
Aucher: Multi-modal Queries on Live Audio Streams in Real-time

Zeyi Wen†1, Mingyu Liang‡2, Bingsheng He†3, Zexin Xia‡4, Bo Li§5

†National University of Singapore, §Hong Kong University of Science and Technology
{1wenzy,3hebs}@comp.nus.edu.sg, 5bliar@connect.ust.hk

‡Shanghai Jiao Tong University, China
{2liangmingyu,4xiazexin}@sjtu.edu.cn

Abstract—This paper demonstrates a real-time search system
called Aucher for live audio streams. Audio streaming services
(e.g., Mixlr, Ximalaya, Lizhi and Facebook Live Audio) have
become increasingly popular with the wide use of smart
phones. Because of the popularity of audio broadcasting, the
data volume of live audio streams is also ever increasing.
Searching and indexing these audio streams is an important
and challenging problem. Aucher is a system prototype which
can support both voice search and keyword search on audio
streams. We achieve the real-time response for queries by
our novel index which exploits log structured merge-trees and
supports multi-modal search. Moreover, our system can handle
insertion about four times faster and more memory efficient
than the state-of-the-art solution. We plan to demonstrate
searching live audio streams by keywords and voice, illustrate
the trade-off of freshness, popularity and relevance on query
results, perform searching hot terms, and show the ability of
searching live audio streams in real-time.

1. Introduction

Audio streaming platforms (e.g., Ximalaya and Face-
book Live Audio) have attracted a large number of users.
More and more people are enjoying live audio broadcasting.
Searching and indexing these audio streams is an important
problem but is also challenging because: (i) queries on
the large number of audio streams need to be answered
in real-time; (ii) a live audio stream is inserted into the
index continuously to enable live audio streams to appear in
query results, and the number of insertions is large which
often becomes a performance issue. Existing studies [1],
[2] on audio search either oversimplify the problem (e.g.,
only consider the title of an audio stream) or simply ignore
searching live audio streams. Moreover, they do not explore
the multi-modal property (i.e., both sound and transcribed
text) of audio streams.

In this demonstration paper, we leverage recent suc-
cessful technologies from speech recognition and databases
(e.g., log structured merge-tree indexing) to address the
problem of the emerging application of live audio streaming.
Our system called Aucher (short for Audio Searcher) is
powered by a multi-modal and unified log structured merge-
tree (LSM-tree) based index to support intensive insertions

and real-time search on live audio stream applications.
Aucher supports two major types of indexing techniques in
audio search: text based indexing and sound based indexing.
Hence, Aucher allows both keyword and voice search using
the indices on the transcribed text and extracted sound
features (e.g., MFCC [3]). Aucher has three key technical
challenges: (i) a live audio stream may appear in multiple
inverted indices due to the streaming nature; (ii) relevance,
popularity and freshness of each audio stream need to be
maintained in a way that allows fast accesses; (iii) massive
insertions are happening alongside with queries. In Aucher,
we exploit various techniques to address the technical chal-
lenges (more details presented in Section 3.2).

Aucher is built on top of our recent work which intro-
duces RTSI [4] to support live audio stream indexing and
search. In this demonstration paper, we make the following
additional contributions: (i) we build a complete system pro-
totype to demonstrate our techniques for live audio search,
(ii) we develop techniques to search hot terms in a given
time frame, and (iii) we further improve RTSI by combining
two LSM-trees into one to reduce the memory consumption.

In the demonstration, we will interact with the audience
to demonstrate the following three scenarios. First, we will
show the audience searching live audio streams in real-time
by keywords and by voice, and the audience can propose
their queries. We will demonstrate the comparison with the
state-of-the-art approach named LSII [5]. Our experimental
results show that our index outperforms LSII by four times
in insertions and is more memory efficient, while retaining
similar query response time. Second, we like to show the
audience searching hot terms in a given time frame, and
together with the audience, we will try to identify emerging
events at the time frame based on the hot terms. All the
demonstration studies will be conducted in two real data sets
(i.e., Ximalaya and VOA), both of which are from popular
platforms for live audio streams. In the demo, users can also
play with the system prototype with their own queries.

2. Background and related work

In this section, we first present some background on live
audio streaming services, and audio indexing and search.
Then we discuss the related work on indexing techniques
for real-time search.

2.1. Live audio streaming and audio indexing

Live audio streaming services have become very popular
due to the wide use of smart phones and better network
connection. Some examples of live audio streaming services
are Mixlr [6], Ximalaya [7], Lizhi [8] and Facebook Live
Audio. Searching for relevant live audio streams in real-
time is very important, because the listeners are interested in
some real-time hot events and topics that are being emerged
in the live audio streams. Existing audio search studies are
based on one of the two mainstream methods: sound based
search and text based search.

