k − 1) subsets together as
the training set Xt. The SVM is first trained using Xt. Then
the trained SVM is used to classify the test examples in Xv

by predicting their labels. To obtain more reliable results, the
above training-classification process is repeated for k times,
where every subset is used as the test set in turn. The predicted
labels are compared with their true labels to evaluate the
effectiveness of the SVM. Next, we describe the training-
classification process.

Training: A training example xi is attached with an integer
yi ∈ {+1,−1} as its label. A positive (negative) example is
a training example with the label of +1 (−1). Given a set
X of n training examples, the goal of training SVMs is to
find a hyperplane that separates the positive and the negative
examples in X with the maximum margin and meanwhile, with
the minimum misclassification error on the training examples.
The training is equivalent to solving the following optimization
problem:

argmin
w,ξ,b

1

2
||w||2 + C

n
∑

i=1

ξi

subject to yi(w · xi − b) ≥ 1− ξi
ξi ≥ 0, ∀i ∈ {1, ..., n}

(1)

where w is the normal vector of the hyperplane, C is the
penalty parameter, ξ is the slack variables to tolerant some
training examples falling in the wrong side of the hyperplane,
and b is the bias of the hyperplane.

To handle the non-linearly separable data, SVMs use a
mapping function to map the training examples from the
original data space to a higher dimensional data space where
the data may become linearly separable. The optimization
problem 1 can be rewritten to a dual form [22] where mapping
functions can be replaced by kernel functions [2] which make
the mapping easier. The optimization problem in the dual form
is shown as follows.

max
α

F (α) =

n
∑

i=1

αi −
1

2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ {1, ..., n}
n
∑

i=1

yiαi = 0

(2)

where F (α) is the objective function; α ∈ R
n is a weight

vector, where αi denotes the weight of xi; C is the penalty
parameter; Q is a positive semi-definite matrix, where Q =
[Qij ], Qij = yiyjK(xi,xj) and K(xi,xj) is a kernel
value computed from a kernel function (e.g., Gaussian kernel,

K(xi,xj) = exp{−γ||xi − xj ||
2}). All the kernel values

together form an n× n kernel matrix shown as follows.

K(x1,x1) K(x1,x2) . . . K(x1,xn)

K(x2,x1) K(x2,x2) . . . K(x2,xn)

...
...

...
...

K(xi,x1) K(xi,x2) . . . K(xi,xn)

...
...

...
...

K(xn,x1) K(xn,x2) . . . K(xn,xn)

































































The goal of the training translates to finding a weight vector
α that maximizes the value of the objective function F (α).
Here, we describe a popular training algorithm, the Sequential
Minimal Optimization (SMO) algorithm [14]. It iteratively
improves the weight vector until the optimal condition of the
SVM is met. The optimal condition is reflected by an optimal-
ity indicator vector f = 〈f1, f2, ..., fn〉 where fi is the opti-
mality indicator for the ith example xi and fi can be obtained
using the following equation: fi =

∑n

j=1 αjyjK(xi,xj)− yi.
In each iteration, the SMO algorithm has the following three
steps:

Step 1: Search two extreme examples, denoted by xu

and xl, which have the maximum and minimum optimality
indicators, respectively. It has been proven [23], [24] that the
indexes of xu and xl, denoted by u and l respectively, can be
computed by the following equations.

u = argmin
i

{fi|xi ∈ Xupper} (3)

l = argmax
i

{
(fu − fi)

2

ηi
|fu < fi,xi ∈ Xlower} (4)

where
Xupper = X1 ∪ X2 ∪ X3,
Xlower = X1 ∪ X4 ∪ X5;

and
X1 = {xi|xi ∈ X , 0 < αi < C},
X2 = {xi|xi ∈ X , yi = +1, αi = 0},
X3 = {xi|xi ∈ X , yi = −1, αi = C},
X4 = {xi|xi ∈ X , yi = +1, αi = C},
X5 = {xi|xi ∈ X , yi = −1, αi = 0};

and ηi = K(xu,xu) + K(xi,xi) − 2K(xu,xi); fu and fl
denote the optimality indicators of xu and xl, respectively.

Step 2: Improve the weights of xu and xl, denoted by αu

and αl, by updating them using Equations 5 and 6.

α′

l = αl +
yl(fu − fl)

η
(5)

α′

u = αu + ylyu(αl − α′

l) (6)

where η = K(xu,xu)+K(xl,xl)−2K(xu,xl). To guarantee
the update is valid, when α′

u or α′

l exceeds the domain of
[0, C], α′

u and α′

l are adjusted into the domain.

