
RTSI: An Index Structure for Multi-Modal
Real-Time Search on Live Audio Streaming

Services
Zeyi Wen†1, Xingyang Liu‡2, Hongjian Cao‡3, Bingsheng He†4

†National University of Singapore, Singapore
{1wenzy,4hebs}@comp.nus.edu.sg
‡Shanghai Jiao Tong University, China

{2billyliu,3chj5chj5}@sjtu.edu.cn

Abstract—Audio streaming services have become increasingly
popular due to the wide use of smart phones. More and more
people are enjoying live audio broadcasting while they are doing
various kinds of activities. Meanwhile, the data volume of live
audio streams is also ever increasing. Searching and indexing
these audio streams is still an important and open problem,
with the following challenges: (i) queries on the large number
of audio streams need to be answered in real-time; (ii) a live
audio stream is inserted into the index continuously to enable
live audio streams to appear in query results, and the number of
insertions is large which often becomes a performance issue. In
this application paper, we propose a multi-modal and unified log
structured merge-tree (a.k.a. LSM-tree which consists of multiple
inverted indices) based index to support intensive insertions and
real-time search on live audio stream applications. Our index
natively supports two major types of indexing techniques in audio
search: text based indexing and sound based indexing. To address
the challenges of live audio indexing and search, we propose an
index (called RTSI) which avoids traversing multiple inverted
indices to compute the score of an audio stream. In RTSI, we
propose various techniques to address the technical challenges.
First, for each term we use three inverted lists which contain the
sorted score of popularity, freshness and relevance, respectively,
such that we can compute the top-k query results efficiently.
Second, we devise an upper bound for the unchecked audio
streams, such that the query answering process can be terminated
earlier. Third, we create mirrors for the indices that need to be
merged, such that queries can be answered in real-time when the
indices are merging. We conduct extensive experiments on audio
streams obtained from Ximalaya. The experimental results show
that RTSI can answer a large number of queries in a real-time
manner while concurrently handling massive insertions.

I. INTRODUCTION

Thanks to many audio services available (Mixlr [1], Xi-
malaya [2], Lizhi [3], and Facebook Live Audio), live audio
broadcasting has become an important part of people’s daily
life. People listen to audio streams (particularly live audio
streams) almost everywhere (e.g., gymnasium, transport and
home). According to the recent reports [4], there are 0.6
billion users of those audio streaming services in China, and
the yearly user increment rate is about 29.5% in Ximalaya.
It is very important that users can search for the audio
streams, especially live audio streams, of their interests in real-
time. Users tend to be interested in more recent content. For

example, they are interested in the audio streams on the more
recent events. Figure 1 shows an example of a user using
our proposed audio search service and the query answering
process at the back-end. At the front-end, the user can use
keyword or voice search to look for audio streams of interest;
at the back-end, the index is built on text and audio (which
is represented by a set of phonetic lattices [5]) for live audio
streams. Audio indexing and search is still an important and
open problem, and audio search using human voice is still an
immature technique [6]. Thanks to the recent success of deep
learning technologies in speech recognition [7], transcribing
audio streams to text is more usable. Some popular speech
recognition systems include Google Speech API, Bing Speech
API, and Baidu Yuyin [8]. Audio indexing and search using
transcribed text is regaining more and more attention [9], [10].

However, searching and indexing the live audio streams is
challenging because (i) queries on the large number of the
audio streams need to be answered in real-time; (ii) live audio
streams are inserted into the index continuously to enable
live audio streams to appear in the query results, and the
number of insertions is large. Indexing and search on audio
content is challenging to meet the real-time requirement due
to the massive insertions from the live audio streams. Related
work discussed below on audio search either oversimplifies
the problem or simply ignores searching live audio streams.
First, some existing studies [11], [12] mainly compare query
keywords with titles/categories/tags of the audio streams for
better efficiency. Titles/categories/tags are not informative for
searching relevant audio streams, and hence many related
audio streams are not retrieved in this approach. Other related
studies cannot search live broadcasting audio streams in real-
time [13], [14], and hence the live audio streams cannot be
retrieved until they finish broadcasting. Moreover, the existing
studies do not support multi-modal search.

In this application paper, we leverage recent successful
technologies from machine learning (e.g., speech recognition)
and databases (e.g., log structured merge-tree indexing) to
address the problem of the emerging application of live audio
streaming. We propose a multi-modal and unified log struc-
tured merge-tree (a.k.a. LSM-tree which consists of multiple

query results

---------- (live)

---------- (live)

indexing

audio streams

audio to text

audio
feature extraction

Fig. 1. Overview of users and the audio search service

inverted indices) based [15] index that supports intensive
insertions and real-time search for live audio streams while
considering relevance, popularity and freshness. Our multi-
modal search includes keyword and voice search, and is pow-
ered by our index on the transcribed text and extracted sound
features (i.e., phonetic lattices are represented using Mel-
Frequency Cepstrum Coefficients (MFCC) [16]), as illustrated
in Figure 1. The key technical challenges we need to address
are as follows. First, a live audio stream may appear in multiple
inverted indices, because the live audio stream is inserted
into the index continuously to allow the live audio streams
to appear in query results. Second, we need to maintain audio
information (e.g., term frequency) in the inverted indices for
fast search, and a query often matches to a large number
of audio streams, because an audio stream is usually long
and contains various words. Third, massive insertions are
happening alongside with queries.

To address those challenges, we propose an index called
RTSI. To address the first challenge, RTSI stores the audio
information in the inverted lists, such that we avoid traversing
multiple inverted indices when computing the score of an
audio stream. To address the second challenge, RTSI exploits
three inverted lists which contain the sorted information for
relevance, popularity and freshness, respectively, such that the
information required to compute scores can be easily obtained.
We devise an upper bound for the audio streams that we
have not computed their scores, such that the query answering
process can be terminated earlier if the upper bound score
is smaller than the lowest score among the top-k candidates.
To address the third challenge, RTSI creates mirrors with the
minimum memory consumption for the inverted indices that
are currently needed to be merged and organized them into
a mirror set, such that queries can be answered in real-time
when the indices are under merging. Moreover, we propose to
use Huffman coding [17] to reduce the memory consumption
of the index.