Nagano et al. [9] proposed a purely sound based method
to retrieve audio streams. Their key idea is to compare the
query voice with the audio streams using the similarity of
sound signals. Other studies (e.g., [10]) propose to convert
audio streams into phonetic lattices (i.e., sound units) and
build indices on the lattices. These techniques are not de-
signed for real-time live audio stream search, because they
consider the set of audio streams static and no more audio
streams are coming in after the index is built.

Audio streams can be represented using simple text such
as titles and categories [11], and then the index is built on
the text. The disadvantage is simple text is not informative to
represent the audio streams, and hence many relevant audio
streams are not retrieved when answering queries. Some
studies (e.g., [12]) use full text (transcribed from audio)
based approaches to audio search. Transcribed text becomes
more popular due to advancement of speech recognition.

2.2. Indexing techniques for real-time search

There are several existing studies [13], [14] for sup-
porting real-time search for microblogs in particular. The
recent and more related work is LSII [5] which is built on
top of LSM-trees for real-time search. These existing real-
time search approaches discussed above are for indexing
microblogs or short text where a microblog appears in only
one inverted index.

In live audio stream indexing problems, data arrives in
a long stream manner and an audio stream may appear in
multiple inverted indices to enable live audio streams to ap-
pear in query results. The issue of an audio stream appearing
in multiple inverted indices makes those existing studies not
applicable to live audio indexing. Our recent work proposed
RTSI [4] to support live audio stream indexing and search. In
this demo paper, we further improve RTSI in order to reduce
the memory consumption by combining two LSM-trees into
one. We also develop techniques to search hot terms in a
given time frame, and we build a complete system prototype
to demonstrate our techniques.

3. The Aucher system

3.1. Overview of our system

We implement the system in a client-server architecture.
Figure 1 shows the search interface of Aucher, which sup-
ports both keyword search and voice search. In the voice

Figure 1. Search interface

Figure 2. Search result presentation

search, users say the query keywords as input similar to
Google voice search. The system allows users to set the
weights of freshness, significance and relevance via “Ad-
vanced Setting”. The scoring function is shown below.

f(q, p) = ωp · pop(p) + ωr · rel(q, p) + ωf · frsh(p) (1)

where q is a query and p is an audio stream; pop(p), rel(q, p)
and frsh(p) are the scores of popularity, relevance and
freshness, respectively; ωp, ωr and ωf are the weights of
popularity, relevance and freshness, respectively.

After issuing a query, the query results appear right
below the query box. Figure 2 shows the query results.
From the figure, each result consists of a title, a snapshot
and an external link called “Go to listen”. Some of the
results are highlighted with “broadcasting” which are the
live audio streams, and the other are historical audio streams.
Moreover, the snapshots are mainly from audio content and
user’s comments.

3.2. System internals

Figure 3 shows the key components of audio indexing
and query answering in Aucher. The top part is the indexing
process and the bottom part is the query answering process.
When building the index, the live audio streams are con-
verted into text by speech recognition (e.g., Google Speech
Recognition) and also converted into phonetic lattices using
techniques proposed in [10]. The phonetic lattices are then
represented using MFCC. The index is built for text and
phonetic lattices to support keyword and voice search.

Freshness, significance and relevance: The users of
audio streaming services tend to be interested in more recent

audio
streams

speech recognition

audio
decoding

text

phonetic
lattices

index builder

a multi-modal
index for real-time

search

keywords

voice

voice to text

result ranking

search

response

response

query processor

text to voice

query parser

MFCC lattice
representation

Figure 3. Indexing and querying overview

or more popular content. For example, they are interested
in the audio on the more recent events. Moreover, the
audio streams should be relevant (to some extent) to the
query. So, freshness, popularity as well as relevance need
to be considered and be accessed efficiently. We maintain
information for relevance, popularity and freshness in the
inverted indices of the LSM-tree with three inverted lists
for each term for real-time search. Given a query, the
information of freshness, significance and relevance of a
term in an audio stream is obtained through intersecting the
three inverted lists. As a result, we address Challenge (i).

Query answering: When handling queries, users can
use either keywords or voice as input. Our query processor
converts keywords into voice or voice to keywords for
tolerance of transcription or phonetic lattice presentation
inaccuracy. Then, the voice is decoded into phonetic lat-
tices. We retrieve from the indices all the audio streams
which contain the keywords or phonetic lattices. Finally,
we compute the score for each audio stream and obtain the
top-k audio streams and respond the user queries.