Step 3: Update the optimality indicators of all examples.
The optimality indicator fi of the example xi is updated to f ′

i



using the following formula:

f ′

i = fi + (α′

u − αu)yuK(xu,xi)

+ (α′

l − αl)ylK(xl,xi)
(7)

SMO repeats the above steps until the optimal condition is
met, i.e., fu ≥ fmax, where

fmax = max{fi|xi ∈ Xlower} (8)

After the optimal condition is met, we obtain the α values
which corresponding to the optimal hyperplane and the SVM
with these α values is considered trained. Algorithm 1 sum-
marizes the whole training process. In Algorithm 1, Ku and
Kl correspond to the uth and the lth rows of the kernel matrix,
respectively.

Algorithm 1: The SMO algorithm

Input: a training set X of n instances with labels y
Output: a weight vector α
for i← 1 to n do /* initialize α and f */1

αi ← 0, fi ← −yi2

repeat3

search for fu and u using Equation 3;4

compute kernel values Ku ; /* uth row */5

search for fl and l using Equation 4;6

compute kernel values Kl ; /* lth row */7

update αu and αl using Equations 5 and 6;8

update f using Equation 7;9

search for fmax using Equation 8;10

until fu ≥ fmax11

Classification: After the training, the trained SVM is used
in the classification phase to predict the label of every test
example. The label of a test example xj , denoted by yj , is
predicted by the following formula:

yj = sgn

(

n
∑

i=1

yiαiK(xi,xj) + b

)

(9)

where b is the bias of the hyperplane of the trained SVM.
The training examples with their weights greater than zero are
called support vectors, which are used to predict the labels of
test examples.

A. GPUs and SSDs

In recent years, as Graphics Processing Units (GPUs) have
become more programmable, many general purpose computing
applications have benefited from their high-performance. In the
NVIDIA Compute Unified Device Architecture (CUDA) [25],
GPU threads are grouped into blocks which further form grids
as shown in Figure 2. In a block, every 32 threads are grouped
into a warp and executed in parallel. Due to the hierarchy of
the threads, how well an algorithm is parallelized determines
the performance of the algorithm. As we can see from Figure 2,
there are registers, shared memories and a global memory
on a GPU. Different types of memories have vastly different
access latency. For example, access to the global memory is
over 7 times slower than to the shared memory, while access
to the shared memory is about 6 times slower than to the
registers [26].

grid

block

shared memory

register

thread · · ·

register

thread

· · ·

block

shared memory

register

thread · · ·

register

thread

· · ·· · ·

global memory

Fig. 2: Threads and memory on a GPU

Solid state drives (SSDs) are emerging high-performance
storage devices [27]. They have no moving mechanical compo-
nents, which distinguish them from hard disk drives (HDDs).
SSDs’ random access and sequential access are typically
more than 10 times and 3 times faster than those of HDDs,
respectively. In addition, the SSD consists of a number of
blocks which are further divided into pages. Different blocks
can be read simultaneously, which significantly accelerates the
read speed. For example, 20 pages can be read in parallel on
the Intel X25M SSD [28].

B. The State-of-the-art GPU-based SVM Cross-validation Al-
gorithm

Catanzaro et al. [3] proposed a GPU-based training and
classification algorithm, which we refer to as gSVM in the rest
of the paper. In gSVM the SMO training algorithm is paral-
lelized as follows. In Step 1, the cost of the search for extreme
examples is dominated by searching minimal/maximal values
to obtain u, l and fmax according to Equations 3, 4 and 8. This
search operation is done by a technique called GPU reduction
operation. Specifically, to search the minimal (maximal) value
from a vector of n numbers, the GPU reduction operation starts
with creating n threads. Each thread loads a number from the
global memory and writes it to the shared memory. Then half
of the threads (i.e., n/2 threads) are used and each thread
reads two of the n loaded numbers from the shared memory,
compares them, and writes the smaller (larger) number back
to the shared memory, while the larger (smaller) number is
discarded. After this round, n/2 numbers remain in the shared
memory. In the next round, n/4 of the threads will read the
n/2 numbers, compare them and write back n/4 numbers.
This process repeats until there is only one thread left, which
produces the minimal (maximal) value. Note that this process
requires storing n values in the shared memory. This limits
the number of active threads especially when n is large, since
the size of shared memory is small in the GPU. In Step 2, one
GPU thread is used to compute the two updated weights α′

u

and α′

l according to Equations 5 and 6. In Step 3, n threads
are used to update the optimality indicators of the n training
examples, one for each optimality indicator. The three steps are
repeated until the optimal condition is met. In each iteration,
n optimality indicators are updated using Equation 7. When
updating each optimality indicator, gSVM computes the two
kernel values in the right hand side of Equation 7 on-the-fly
and hence needs to compute 2n kernel values in each iteration.
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To reduce the cost of the kernel value computation, gSVM uses
the LRU replacement strategy for kernel value caching.