In this application paper, we demonstrate that the success

of machine learning (in speech recognition) and indexing
techniques enables real-time and multi-modal search on the
live audio stream applications. In summary, our contributions
are as follows.
• We propose a multi-modal and unified index called RTSI

for live audio streams and supporting real-time queries.
Our index natively supports two major types of audio
indexing techniques: text based indexing and sound based
indexing.

• To address the challenge of an audio stream appearing
in multiple indices, RTSI stores the audio information in
the inverted index for efficient audio stream score com-
putation. To address the challenge of a query matching
to a large number of audio streams, we propose an upper
bound for the unchecked audio streams, such that the
query answering process can be terminated earlier.

• To further optimize our index, we leverage various tech-
niques including using inverted lists to contain the sorted
information for relevance, popularity and freshness, Huff-
man encoding, lazy deletion, and a mirror set to support
concurrent insertion and querying.

• We conduct extensive experiments to study the efficiency
of RTSI in comparison with the latest index called
“LSII” [18] on real-time search. Our experimental results
show that RTSI can respond queries in real-time while
handling a large number of insertions. Compared with
LSII, RTSI is more memory-efficient, and is faster in
index update and answering queries. Moreover, RTSI is
more stable to different settings than LSII.

The remainder of this paper is structured as follows. We
present the background and related work on audio search
and real-time search in Section II. Then, we discuss the
overview of our RTSI index in Section III and elaborate
the implementation of RTSI in detail in Section IV. Our
comprehensive experimental results are provided in Section V.
Finally, we conclude the paper and discuss the future work in
Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first present some background on live
audio streaming services, and audio indexing and search. Then
we discuss the related work on indexing techniques for real-
time search.

A. Live audio streaming services and audio indexing

Live audio streaming services have become very popular
due to the wide use of smart phones and better network
connections [19], [20]. Some examples of live audio streaming
services are Mixlr [1], Ximalaya [2], Lizhi [3] and Facebook
Live Audio. Table I shows more details about the market share
and yearly user increment of the major audio streaming ser-
vices in China [4]. Many listeners use the search functionality
in the websites to find the audio streams of their interest.
Searching for relevant live audio streams in real-time is very
important, because some broadcasters immediately remove the
audio streams once the broadcasting in completed. Existing

TABLE I
CHINESE MARKET SHARE IN 2015 AND THE YEARLY USER INCREMENT OF

AUDIO STREAMING SERVICES [4]

audio streaming service market share yearly user increment
Ximalaya FM 25.8% 29.5%
Qingting FM 20.7% 32.5%
Tingban FM 13.8% 17.1%
Lizhi FM 6.9% 68.3%
Douban FM 5.2% 15.1%
Fenghuang FM 4.3% 34.6%

audio search studies are based on one of the two mainstream
methods: sound based search and text based search [12].

Nagano et al. [21] proposed a purely sound based method
to retrieve audio streams. Their key idea is to compare the
query voice with the audio streams using the similarity of
sound signals. Other studies [22], [23] propose to convert
audio streams into phonetic lattices (i.e., sound units) and
build indices on the lattices. Liu et al. [24] proposed a
signature based technique to index audio for efficient search.
The signature can be produced by locality sensitive hashing on
audio features, or by audio summarization [25]. The signature
based technique can be viewed as a simplified version of lattice
based method. These techniques are not designed for real-time
live audio stream search, because they consider static audio
streams only and no more audio streams are coming in after
the index is built.

Another mainstream method for audio indexing and search
is based on text. Audio streams can be represented using
simple text such as audio stream titles, comments and cat-
egories [26], and then the index is built on the text. The
advantage of representing audio streams using simple text is
that indexing and search can be performed efficiently. The
disadvantage is that simple text is not informative to represent
the audio streams, and hence many relevant audio streams are
not retrieved when answering user queries. Some studies [13],
[27] use full text based approaches to audio search, where
audio streams are transcribed into text via speech recognition
tools. A key issue of full text based approach is that the
query results are highly sensitive to the accuracy of the
speech recognition tools. With the recent advancement of
speech recognition technologies, the transcribed text from
audio streams is becoming more and more accurate [28]. Many
recent studies have used transcribed text to help address their
problems [9], [10].

B. Indexing techniques for real-time search

Indexing and search are well studied problems in informa-
tion retrieval [29]. In this subsection, we discuss related studies
about indexing techniques for real-time search. Inverted index
has been a key technique in indexing and search problems [30],
and it has played a key role in real-time search engines [31].
The log structured merge-tree (LSM-tree) which uses multiple
inverted indices has been used in applications with a large
number of insertions and queries [15]. A more recent work
extends the LSM-tree to a more general purpose data structure
called bLSM [32]. A tree indexing structure was developed by

data

I0 I1 I2 Ininsert

inverted index

size: ρ⨉|I0|

size: ρ⨉|I1|

query
terms

Fig. 2. The log structured merge tree

Li et al. on solid-state drives [33] to allow real-time search.
Wu et al. [18] proposed a LSM-tree based approach (called
LSII) for indexing microblgs (i.e., tweets) and supporting real-
time search. Magdy et al. designed a data management system
for microblogs [34], [35].

The existing real-time search approaches discussed above
are for indexing microblogs or short text where a microblog
appears in only one inverted index. In live audio stream
indexing problems, an audio stream arrives in a long stream
manner and may appear in multiple inverted indices for timely
querying. The issue of an audio stream appearing in multiple
inverted indices makes those existing studies not applicable
to live audio indexing. Although those approaches are not
applicable to the live audio indexing problem, they give us
inspiration on the design of our RTSI index. Next, we present
more details of two key techniques (i.e., LSM-tree and LSII)
that we will use in the later sections.