The weights can be customized by users. More specif-
ically, the results shown in Figure 2 are from a query that
uses 20, 20 and 60 for the weights of freshness, popularity
and relevance, respectively. Through “Advanced Setting” in
Figure 1, we can change the weights of them to 80, 10 and
10, respectively, to give higher ranks for fresher streams.

When answering the query for hot terms in a given
time frame, we obtain all the inverted list windows which
are within the time frame. Then, we rank the terms based
on the frequencies and select the terms with the highest
frequencies. To improve the efficiency, we exploit pruning
techniques to reduce the number of terms to evaluate.

The multi-modal index: The index we build on the
transcribed text and phonetic lattices is based on our pro-
posed RTSI [4]. The RTSI index is based on log structured
merge-tree (LSM-tree) indexing. The LSM-tree has multiple
inverted indices. The second inverted index I1 is ρ times
larger than the first inverted index I0 and is 1

ρ of the third
inverted index I2. This log structured amortizes the cost
of merging indices and improves the overall insertion and
search efficiency. The insertion cost is approximately the
cost of inserting a term to I0. Hence, RTSI can support

I0 I1 I2 In

inverted index

size: ρ⨉|I0|

size: ρ⨉|I1|

an audio
stream in RTSI

Figure 4. The index for real-time search

massive insertions together with queries. Figure 4 gives an
example of the LSM-tree in RTSI. Here, we like to point
out that RTSI allows one audio stream to appear in multiple
inverted indices, which enables live audio streams to be
searched.

In our recent work on the RTSI index [4], we used two
individual LSM-trees: one for indexing transcribed text and
the other for indexing phonetic lattices. Here we further
improve RTSI, and implement the multi-modal functionality
by using only one LSM-tree: each inverted list is associated
with an entry for text dictionary and an entry for pho-
netic lattices dictionary. Thus, we achieve a more memory
friendly index for real-time search.

To allow fast access to the audio information for com-
puting score, we store the term frequency into the inverted
list which is sorted in descending order. We also maintain a
hash table for popularity and freshness of each audio stream.
This hash table of the index is small because the number of
keys in the hash table equals to the number of audio streams.

With the hash table for popularity and freshness of each
audio streams in the index, we can easily obtain popularity
and freshness. For computing the score of an audio stream
using Equation 1, we also need to obtain the total frequency
of a term that matches the query. However, obtaining the
total term frequency of a term may requires accessing mul-
tiple inverted indices, because an audio stream may appear
in multiple inverted indices. To avoid accessing multiple
inverted indices for improving query efficiency, we maintain
another small hash table which keeps track of the existing
term frequency of a term. This hash table is small because
it only stores the live audio streams which consists of only
a small proportion of all the audio streams in the audio
streaming platform. Consequently, we address Challenge
(ii). Furthermore, our proposed index exploits LSM-trees
which efficiently support massive insertion together with
queries for addressing Challenge (iii).

Merge indices: We merge two inverted indices if the size
of index I0 exceeds the memory limit. To support queries

while merging, we create mirrors for the indices. When
creating a mirror for the inverted index, we can create the
mirror for Ii or Ii+1. In our implementation, we create the
mirror for Ii, because Ii is smaller and hence more efficient
for the creation. Furthermore, if we merge I0 and I1, we
need to create two extra sorted inverted lists for I0 since I0
only has one sorted inverted list for freshness. Readers may
refer to our paper [4] for more details.

4. Demonstration plan

We have conducted the evaluations on a workstation
running Linux with two Xeon E5-2640v4 CPUs (totally 20
CPU cores at 2.40GHz). We plan to demonstrate Aucher
with remote access to the workstation. We obtained 6,000
audio streams from Voice of America (VOA) and 80,000
audio streams from Ximalaya [7]—an audio streaming ser-
vice. The total length of the audio streams is about 2,133
hours, and the average length of an audio stream is about
16 minutes. We will show case that Aucher can work with
different types of audio streams. We aim to demonstrate
three scenarios.

(i) Keyword search and voice search: In this sce-
nario, we aim to compare Aucher with the state-of-the-
art techniques. We demonstrate searching for the audio
streams of interest using keywords (e.g., “piano”). In the
demonstration, we will highlight to the audience what are
the live audio streams and what are the historical audio
streams among the query results. For voice search, we plan
to bring a microphone to the venue to accept query terms.
We also prepare some audio queries stored locally as query
samples for demonstrations. Moreover, we will demonstrate
that Aucher is able to retrieve audio streams similar to the
query in terms of the audio content. The existing audio
search algorithms based on titles, tags or comments are
unable to achieve this result. We will also demonstrate that
Aucher is around four times faster than LSII on insertion,
and reduces memory consumption by half.