In the classification phase, the algorithm computes Equa-
tion 9 for every example to be classified in parallel. The com-
putation of the equation for one example is further parallelized
into n threads, where each thread computes one term of the
summation. It has been reported that gSVM outperforms the
CPU-based cross-validation by an order of magnitude [3], and
gSVM is the state-of-the-art SVM cross-validation algorithm.
Therefore, gSVM is used as our baseline for GPU-based
algorithm. However, it has the following drawbacks.
Drawback 1: gSVM repeatedly computes kernel values on-
the-fly, which requires the whole dataset to be stored in the
GPU memory. As a result, it cannot process datasets larger
than the GPU memory.
Drawback 2: gSVM uses a straightforward algorithm for
searching extreme examples in Step 1 of the training phase,
which consumes more shared memory and limits the number
of active GPU threads.
Drawback 3: gSVM uses a general purpose cache strategy
which does not exploit the kernel values’ access pattern.

IV. THE MASCOT SCHEME

Towards highly scalable and efficient SVM cross-
validation, we propose a scheme called Modern hArdware
enabled Svm CrOss-validaTion (MASCOT). Figure 3 gives
an overview of MASCOT which consists of kernel value
precomputation, training and classification. The GPU performs
the kernel value precomputation and stores the precomputed
kernel values to the CPU memory extended by the SSD. The
GPU memory is used to cache kernel values that are reused in
different iterations of the training. Next, we explain the three
phrases of MASCOT in detail.

A. Precomputing, Storing and Obtaining Kernel Values

As discussed in Section III, the kernel matrix consists
of the kernel values of all the examples in X . The ith row
Ki = 〈K(xi,x1), K(xi,x2), ..., K(xi,xn)〉 of the matrix
corresponds to all the n kernel values of the example xi. Since
X contains n examples 〈x1, x2, ..., xn〉

T , the kernel matrix
is an n× n matrix.

SSD

blocks

pages

Ki1 Ki2 Ki3 Ki4

Fig. 4: Storing the row Ki to an SSD

1) Computing Kernel Values: We use the GPU to precom-
pute the kernel matrix. If the dataset is too large to be held
in the GPU memory, we partition the dataset into subsets and
compute sub-matrices using those subsets. The sub-matrices
together form the kernel matrix.

2) Storing Kernel Values: The precomputed kernel matrix
is stored row after row sequentially in the CPU memory
extended by the SSD. When we need to use the kernel values
in the training and the classification, we simply read the needed
ones from the CPU memory or the SSD. Thus, we avoid
repeated computation of the kernel values. Note that in each
iteration of the training, two rows (i.e., the uth and the lth rows
in the kernel matrix) are needed according to Equation 7; in
the classification for an example xj , one row (i.e., the jth row
in the kernel matrix) is needed according to Equation 9.

To enable fast read of the kernel values from the precom-
puted kernel matrix, we use the following two techniques.
First, the portion of the precomputed kernel matrix stored in
the CPU memory can be directly read by the GPU using a
technique called “Zero Copy memory” [25]. Zero Copy is
a hardware technique that allows the GPU to use the CPU
memory as if the CPU memory was the GPU memory. This
way the communication cost between the CPU and the GPU
is reduced.

Second, the portion of the precomputed kernel matrix
beyond the CPU memory size is stored in the SSD; the
kernel values are stored in a way that they can be read
in parallel to make use of SSDs’ multi-channel feature (cf.
Section III-A). Specifically, we divide a row of the kernel
matrix into partitions, so that each partition can be stored in an
SSD page. The partitions are stored to a number of SSD pages,
each in a different SSD block. Hence, different partitions of the
row can be read from the SSD blocks simultaneously. Figure 4
shows an example of storing the ith row Ki to an SSD; the
row Ki is divided into four partitions which are stored to
four SSD pages in different SSD blocks. The pseudo-code of
storing the kernel matrix is shown in Algorithm 2. Initially,
the number of pages to store a row of the kernel matrix is
calculated using the number of kernel values in a row and the
number of kernel values that an SSD page can hold (line 1).
Then, given a row index i of the kernel matrix, a number of
SSD pages in different SSD blocks are identified to store that
row (lines 3 and 4). Finally, the row is stored to the identified
SSD pages in the corresponding SSD blocks (lines 5 and 6).