1) The log structured merge-tree (LSM-tree) indexing: As
the live audio broadcasting services have high volume of new
audio streaming data coming in and hence a large number of
insertions to the indices, we use the LSM-tree to enable fast
insertion and real-time search. An example of the LSM-tree
index is shown in Figure 2. As we can see from the figure,
the LSM-tree has multiple inverted indices denoted by I0, I1,
..., In. The second inverted index I1 is ρ times larger than
I0 and is 1

ρ of I2. This log structure amortizes the cost of
merging indices and improves the overall insertion and search
efficiency. As we will show in the complexity analysis of our
RTSI index, the insertion cost is approximately the cost of
inserting a term to I0. This property makes LSM-tree index
popular in real-time search applications [18], [36].

2) The LSII index: The LSII index was proposed by Wu
et al. [18] for supporting real-time search on tweets. Because
users of Twitter may take popularity, freshness and relevance
into consideration when issuing queries, LSII maintains three
sorted inverted list for each term of the inverted index. Figure 3
gives an example of the inverted indices in LSII. It is important
to point out that the first inverted index I0 has only one
inverted list for each term, and the inverted list is sorted by

sorted by freshness

sorted by freshness

sorted by freshness

sorted by freshness

sorted by frequency

sorted by popularity

sorted by popularity

sorted by frequency

I0

Ii

Fig. 3. Each term associated with three sorted inverted lists in LSII [18]

freshness (i.e., time stamps of tweets). Similar to the traditional
LSM-tree index, LSII can handle insertions very fast. When
I0 is full and needs to be merged with I1, two extra sorted
inverted lists are created for I0 such that the inverted lists of
I0 and I1 can be merged.

When answering queries, LSII looks for the top-k results
first in I0, then I1, etc. The query answering process is
relatively simple because a tweet can only appear in one
inverted index. The update of tweet (e.g., updating popularity)
is handled via a hash table where all the information of tweets
is stored.

LSII cannot fully address the technical challenges of live
audio stream services. First, LSII is for indexing microblogs
(e.g., tweets) where a microblog only appears in one inverted
index. In contrast, audio streams may be much longer than
tweets (e.g., thousands of characters v.s. 140 characters) and
may appear in more than one inverted indices, which makes
query answering and update operations much more challeng-
ing. As a result, most of the techniques (e.g., the bound for top-
k results pruning, and technique of storing all the information
of tweets in a hash table) used in LSII need to be redesigned
to solve the audio indexing and search problem. Second, it
is unclear how the mirrors are constructed when the inverted
indices need to be merged. In practice, the cost of constructing
the mirror is high, especially creating mirrors for the large
inverted indices (e.g., the last inverted index of the LSM-
tree). Third, LSII does not compress the three inverted lists
for each term, which is probably fine for tweet indexing. This
compression is necessary for audio stream indexing, because
the inverted lists tend to be long as the audio streams are likely
to contain many terms.

III. OVERVIEW OF OUR RTSI INDEX

In this section, we present an overview of our indexing
technique to search audio streams, particularly live audio
streams.

audio
streams

Baidu speech recognition

audio
decoding

text

phonetic
lattices

index builder

RTSI: unified Iog
structured indices

keywords

voice

voice to text

result ranking

search

response

response

query processor

text to voice

query parser

MFCC lattice
representation

Fig. 4. Indexing and querying overview

A. Goal of our index

Users of audio streaming services often need to search for
live audio streams, and require the query response to be real-
time. Moreover, users may use different types of queries (i.e.,
query by keywords and query by voice). Hence, our index
aims at providing real-time search for live audio streams, and
supports both keyword and voice queries (i.e., multi-modal
search).

B. Overview of RTSI indexing and search

We leverage recent successful technologies from machine
learning (e.g., speech recognition) and databases (e.g., LSM-
tree indexing) to address the problem of the emerging applica-
tion of live audio streaming. Figure 4 shows the overview of
our audio indexing and query answering using RTSI. As we
can see from the figure, the top part is the indexing process and
the bottom part is the query answering process. When building
the indices, the live audio streams are converted into text by
Baidu Yuyin speech recognition and converted into phonetic
lattices [22]. The phonetic lattices are then represented using
Mel-Frequency Cepstrum Coefficients (MFCC) [16]. Then, the
RTSI index is built for text and phonetic lattices such that both
voice and keyword search are supported.

When handling queries, users can use either keywords or
voice as input. Our query processor converts keywords into
voice or voice to keywords. Then, the voice is decoded
into phonetic lattices. We retrieve from the indices all the
audio streams which contain the keywords or phonetic lattices.
Finally, we compute the score for each audio stream and obtain
the top-k audio streams and respond the user queries. It is wor-
thy noting that the multi-modal functionality is implemented
by using two LSM-trees (cf. Figure 2): one is text based index
and the other is sound based index.

C. Challenges

Due to the large number of insertions and queries in
audio broadcasting service platforms, the LSM-tree index (cf.
Figure 2) is a good candidate for providing real-time indexing
and querying. However, using the LSM-tree for indexing audio
streams has the following technical challenges. First, a live

audio stream may appear in multiple inverted indices. This is
because the audio streams are long, and some audio streams
may last for over two hours. The live audio streams are
inserted into the LSM-tree index continuously to enable live
audio streams to appear in the query results. Second, we
need to maintain information for relevance, popularity and
freshness in the inverted indices for real-time search. Users
tend to be interested in more recent or more popular content.
For example, they are interested in the audio on the more
recent events. So, freshness, popularity as well as relevance
need to be considered and be accessed efficiently. Third, a
query often matches to a large number of audio streams,
because an audio stream is usually long and contains various
words. As a result, many audio streams are likely to contain
the query terms. Fourth, massive insertions are happening
alongside with queries. A live audio stream is inserted into
the index continuously, and results in many insertions. The
audio streaming service commonly hosts many such live audio
streams, and hence the number of insertions is massive. On
the other hand, the number of queries is also very large due
to the large number of listeners.

IV. DESIGN AND IMPLEMENTATION

In this section, we first present our solution overview, and
then we elabrate the technical details of RTSI.