(ii) Searching hot terms in a time frame: We will
show audience what are the hot terms. The supported queries
include “hot-term: today”, “hot-term: this week” and “hot-
term: this month”. For example, “hot-term: today” retrieves
the hot terms in the audio streams of today. Based on the
retrieved terms, we can infer what events occur on the time
frame. For example, in the demo, the audience may make
interesting findings for Ximalaya: “eat” is the second mostly
mentioned term; people discuss much on education, because
“kid” and “teacher” are among the hot terms.

(iii) Adding multiple audio streams and search: We
show the audience that Aucher can handle adding multiple
audio streams transparently, while supporting search. This
is an important experience for users. We will demonstrate
two cases on adding multiple audio streams: 1) adding audio
streams that does not result in index merge, and 2) adding
audio streams that results in index merge. We will show the
audience that Aucher is able to retrieve the audio streams
that are in broadcasting.

5. Conclusion

We show that live audio streams can be indexed and
searched in a real-time manner using proper indexing tech-
niques. This study demonstrates that the success of machine
learning (in speech recognition) and indexing techniques
enables real-time and multi-modal search on the live audio
stream applications. The proposed techniques are able to
improve the timeliness and user experience of live audio
stream applications over the state-of-the-art approach.

Acknowledgements

This work is supported by a MoE AcRF Tier 1 grant
(T1 251RES1610) and Tier 2 grant (MOE2017-T2-1-122) in
Singapore. We also thank Xingyang Liu and Hongjian Cao
for the initial development of the Aucher system prototype.

References

[1] G. Richard, S. Sundaram, and S. Narayanan, “An overview on per-
ceptually motivated audio indexing and classification,” Proceedings
of the IEEE, vol. 101, no. 9, pp. 1939–1954, 2013.

[2] A. Wang et al., “An industrial strength audio search algorithm.” in
Ismir, vol. 2003, 2003, pp. 7–13.

[3] F. Zheng, G. Zhang, and Z. Song, “Comparison of different imple-
mentations of mfcc,” Journal of Computer Science and Technology,
vol. 16, no. 6, pp. 582–589, 2001.

[4] Z. Wen, X. Liu, H. Cao, and B. He, “Rtsi: An index structure for
multi-modal real-time search on live audio streaming services,” in
International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1495–1506.

[5] L. Wu, W. Lin, X. Xiao, and Y. Xu, “Lsii: An indexing structure for
exact real-time search on microblogs,” in International Conference
on Data Engineering (ICDE), 2013, pp. 482–493.

[6] Mixlr, “Broadcasting live audio made simple,” 2018. [Online].
Available: http://mixlr.com/

[7] Ximalaya, “Enabling users to share audio and personal radio
stations,” 2018. [Online]. Available: http://www.ximalaya.com/

[8] Lizhi, “Lizhi FM: a Chinese podcast platform,” 2018. [Online].
Available: http://www.lizhi.fm/

[9] H. Nagano, R. Mukai, T. Kurozumi, and K. Kashino, “A fast audio
search method based on skipping irrelevant signals by similarity
upper-bound calculation,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 2324–
2328.

[10] V. Gupta, J. Ajmera, A. Kumar, and A. Verma, “A language in-
dependent approach to audio search,” in Annual Conference of the
International Speech Communication Association, 2011.

[11] R. Typke, F. Wiering, and R. C. Veltkamp, “A survey of music
information retrieval systems,” in Proc. 6th International Conference
on Music Information Retrieval, 2005, pp. 153–160.

[12] R. Shadiev and Y.-M. Huang, “Facilitating cross-cultural understand-
ing with learning activities supported by speech-to-text recognition
and computer-aided translation,” Computers & Education, vol. 98,
pp. 130–141, 2016.

[13] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi, “Tree indexing on solid
state drives,” Very Large Data Bases (VLDB) Conference, vol. 3, no.
1-2, pp. 1195–1206, Sep. 2010.

[14] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem,
S. Ghani, and M. F. Mokbel, “Taghreed: a system for querying,
analyzing, and visualizing geotagged microblogs,” in SIGSPATIAL.
ACM, 2014, pp. 163–172.

http://mixlr.com/
http://www.ximalaya.com/
http://www.lizhi.fm/

	Introduction
	Background
	Live audio streaming and audio indexing
	Indexing techniques for real-time search

	The AudioSearcher System
	Overview of our system
	System internals

	Demonstration Plan
	Conclusion
	References