3) Obtaining Kernel Values: Each training iteration re-
quires two rows from the kernel matrix. As we have precom-
puted the kernel matrix, we just need to read two rows from
it. Based on a row index, we know whether the row is stored
in the CPU memory. When the needed rows are in the CPU
memory, the GPU directly reads the kernel values using the
Zero-copy technique. When the needed rows are in the SSD,



Algorithm 2: Storing the precomputed kernel matrix

Input: An n× n kernel matrix,
ps: the number of kernel values in an SSD page,
bs: the number of pages in an SSD block.

Output: A parallelly accessible kernel matrix K

np ← ⌈
n

ps
⌉ /* # of pages for a row */1

for i← 1 to n do /* each row of K */2

bid ← ( i

bs
) · np /* 1st block for row i */3

pid ← i mod bs /* page id in a block */4

for j ← 1 to np do /* store to blocks */5

store ps values to page pid of the (bid + j)th block6

we first read the kernel values from the SSD in parallel and
then pass them together to the GPU.

We call the process of reading kernel values from the SSD
“parallel kernel value read” which works as follows. Similar
to the process of storing the kernel matrix, initially the parallel
kernel value read algorithm calculates the number of SSD
pages to read for obtaining a row of the kernel matrix. Then
based on the index of the row, we can identify a set of SSD
page indexes. Next, we create a number of CPU threads and
each CPU thread is assigned to read a number of SSD pages
that contain a partition of the row. Lastly, all the read results
are put together and transferred to the GPU memory.

Addressing Scalability and Drawback 1 of gSVM: After
the precomputation, the dataset X is no longer used in the
cross-validation and we do not need any GPU memory to hold
it, and hence we overcome Drawback 1 of gSVM. As each
training iteration only requires two rows (2n kernel values)
of the kernel matrix and the classification requires one row
(n kernel values) of the kernel matrix to be held in the GPU
memory, the space complexity of MASCOT is O(n) in terms
of the GPU memory usage. Note that the space complexity is
irrelevant to the data dimensionality. This is an advantage of
our method since the big datasets we have these days tend to
have thousands to millions of dimensions. As a comparison
to gSVM which has a space complexity of O(nd), we show
the largest datasets that gSVM and MASCOT can handle in
Table I. Here we assume that gSVM uses a high-end GPU,
GTX 780, which has 3GB GPU memory and MASCOT uses
a 4TB SSD. We assume 4 bytes to store a value. As we
see, MASCOT can handle much larger datasets than gSVM,
especially when the dimensionality is high. The reason for
MASCOT’s high scalability is that we shift the space constraint
from the size of the GPU memory to the size of the SSD
which is much larger. Note that we can install more SSDs
to a computer to handle even larger datasets while the GPU
memory is not extendable.

B. Training

For improving the efficiency of the training, we describe
a number of techniques for the extreme example search al-
gorithm in Section IV-B1, propose a kernel value caching
strategy which better suits the kernel values’ access pattern
in Section IV-B2 and present techniques better distribute the
tasks between the GPU and the CPU in Section IV-B3.

1) Improving Extreme Example Search: In Step 1 of SMO,
the search for two extreme examples is essentially the mini-

TABLE I: Scalability comparison

dimensionality
size of datasets that can be handled
MASCOT gSVM

1,000 1,000,000 805,300

10,000 1,000,000 80,530

100,000 1,000,000 8,053

1,000,000 1,000,000 805

mal/maximal value search to obtain u, l and fmax. We use the
following three techniques for improving the efficiency of the
search.

Reducing the shared memory consumption. When loading
values from the global memory to the shared memory at the
beginning of the search, we let each thread load a number m of
elements instead of one. Each thread computes and maintains
its local minimal (maximal) value in one of its registers.
Then each thread writes its local minimal (maximal) value
to the shared memory. Compared with the straightforward
reduction operation which requires storing n values in the
shared memory, our method only needs to store ⌈n/m⌉ values.