A. Solution overview

To address the challenges discussed in Section III, we
propose an index called RTSI. RTSI maintains the information
of an audio stream in one inverted index, such that computing
the score of an audio stream is fast and we avoid accessing
multiple inverted indices to compute the score. RTSI maintains
three sorted inverted lists (corresponding to relevance, popu-
larity and freshness of an audio stream) for each term in the
inverted index. Once users issue a query, the inverted lists are
retrieved from the inverted index (i.e., I0) which consists of the
latest inserted audio streams, and then the scores of the top-k
audio streams are computed based on the audio information.
These top-k results are verified with a bound to check if the
query process can be terminated. The scoring function we use
is as follows.

f(q, p) = ωp · pop(p) + ωr · rel(q, p) + ωf · frsh(p) (1)

where q is a query and p is an audio stream; ωp, ωr and ωf are
the weight of popularity, relevance and freshness, respectively.
Popularity is measured by the play counters, the number of
“like”s, etc.; freshness is measured by the audio time stamp;
relevance is measured by Term Frequency Inverse Document
Frequency (TF-IDF) [37]. RTSI supports concurrent insertion,
merge and queries through the creation of mirrors and partially
locking the inverted index.

B. The RTSI index

To allow fast access to the audio information for computing
score, we store the information needed for score computation
into the inverted lists. More specifically, we store the term

TABLE II
NOTATIONS USED IN RTSI IMPLEMENTATION

name description
ωp the weight of popularity
ωr the weight of relevance
ωf the weight of freshness
ρ ratio of the the LSM-tree
δ the threshold to trigger the merge of I0
id audio stream identifier
frsh audio stream freshness
pop audio stream popularity
tf term frequency
t a query term or a term in audio streams

htbl hash table
IdxSet inverted indices of the LSM-tree
Ii the i-th inverted index of the LSM-tree
sc score of an audio stream
p an audio stream

info pop, frsh and tf of an audio stream
Lm a set of inverted index mirrors

frequency into the inverted list which is sorted in descending
order (cf. Figure 3). Then, we maintain a hash table for
popularity and freshness of each audio stream. This hash table
of RTSI is small because the number of keys in the hash
table equals to the number of audio streams. More formally,
suppose the number of audio streams is |P | and the average
number of terms in an audio stream is |T̄ |. Then, the number
of keys of the hash table of RTSI is |P |, which is irrelevant
to the number of terms in the audio stream because the term
frequency information is stored in the inverted lists.

With the hash table for popularity and freshness of each
audio stream in RTSI, we can easily obtain popularity and
freshness of each audio stream. For computing the score of
an audio stream (cf. Equation 1), we also need to obtain the
total frequency of a term that matches the query. However,
obtaining the total term frequency of a term may requires
accessing multiple inverted indices, because an audio streams
may appear in multiple inverted indices. To avoid accessing
multiple inverted indices for improving query efficiency, we
maintain another small hash table which keeps track of the
existing term frequency of a term. This hash table is small
because it only stores the live audio streams which consists of
only a small proportion of all the audio streams in the audio
streaming platform. Although the audio streams in the audio
streaming platform are originally from live audio streams, the
number of live audio streams in a given time stamp is often
not large.

Next, we first present the insertion and query answering
algorithms of RTSI. Then, we analyze the time complexity of
insertion and query answering algorithms. Finally, we discuss
other implementation issues of RTSI. Table II summarizes
some notations used in this subsection.

1) Insertion to RTSI: The pseudo-code of the insertion
algorithm is given in Algorithm 1. Given a term to insert,
we first find the inverted list where the term will be allocated.
Then we append the term together with the term frequency
to the inverted list (Line 2). After that, we update the latest
location of term t of the audio stream on the hash table for

the live audio streams (Line 3). We merge two indices if the
size of index I0 exceeds the memory limit (Line 6 to 8). The
merge operation is discussed next.

Algorithm 1: Insertion in RTSI
Input: the id, significance, freshness, a term, the term

frequency of the audio id , pop, frsh , t and tf ,
respectively; a set of indices: IdxSet; ratio of log
structure: ρ; a hash table for live audio streams:
htbl

Output: Updated index set: IdxSet
1 IList ← getInvertedList(t, I0);
2 append(IList, t, id , pop, frsh , tf);
3 updateHashTable(htbl , id , t, IList);
4 //maxSize is the maximum size of the last inverted index
5 maxSize← δ, i← 0;
6 while size(Ii) > maxSize do
7 Merge(Ii, Ii+1);
8 maxSize← maxSize× ρ, i← i+ 1;

In Algorithm 1, we need to invoke the merge procedure.
We provide the pseudo-code of the merge procedure in Al-
gorithm 2. Specifically, given two inverted indices to merge,
we first construct the mirror of the smaller index (i.e., I ′i
in Line 2). The mirror I ′i and Ii+1 is used for handling
queries. We next insert all the terms in Ii+1 to Ii, such that
Ii+1 is read-only and can support concurrent queries. More
specifically, for each term t in Ii+1, we get the three inverted
lists corresponding to t in Ii and three inverted lists in Ii+1

(Line 4 and 5). If the inverted list in Ii is sorted, then we
combine those inverted lists (Line 8). Otherwise, we create
three new inverted lists sorted by popularity, freshness and
term frequency, respectively; then we combine those inverted
lists (Line 8). After the combination, the inverted lists are
stored to Ii (Line 9). When the combination is completed,
Ii+1 is replaced by Ii, and the mirror I ′i is removed (Line 10
and 11).

Discussion of the merge operation: When creating a mirror
for the inverted index, we can create the mirror for Ii or
Ii+1. In our implementation, we create the mirror for Ii,
because Ii is smaller and hence more efficient for the creation.
Furthermore, if we merge I0 and I1, we need to create two
extra sorted inverted lists for I0 since I0 only has one sorted
inverted list for freshness (cf. Figure 3).