Reducing accesses to the shared memory. After the values
are loaded from the global memory to the shared memory,
the GPU reduction operation starts. As we discussed in Sec-
tion III-B, in each round of the reduction, an active GPU thread
requires reading two values from the shared memory and
writing back the smaller (larger) value to the shared memory.
We can reduce read and write operations to the shared memory
using registers which are about 6 times faster [26] than
the shared memory. Each thread maintains its local minimal
(maximal) value in a register in each round of the reduction.
In the next round, a thread only needs to read one value from
the shared memory, compare the value with its local minimal
(maximal) value and write the smaller value back to the register
as its new local minimal (maximal) value. Thus, the number
of read operations to the shared memory is reduced by half.
The write operation to the shared memory only happens when
a thread becomes inactive. Inactive threads write their local
minimal (maximal) values back to the shared memory so that
active threads in the next round can read the value to search the
global minimal (maximal) value. Active threads do not need
to perform the write operations and hence the number of write
operations is significantly reduced.

Early thread termination. After each round of the reduc-
tion, half of the active threads will no longer be used. We
terminate them to save the cost of rescheduling them.

These techniques reduce the shared memory consumption,
reduce accesses to the shared memory and improve the utiliza-
tion of threads. Hence, we overcome Drawback 2 of gSVM.

2) Caching Strategy: The same row of kernel values is
often used multiple times during the training and may be
cached for reuse. Previous studies have simply used LRU
replacement strategy for kernel value caching. Here we analyze
the kernel values’ access pattern during the training and
propose a caching strategy that better suits the access pattern.

First, we show that the optimality indicators of the exam-
ples in Xupper increases while those of the examples in Xlower

decreases every time they are updated (using Equation 7). As
discussed in Section III, in each iteration of the training two



training examples xu ∈ Xupper and xl ∈ Xlower are used.

The kernel values of xu and xl corresponding to the uth

row 〈K(xu,x1), K(xu,x2), ..., K(xu,xn)〉 and the lth row
〈K(xl,x1), K(xl,x2), ..., K(xl,xn)〉 in the kernel matrix,
respectively, are used to update all the optimality indicators.
The optimality indicator fi of the example xi is updated to
f ′

i , which can be rewritten as Equation 10 using Equations 5
and 6.

f ′

i = fi +
fu − fl

η
δ, δ = K(xl,xi)−K(xu,xi) (10)

Based on the definition of η, it can be proven that η is always
greater than 0 [24]. According to Equation 4, fu is smaller than
fl, so we have fu − fl < 0. Therefore, the value (fu − fl)/η
is a negative constant for all the optimality indicators in the
same iteration. How much f ′

i changes over fi is negatively
proportional to δ. As the kernel function approximates the
similarity between two examples [29], δ indicates whether xi

is more similar to xl or to xu. Specifically, if the example xi

is in Xlower (“lower” side of the current hyperplane), then xi

tends to be more similar to xl than to xu; similarly, if xi is
in Xupper (“upper” side of the current hyperplane), then xi

tends to be more similar to xu than to xl. In summary, the
following inequalities are often true:

δ =

{

K(xl,xi)−K(xu,xi) > 0, if xi ∈ Xlower

K(xl,xi)−K(xu,xi) < 0, if xi ∈ Xupper
(11)

According to Equation 10 and Inequality 11, the values of the
optimality indicators of the examples that are in the “upper”
side of the current hyperplane increase every time they are
updated. On the contrary, those of the examples in the “lower”
side of the current hyperplane decrease every time they are
updated.

Second, we show that the optimality indicator of xu

increases almost the most among all the optimality indicators
of the examples in Xupper, and the optimality indicator of xl

decreases almost the most among all the optimality indicators
of the examples in Xlower in the current iteration. Given an
example xi ∈ Xupper the more similar xi is to xu, the
larger K(xu,xi) is because kernel functions approximate the
similarity between two examples. Among all the examples in
Xupper, when xi equals xu, K(xl,xi)−K(xu,xi) has nearly
the smallest value because K(xl,xi) has nearly the smallest
value when xi = xu and K(xu,xi) has almost the largest
value when xi = xu (recall that kernel value approximates
the similarity between two examples and xl is nearly the most
dissimilar one to xu). Therefore, when xi equals xu, δ reaches
its smallest value approximately according to Inequality 11.
As a result, f ′

u increases mostly upon update among all the
optimality indicators of the examples in Xupper in the same
iteration. Similarly, we can derive that f ′

l decreases mostly
among all the optimality indicators of the examples in Xlower.

Third, we show that the examples are used in a quasi-
round-robin manner. The changes on the optimality indicators
of xu and xl are the most significant. As we will show below,
xu and xl are unlikely to be used as the extreme examples in
the near future of the training. As fu increases the most among
all the optimality indicators of the examples in Xupper, it could
possibly have the largest value of the optimality indicator in
the next iteration. As a result, xu may not be used again until
all the other example in Xupper are used. This analysis applies

to the update of fl. Also, the analysis applies to each iteration
of the training. Therefore, the examples are used in a quasi-
round-robin manner and hence the kernel values are accessed
in a quasi-round-robin manner.

The kernel value’s access pattern, i.e., the quasi-round-
robin access, is similar to sequentially scan all the kernel values
for multiple times. For such access pattern, no caching strategy
will increase the probability of hits compared with caching a
fixed part of the kernel values. LRU is ill-suited to this access
pattern since LRU caches recently used kernel values, which
are actually the least possible ones to be accessed again in
the near future. Since two rows of the kernel values in the
kernel matrix are used together in each iteration as discussed
in Section 4.1, we have used a simple caching strategy of
replacing the row with the minimum row index in the kernel
matrix when the cache is full. We call our caching replacement
strategy LAT since our strategy replaces the row with longest
access time. LAT effectively caches the last part of the kernel
matrix. It guarantees that a fixed part of the kernel matrix is
cached and reused. As mentioned in Section 4.1 we store the
rows with large row indexes in the kernel matrix in the SSD, so
LAT favourites to cache the kernel values that are stored in the
SSD. Compared with caching kernel values stored in the CPU
memory, caching kernel values stored in the SSD saves more
data transfer time. As our caching strategy is congruent with
the kernel values’ access pattern and well-suited to our storage
framework, hence we overcome Drawback 3 of gSVM.

3) Distributing tasks on GPUs and CPUs: During the
training, some operations (e.g., search extreme examples)
can be parallelized while others are not parallizable. Hence,
making full use of GPUs’ high parallel computing capability
and CPUs’ high serial computing capability are important for
achieving an efficient training algorithm. Apart from using the
GPU to perform computation, we have two techniques for
making full used of the CPU.

Parallelizing tasks on the CPU and the GPU: Step 2
updates the two weights αu and αl according to Equations 5
and 6. Updating on αu and αl are not parallelizable, as
updating αu requires the updated value of αl. It is not helpful
to run them on the GPU. Therefore, we run Step 2 on the CPU.
Meanwhile, we prefetch the kernel values which are required
by Step 3 from the CPU memory to the GPU memory to reduce
the latency.

Using the CPU to compute values shared to GPU threads:
Step 3 updates all the optimality indicators using Equation 7.
This Equation contains five terms: (α′

u−αu)yu, (α
′

l−αl)yl, fi,
K(xu,xi) and K(xl,xi). The first two terms remain the same
when computing all the optimality indicators in the current
iteration. Hence, we compute the two terms by the CPU and
pass them to the GPU, instead of computing the two terms in
every GPU thread.

C. Classification in the Cross-validation

The classification also benefits from the precomputed ker-
nel matrix. According to Equation 9, we need kernel values
(e.g., K(xi,xj)) to predict the labels of the test examples.
As K(xi,xj) equals K(xj ,xi), we have two ways to read
those kernel values: (i) reading all the rows of the kernel
matrix corresponding to the support vectors (e.g., read rows



TABLE II: Datasets and kernel parameters

dataset cardinality dimension C γ
Adult 32,561 123 100 0.5
Epsilon 120,000 2,000 0.01 1
Gisette 6,000 5,000 100 0.382
MNIST 60,000 780 10 0.125
RCV1 20,242 47,236 100 0.125
Webdata 49,749 300 64 7.8125

with index respected to i), and (ii) reading all the rows of the
kernel matrix corresponding to the test examples (e.g., read
rows with index respected to j). If the number of support
vectors is smaller (greater) than the number of test examples,
then we read all rows of the kernel matrix corresponding to the
support vectors (test examples). Thus, we can read less rows
of the kernel matrix and hence read less kernel values.

D. Discussion

MASCOT can easily scale to a number (denoted by m) of
machines with GPUs, since the kernel matrix precomputation,
the training and the classification can be parallelized.

For the kernel matrix precomputation, we can decompose
the whole kernel matrix into sub-matrices, and each machine
computes all the kernel values of a sub-matrix independently.