2) Answering queries: Here, we present the details of
answering queries in RTSI. Without loss of generality, we
suppose the query contains two terms. Given two query terms
t1 and t2, we first compute the potentially largest score of
audio streams in inverted indices except I0 (Line 2 to 6). Note
that this value is easy to compute because the inverted lists
are sorted descendingly, and the value is used for pruning
the unchecked audio streams. We then obtain the inverted
lists from the inverted index (Line 8 and 9). For each audio
stream appears in the inverted lists, we get the audio stream
information, compute the score of the audio stream, and save

Algorithm 2: Merging in RTSI
Input: Two indices: Ii and Ii+1; a mirror set: Lm
Output: Updated LSM-tree: IdxSet

1 I ′i ← Ii
2 StoreToMirrorList(Lm, I ′i);
3 foreach t ∈ Ii+1 do
4 TIList1← getInvertedList(t, Ii);
5 TIList2← getInvertedList(t, Ii+1);
6 if IsSorted(TIList1) 6= true then
7 TIList1← Sort(TIList1);

8 TIList1← CombineLists(TIList1, TIList2);
9 StoreToIndex(Ii, TIList1);

10 Ii+1 ← Ii; /* replace Ii+1 by new Ii */
11 RemoveFromMirrorList(Lm, I ′i);

the audio stream into the top-k candidate result set (Line 11
to 15). After obtaining the top-k candidate result set, we
compute the lowest score in the result set and compare it
with the possible largest score of the unchecked audio streams
(Line 16 to 18). If the lowest score of the audio stream in top-
k candidate result set is greater than the largest possible audio
stream in the unchecked audio streams, the query processing
is terminated and the top-k candidate result set serves as the
final query results.

Algorithm 3: Answering query in RTSI
Input: terms: t1, t2; LSM-tree: IdxSet; the number of

top results: k
Output: audio result set: res

1 sc> ← 0
2 foreach I ∈ IdxSet \ I0 do
3 pop, frsh, tf1, tf2 ← GetMaxScoreInfo(I , t1, t2);
4 sc← CompScore(pop, frsh, tf1, tf2);
5 if sc > sc> then
6 sc> ← sc;

7 foreach I ∈ IdxSet do
8 TIList1← getInvertedList(t1, I);
9 TIList2← getInvertedList(t2, I);

10 while TIList1 6= φ && TIList2 6= φ do
11 p1, p2, p3 ← GetTop3(TIList1);
12 p4, p5, p6 ← GetTop3(TIList2);
13 info1 to info6 ← Find(htbl, p1, ..., p6, t1, t2);
14 sc1 to sc6 ← ComputeScore(info1 to info6);
15 SaveTopK(p1 to p6, sc1 to sc6, res);
16 sc⊥ ← GetLowestScore(res);
17 sc← GetNextLargestScore(p1 to p6);
18 if sc⊥ ≥ sc> && sc⊥ ≥ sc then
19 return;

3) Time complexity analysis: Here, we analyze the time
complexity of insertion and query in RTSI. We first introduce

some notations used in the cost analysis. Support I0 has m0

unique terms, each term has an inverted list of length n̄ in
average, the whole dataset has M unique terms, the ratio of
the LSM-tree is ρ (i.e., ρ = |I1|

|I0|), and the total number of
inverted indices of the LSM-tree is (l + 1).

In the average case, an insertion does not lead to a merge
of index, and the insertion only affects I0. Therefore, the
insertion cost is O(logm0) which is the look-up cost for the
term in I0. Note that the term is appended to the inverted
list with constant cost, and is sorted based on the arrival
time stamp. If the insertion leads to a merge of index, the
average merge cost is O(m0n̄ logρ

M
m0

), where logρ
M
m0

is the
number of merge operations of inserting the whole dataset
into the RTSI index and m0n̄ is the average cost of a merge
operation. A more detailed cost analysis on the merge process
is available in Appendix A. Note that the number of merge
operations is much smaller than the number of insertions
(i.e., logρ

M
m0
� Mn̄), and therefore the insertion cost is

approximately O(logm0).
In the best case, the top-k query results are obtained from

I0. So the cost is O(n̄ logm0), where logm0 is the cost
for finding the term in I0 and n̄ is the average length of
the inverted lists of I0. In the worst case, all the inverted
indices are searched. The total cost is O(ln̄ logm0+n̄l2). The
derivation of the total cost and a more detailed cost analysis
on query are available in Appendix B. In practice, l is small
thanks to the log structured property. Therefore, the average
case time complexity is O(n̄ logm0).

4) Other design issues: Here we discuss other design issues
of RTSI including concurrency, compressing three inverted
lists, lazy deletion, Huffman coding to compress index size,
and pruning audio streams when answering queries.
Concurrent query and insertion: As the number of insertions
and queries is large, we should not block queries/insertions
when handling insertions/queries or merging indices. We pro-
pose to support queries while the indices are updating. For
an insertion to I0, we only lock the inverted list which the
insertion occurs. The rest of the inverted lists can be used to
respond queries without data inconsistency. When merging I0
and I1, the queries are handled using I ′0 and I1 where I ′0 is
the mirror of I0. To support concurrent insertions and queries,
we create an empty I0 to receive insertions.
Compressing the three inverted lists: As we can see from
Figure 3, there are three inverted lists for each term in inverted
indices I1, I2, ..., Il. The inverted lists store the identifiers
(i.e., id) of audio streams, and each audio stream identifier is
stored three times in the three inverted lists of each term. We
propose to use a compact form to represent the three inverted
lists by only one inverted list. As a result, each node in the
inverted list stores an identifier and three pointers to enable
the reconstruction of three sorted inverted lists.
Lazy deletion: Some audio streams may be deleted from the
audio streaming platform. A naive approach is to find all the
terms of the audio stream from the index, and delete the
terms. The cost of this approach for deletion is very high,
because first we need to search for all the terms of the audio

streams and second the inverted lists containing the deleted
audio stream need to be sorted after deletion. To reduce the
cost of deletion, we propose the lazy deletion technique which
postpones the delete operations until the inverted indices need
to be merged. When we are merging two inverted lists, we
ignore the audio streams which are deleted.

Pruning and Huffman coding: When answering queries,
users are usually only interested in top-k results. We propose
to store the highest popularity score, freshness score and term
frequency in each inverted list, such that we can compute
an upper bound for all the unchecked audio streams in that
inverted index. Moreover, we use Huffman coding to reduce
the memory consumption of the inverted indices. A term in the
inverted index corresponds to a code, which notably reduces
the memory consumption as a code generally requires much
less memory than a term.

V. EXPERIMENTAL STUDIES

In this section, we empirically evaluate our proposed index,
RTSI. We first describe the experimental settings with an
extension to the LSII index [18] for indexing and search on live
audio streams, such that we can have thorough understanding
of the advantages of RTSI. Then, we report the results of the
overall performance of RTSI, sensitivity study and effective-
ness of individual optimization. Finally, we summarize the key
findings.

A. Experiment settings

The experiments were conducted on a workstation running
Linux with 2 Xeon E5-2640v4 10 core CPUs and 256GB main
memory. The program was compiled with -O3 option. We used
a dataset obtained from Ximalaya [2]—an audio streaming
service. The dataset contains 80 thousand audio streams. The
total length of the audio streams is about 2,133 hours, and the
average length of an audio stream is about 16 minutes. We
used Baidu Yuyin speech recognition services1 to transcribe
the audio streams into text, and keywords into voice to enable
multi-modal search. The transcribed text consists of 32 million
words (excluding stop words), the average number of unique
words in each audio stream is about 400. Each insertion to the
index, we insert all the text and phonetic lattices from every 60
seconds of the audio stream. Apart from the audio streams, we
also obtained other information of each audio stream, such as
title, time stamp, tags, comments and other popularity related
data.

The extended LSII: As we have discussed earlier, LSII
was proposed to index tweets for real-time search [18], and
cannot be used for audio search because audio streams are
much longer than microblogs. To handle the issue of an audio
stream appearing in multiple inverted indices, we extend LSII
to support live audio stream indexing and search. The extended
LSII (also called it “LSII” hereafter) maintains a hash table
to keep track of the audio information including popularity,
freshness and frequency of each term. The information of an

1http://yuyin.baidu.com

TABLE III
VARIABLES AND THEIR DEFAULT VALUES

name description value
ωp the weight of popularity 0.2
ωr the weight of relevance 0.6
ωf the weight of freshness 0.2
ρ ratio of LSM-tree 2
nl the # of live audio streams 10,000
ni the # of audio streams to insert 10,000
nq the # of queries 10,000
k top-k query results 40
SI0 the # of terms in I0 2M
na the # of audio streams 40,000

audio stream is later used to compute the score of the audio
stream when answering queries. For each term t that needs to
be inserted, we search the first inverted index (i.e., I0) in the
LSM-tree. If the term appears in I0, we append the term to the
inverted list. Otherwise, a new inverted list is created for I0
and then the term t is appended to the new inverted list. Then,
we update the hash table which keeps track of information for
computing the score of an audio stream. After the insertion, if
the size of I0 exceeds the maximum size limit, I0 is merged
with I1. The merge process is similar to that of RTSI. For
query answering, we suppose the query has two terms t1 and
t2 for the ease of presentation. The search starts from I0 in the
index set. Given the terms t1 and t2, LSII obtains the inverted
lists from the inverted index I . Then, the top-6 potentially
most similar audio streams to the query from the inverted lists
are selected. We use “6” audio streams, because two terms
(i.e., t1 and t2) correspond to 6 inverted lists, and one audio
stream from each inverted list is selected. Then, the hash table
is used to obtain the information of the 6 audio streams, and
compute their scores. After the score computation, LSII saves
the audio streams into the top-k candidate result set. Then, the
lowest score in the top-k candidate result set is compared with
the upper bound score of the unchecked audio streams. If the
lower bound score of the candidate result set is greater than the
upper bound score of the unchecked audio streams, the query
answering process is terminated; otherwise LSII continues the
process until all the inverted indices are searched.

We have conducted experiments to study the overall per-
formance of RTSI and LSII, and study the sensitivity of
varying variables of the indices. Since there are many variables
involved in our experiments, whenever the variables are not
specified in the experiments, we use the default values. The
variables and their default values are shown in Table III.

B. Overall comparison

We first study the overall performance of our RTSI index
in comparison with LSII. We demonstrate the improvement of
RTSI over LSII in terms of initialization, insertion, query, up-
date and memory consumption. Figure 5 shows the normalized
improvement comparison, where normalized improvement is
computed by elapsed time/memory reduction/throughput

LSII elapsed time/memory reduction/throughput . As we can
see from the results, the improvement is the most significant
when handling insertions and updates. Since initialization

initialization
time insertion

throughput query
throughput update

throughput memory
reduction

0

1

2

3

4

5

6

7

no
rm

ali
ze

d i
mp

ro
ve

me
nt

LSII RTSI

Fig. 5. Overall improvement of RTSI

10 20 30 40 50 60 70 80 90
percentage of queries (%)

0.000

0.002

0.004

0.006

0.008

0.010

el
ap

se
d

tim
e

pe
r o

pe
ra

tio
n

(s
ec

)

query insertion

Fig. 6. Varying the percentage of queries

mainly consists of insertions, we also observe significant
improvement in initialization. It is worthy to point out that
RTSI is more efficient when handling queries and is more
memory-efficient, thanks to our techniques of storing audio
stream information in the inverted lists instead of a big hash
table in LSII.

Moreover, we study the correlation of queries and insertions.
To study the correlation, we initialized the index with 40
thousand audio streams. Then, we set the total number of
operations (including queries and insertions) to 40 thousand.
We varied the percentage of queries in the 40 thousand
operations. For example, when queries are 10%, the other
90% are insertions. As we can see from Figure 6, the elapsed
time per query is stable when the percentage of insertions
varies significantly (i.e., from 90% to 10%). In comparison,
the elapsed time per insertion decreases as the total number of
insertions increases (from 90% at the left side of the figure to
10% at the right side of the figure). We can also see that there
are merge processes triggered when the number of insertions
is about 20%, 35%, and 45% of the total number of operations.

C. Sensitivity studies

In this subsection, we study the sensitivity of RTSI to
demonstrate that RTSI outperforms LSII in various settings.
We conducted experiments on index initialization, insertion,
querying, update and individual optimization. In each group,
we compare the performance of LSII and RTSI while varying
involved variables related to the experiments.