The training can be parallelized as follows. We divide the
optimality indicator f into m parts p1, p2, ..., pm where
pi = 〈f(i−1)z+1, f(i−1)z+2, ...fiz〉 and z is the number of the

optimality indicators in each part. The ith machine stores pi.
For Step 1 (i.e., the search for minimum or maximum value),
each machine obtains its local extreme indicator and reports it
to a “Master” machine. The Master machine then can obtain
the global extreme indicator. For Step 2 (i.e., improving the
weights) which is not computationally expensive, the Master
machine calculates the updated weights α′

u and α′

l. For Step
3 (i.e., updating f ), the ith machine obtains the weights α′

u

and α′

l from the Master machine and independently updates
pi according to Equation 7. Furthermore, the ith machine only
needs to store z columns, i.e., the (iz−z+1)th to izth columns
of the kernel matrix. This is because only the (iz − z + 1)th

to izth kernel values of the uth row and the lth row are
used to update pi at each training iteration. As each machine
only needs to store z columns of the kernel matrix, MASCOT
can handle problems with an even larger kernel matrix using
multiple machines.

The classification essentially computes a sum of n values
according to Equation 9. Each machine sums n/m values, and
reports the local sum to the Master machine. Then, the Master
computes the predicted label yj .

V. EXPERIMENTAL STUDY

We performed extensive experiments to evaluate the perfor-
mance of MASCOT. The caching strategy, the parallel kernel
value read technique and the improved extreme example search
algorithm can be evaluated independently, so we first study
the effects of these three techniques. The other techniques
are inseparable from the MASCOT scheme. Therefore, we
evaluate them as a whole in Section V-D when studying
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Fig. 5: Kernel matrix access pattern

the scalability and efficiency of MASCOT. We conducted the
experiments on a computer running Linux with a Xeon E5-
2643 CPU, 16GB CPU memory, a 240GB SSD and a GTX460
GPU with 768MB memory. We used six datasets from the UCI
Machine Learning Repository 3 and LibSVM site 4. Table II
gives the details of the datasets and parameters of Gaussian
kernel. Following common practice, we set k to 10 and hence
perform 10-fold cross-validation and set the page size of
the SSD to 4KB. MASCOT and gSVM are implemented in
CUDA. We also compare the efficiency of MASCOT with a
popular CPU-based SVM cross-validation program, LibSVM,
which is from LibSVM site and is implemented in C++.

A. Performance of the Caching Strategy

Due to the limited space, we only present and discuss
the results on Adult, Webdata and MNIST datasets. The
experiments on other datasets showed similar results which are
omitted. Here we first show the access pattern of the kernel
matrix and then verify the effectiveness of our kernel value
caching strategy LAT.

Access pattern of the kernel matrix: Figure 5a shows
the access frequency of the training examples. We can see
that a major portion of the dataset is accessed for more than
once. As accessing a training example indicates accessing to
its corresponding kernel values, therefore an effective kernel
value caching algorithm could improve the efficiency of the
training. Figure 5b shows the number of iterations between
two consecutive accesses to a training example. For most
of the training examples (60% to 80%), the access interval
between two consecutive accesses to them is more than half
of the dataset cardinality. Therefore, recently used examples
are unlikely to be used in the near further and hence LRU is
not a suitable caching strategy for kernel value caching in the
training. This also indicates that the kernel matrix is accessed
in a quasi-round robin manner and confirms our analysis in
Section IV-B.

We also conducted the experiments to count the number of
accesses to different partitions of a dataset by evenly dividing
the dataset into 10 partitions. The result shows that the numbers
of accesses to different partitions are very similar. Hence,
caching any partition will produce similar hit ratio.

Hit ratio comparison: Figure 6 shows the hit ratio com-
parison between LRU and our caching strategy LAT. On all
the datasets, LAT significantly outperforms LRU.

3archive.ics.uci.edu/ml/datasets.html
4www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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B. Parallel Kernel Value Read

To show the efficiency of the parallel kernel value read
technique, we conducted experiments using 1 thread (i.e.,
sequential read) and 2, 4 and 8 threads to read a row of
the precomputed kernel matrix. The dataset used here is the
Epsilon dataset with 120,000 training examples. We measured
the total elapsed time on reading kernel values from the SSD
in the cross-validation. Figure 7 shows the results. As can be
seen from the figure, the parallel kernel value read technique
using 8 threads achieves the best performance and significantly
outperforms the sequential read. Another observation from the
figure is that increasing the number of threads decreases the
improvement ratio. This is because of the overhead of creating
more threads at each training iteration.