1) Index initialization: In this set of experiments, we study
the performance of building the initial index with existing
audio streams. We first investigate the effect of the number of
audio streams on the performance of RTSI and LSII. Figure 7
shows the elapsed time and the maximal resident memory
required to initialize indices, with the number of audio streams

5k 10k 20k 40k 80k
the # of audio streams

0

200

400

600

800

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) initialization time

5k 10k 20k 40k 80k
the # of audio streams

500

1000

1500

2000

2500

3000

m
em

or
y

co
ns

um
pt

io
n

(M
B) LSII

RTSI

(b) init. memory consumption

Fig. 7. Initialization: varying the # of audio streams

2 3 4 5 6
the ratio of LSM-tree

0

200

400

600

800

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) initialization time

2 3 4 5 6
the ratio of LSM-tree

1000

1500

2000

2500

3000

3500

m
em

or
y

co
ns

um
pt

io
n

(M
B) LSII

RTSI

(b) init. memory consumption

Fig. 8. Initialization: varying ratio of LSM-tree

varying from 5,000 to 80,000. As we can see, the elapsed
time and memory consumption of RTSI and LSII increases
as the number of audio streams increases, but RTSI increases
much more slowly than LSII in elapsed time. We also evaluate
the effect of the size of I0 on the performance of LSII and
RTSI. Figure 8 shows that RTSI constantly outperforms LSII
in different ratios of the LSM-tree in terms of elapsed time
and memory consumption. We observe fluctuation of memory
consumption while varying the ratio (cf. Figure 8b). This is
because the ratio directly affects the number of inverted indices
in the LSM-tree and hence the total memory consumption.

2) Insertion: In this set of experiments, we study the
performance of RTSI and LSII on insertion. First, we measure
the effect of the number of audio streams to insert on the
performance of RTSI and LSII, with the number of audio
streams varying from 10 to 40,000. As illustrated by Figure 9a,
the insertion cost of LSII increases much more dramatically
than that of RTSI. The insertion cost of RTSI is stable
regardless of index size as shown in Figure 9b, where the
index size is measured by the number of audio streams in
the index. Figure 10 shows the effect of the size of I0 and the
ratio of the LSM-tree on the elapsed time. RTSI is again stable
while varying I0 and the ratio of the LSM-tree. In comparison,
LSII is more sensitive to varying the size of I0 and the ratio
of the LSM-tree.

3) Query: In this set of experiments, we investigate the
sensitivity of varying various variables related to query an-
swering. As we can see from Figure 11, RTSI consistently
outperforms LSII in different number of queries and using
different k (i.e., different numbers of top results). This result
is impressive because RTSI is not only faster in insertion as

10 100 1k 10k 40k
the # of audio streams to insert

0

100

200

300

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying # of inserted audios

5k 10k 20k 30k 40k
the # of existing audio streams

0

100

200

300

400

500

600

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying # of existing audios

Fig. 9. Insertion: varying # of inserted and # of existing audio streams

1M 2M 4M 8M 16M
the size of I0

0

100

200

300

400

500

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying size of I0

2 3 4 5 6
the ratio of LSM-tree

0

100

200

300

400

500

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying LSM-tree ratio

Fig. 10. Insertion: varying size of I0 and LSM-tree ratio

discussed in Section V-C2 but also more efficient in answering
queries than LSII.

To have a better understanding of the sensitivity of RTSI in
answering queries, we conducted experiments by varying the
size of I0, the ratio of the LSM-tree, the weight of freshness
and the number of existing audio streams in the index (i.e.,
varying index size). Figure 12 shows the results. In summary,
RTSI is much more efficient when handling queries in various
situations than LSII, thanks to getting rid of storing all the
audio information in a hash table (cf. Section IV-B).

4) Update: In this set of experiments, we study the effi-
ciency of handling audio stream updates (e.g., the increase of
the play counter of an audio stream). The update affects the
popularity score of the audio stream. As expected, our RTSI
index is again much faster than LSII when handling updates
as shown in Figure 13. An observation to the figure is that
the increase of the number of updates or index size causes the
update cost to increase more dramatically in LSII due to the
large hash table. In comparison, RTSI increases much more

0.1k 1k 10k 100k 1000k
the number of queries

0

100

200

300

400

500

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying # of queries

5 10 20 30 40
k in top-k

0

1

2

3

4

5

6

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying k

Fig. 11. Query: varying number of queries and k

1M 2M 4M 8M 16M
the size of I0

0

2

4

6

8

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying the size of I0

2 3 4 5 6
the ratio of LSM-tree

0

2

4

6

8

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying ratio of LSM-tree

0.1 0.2 0.3 0.4 0.5
the weight of freshness

0

1

2

3

4

5

6

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(c) varying the weight of freshness

5k 10k 20k 30k 40k
the # of existing audio streams

1

2

3

4

5

6
el

ap
se

d
tim

e
(s

ec
)

LSII
RTSI

(d) varying # of existing audios

Fig. 12. Query: sensitivity study on query answering

1k 2k 4k 8k 16k
the # of audio streams to update

0.005

0.010

0.015

0.020

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying # of audios to update

5k 10k 20k 30k 40k
the # of existing audio streams

0.000

0.005

0.010

0.015

0.020

0.025

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying # of existing audios

Fig. 13. Update: varying # of updated audios and existing audios

slowly than LSII.
We further study the effect of varying I0 and the ratio of

the LSM-tree. Figure 14 shows the results. According to the
results, RTSI is less sensitive than LSII when varying I0 and
the ratio of the LSM-tree. This property is intriguing, because
we often do not know which value is the best for a certain
variable, and RTSI tends to perform well in different settings.