C. Performance of the Extreme Example Search

Here, we compare our improved search algorithm (denoted
by “MReduce” where “M” stands for MASCOT) with the
search algorithm used in gSVM (denoted by “Reduce”). We
measured the total time of searching u in the 10-fold cross-
validation. As shown in Figure 8, MReduce considerably
outperforms Reduce on all the datasets. This demonstrates
the effectiveness of our techniques used in MReduce. We
notice that the improvement on the MNIST dataset is the
most significant. This is because the search operation is more
expensive due to the larger cardinality compared with the other
two datasets. The experimental results of searching l and fmax

are similar to the above and hence we omit them here.

D. Overall Scalability and Efficiency

Scalability: To demonstrate the scalability of MASCOT
over dataset cardinality and dimensionality on large datasets
and small datasets, we generated two groups of datasets from
the Epsilon dataset and the Gisette dataset, respectively. (i)
The first group contains the subsets of the Epsilon dataset with
cardinality varying from 10,000 to 120,000 and dimensionality
varying from 500 to 2,000. (ii) The second group contains the
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subsets of the Gisette dataset with cardinality varying from
2,000 to 6,000 and dimensionality varying from 2,000 to 5,000.
When varying cardinality (dimensionality), the default dimen-
sionality (cardinality) of the subsets of the Epsilon dataset is
fixed at 2,000 (60,000). Similarly, when varying cardinality
(dimensionality), the default dimensionality (cardinality) of the
Gisette dataset is fixed at 5,000 (6,000).

As can be seen from Figures 9a and 9b, MASCOT scales
very well as the dataset cardinality increases. LibSVM is
extremely slow on the subsets of the Epsilon dataset with
cardinality larger than 30,000 and the results are omitted.
In comparison with MASCOT, gSVM is much slower on
small datasets and it cannot handle datasets of over 30,000
examples because the datasets are too large to be held in
the GPU memory. As we can see from Figure 9c, gSVM
cannot handle the subsets of the Epsilon dataset with more
than 1,000 dimensions. We omit the experimental results on
LibSVM, since LibSVM is extremely slow on the subsets of
the Epsilon dataset due to the large cardinality (i.e., 60,000).
Figures 9d shows that the elapsed time of gSVM and LibSVM
increases much faster than that of MASCOT when the data
dimensionality increases on the Gisette dataset. We observe
that the elapsed time of MASCOT is almost stable as the
dimensionality increases. Since after the kernel matrix precom-
putation, dimensionality is irreverent to the cross-validation.

Efficiency: In this set of experiments, we limit the cardi-
nality and dimensionality of the datasets so that most of them
can be handled by gSVM and LibSVM. As can be seen from
Figure 10, gSVM cannot process the rcv1 dataset due to its
limitation on memory usage and MASCOT is three orders of
magnitude faster than LibSVM on this dataset. For the others,
MASCOT is an order of magnitude faster than gSVM and two
orders of magnitude faster than LibSVM.

Note that the total time shown in Figure 10 of MASCOT
includes the time for the kernel matrix precomputation. In the
experiments, we noticed that the cost of the kernel matrix
precomputation is low. For example, the kernel value precom-



Fig. 10: Efficiency

putation took less than 20% of the total time of a 10-fold
cross-validation on Adult, MNIST and Webdata datasets. The
kernel matrix precomputation is only performed once and can
be used for many cross-validations.

Our experimental results also showed that the classification
accuracy of the trained classifiers using MASCOT is the same
as that of the trained classifiers using gSVM and LibSVM on
all the datasets tested.

VI. CONCLUSIONS

In this paper, we proposed MASCOT, a scheme for scal-
able and fast SVM cross-validation by exploiting the high
computation power of GPUs and fast access of SSDs. Our
key ideas are as follows. (i) To avoid holding the whole
dataset in the memory and avoid performing repeated kernel
value computation, we precompute the kernel values and reuse
them. (ii) We store the precomputed kernel values to a high-
speed storage framework, consisting of CPU memory extended
by solid state drives and the GPU memory as a cache, so
that reusing (i.e., reading) kernel values takes much lesser
time than computing them on-the-fly. (iii) To further improve
the efficiency of the SVM training, we apply a number of
techniques for the extreme example search algorithm, design a
parallel kernel value read algorithm, propose a caching strategy
well-suited to the characteristics of the storage framework,
and parallelize the tasks on the GPU and the CPU. Our
experimental results show that for datasets of sizes that existing
algorithms can handle, MASCOT achieves orders of magnitude
speedup. More importantly, MASCOT enables SVM cross-
validation on datasets of very large scale that existing algo-
rithms are unable to handle.
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