1M 2M 4M 8M 16M
the size of I0

0.005

0.010

0.015

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(a) varying the size of I0

2 3 4 5 6
the ratio of LSM-tree

0.000

0.005

0.010

0.015

0.020

el
ap

se
d

tim
e

(s
ec

)

LSII
RTSI

(b) varying the ratio of LSM-tree

Fig. 14. Update: varying the size of I0 and ratio of LSM-tree

1M 2M 4M 8M 16M
the size of I0

0

1000

2000

3000

4000

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/o huffman)
RTSI

(a) varying the size of I0

5k 10k 20k 40k 80k
the # of existing audio streams

1000

2000

3000

4000

5000

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/o huffman)
RTSI

(b) varying the # of existing audios

Fig. 15. Huffman coding: varying the size of I0 and # of existing audios

10 0.1k 1k 10k 40k
of inserted audios

60

80

100

120

140

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/0 concurrency)
RTSI

(a) varying the number of insertions

50k 100k 150k 200k 250k
of queries

0

50

100

150

200

250

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/o concurrency)
RTSI

(b) varying the number of queries

Fig. 16. Concurrency: varying the number of insertions and queries

D. Effect of other optimizations

In this last set of experiments, we study the individual
optimizations: Huffman coding, concurrent querying and in-
sertions, and the bound for improving query efficiency.

1) Memory efficiency of Huffman coding: Figure 15 shows
the effectiveness of using Huffman coding for reducing mem-
ory consumption of the index. As we can see from the
figures, the memory consumption of the indices is signifi-
cantly reduced. An observation from Figure 15b is that the
improvement over memory consumption is more significant
as the number of audio streams increases.

2) Concurrent querying and insertion: Here, we study the
effectiveness of concurrent processing on various settings.
Figure 16 shows the results. When varying the number of
insertions, we set the number of queries to 100 thousand; when
varying the number of queries, we set the number of insertions
to 10 thousand. As we can see from the figures, concurrent
processing brings improvement on various scenarios. The
improvement is very significant when the number of queries
and insertions is large as shown in Figure 16b.

3) Effectiveness of bound for top-k query: Finally, we study
the effectiveness of the upper bound of score of the unchecked
audio streams. Figure 17 shows the results. As we can see
from the results, our proposed upper bound is very effective,
which makes the query time steady when the number of audio
streams in index increases.

E. Summary of experiments

The key findings are summarized as follows. First, RTSI
outperforms LSII (cf. Section V-A) in initialization, insertion,
update and query, and RTSI is also more memory-efficient

5k 10k 20k 40k 80k
the # of existing audio streams

0

500

1000

1500

2000

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/o bound)
RTSI

(a) varying the # of existing audios

0.1 0.2 0.3 0.4 0.5
the weight of freshness

0

50

100

150

200

250

300

el
ap

se
d

tim
e

(s
ec

)

RTSI (w/o bound)
RTSI

(b) varying the weight of freshness

Fig. 17. Bound: varying the # of existing audios and weight of freshness

than LSII, thanks to RTSI’s avoidance of storing all the audio
information in a hash table. Second, compared with LSII, RTSI
tends to be more stable to the variables such as the ratio of the
LSM-tree and the number of audio streams. RTSI is inclined
to perform well in various settings. This property is intriguing,
because given a live audio stream indexing problem, the best
settings for the problem are unknown beforehand. The other
techniques such as Huffman coding and pruning are quite
effective for improving the overall performance of RTSI.

VI. CONCLUSION AND FUTURE WORK

Live audio streams have been becoming increasingly popu-
lar in recent years. Providing real-time search on the live audio
streams has been a challenging problem. Related work on
audio indexing and search either oversimplifies the problem or
simply ignores searching live audio streams. In this application
paper, we have leveraged recent successful technologies from
machine learning (e.g., speech recognition) and databases
(e.g., LSM-tree indexing) to address the problem of the emerg-
ing application of live audio streaming. We have proposed
a multi-modal and unified index called RTSI to enable live
audio stream search. RTSI addresses the challenges of audio
indexing and search, such as an audio stream appearing in mul-
tiple inverted indices and responding queries in real-time while
handling massive insertions. We have conducted extensive
experiments to study the efficiency and effectiveness of RTSI.
The experimental results show that our RTSI index can answer
a large number of queries in a real-time manner while handling
a large number of insertions from live audio streams. This
study demonstrates that the success of machine learning (in
speech recognition) and indexing techniques enables real-time
and multi-modal search on the live audio stream applications.
The proposed techniques are able to improve the timeliness
and user experience of live audio stream applications.

We plan to extend this work in the following three di-
rections. First, we will develop a demonstration with a user
friendly interface, such that general public audience can un-
derstand the various functionalities of our RTSI index. Second,
we will evaluate our techniques on more real-world datasets
such as audio streams from Facebook Live Audio or Lizhi.
Third, we plan to develop a benchmark of the audio streams
for other researchers to evaluate different live audio search
techniques.

ACKNOWLEDGEMENT

This work is supported by a MoE AcRF Tier 1 grant (T1
251RES1610) and an NUS startup grant in Singapore.

REFERENCES

[1] http://mixlr.com/, “Mixlr: broadcasting live audio made simple.”
[2] http://www.ximalaya.com/, “Ximalaya: enabling users to share audio and

personal radio stations.”
[3] http://www.lizhi.fm/, “Lizhi FM: a Chinese podcast platform.”
[4] http://www.jianshu.com/p/4451fe576637 and

http://www.jianshu.com/p/56799862074d, “Analysis to the live audio
streaming services (in Chinese).”

[5] P. Yu and F. T. B. Seide, “A hybrid word/phoneme-based approach
for improved vocabulary-independent search in spontaneous speech,” in
Eighth International Conference on Spoken Language Processing, 2004.

[6] D. S. Blancas and J. Janer, “Sound retrieval from voice imitation queries
in collaborative databases,” in Audio Engineering Society Conference:
53rd International Conference: Semantic Audio. Audio Engineering
Society, 2014.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[9] R. Shadiev and Y.-M. Huang, “Facilitating cross-cultural understanding
with learning activities supported by speech-to-text recognition and
computer-aided translation,” Computers & Education, vol. 98, pp. 130–
141, 2016.

[10] R. Shadiev, W.-Y. Hwang, N.-S. Chen, and H. Yueh-Min, “Review of
speech-to-text recognition technology for enhancing learning,” Journal
of Educational Technology & Society, vol. 17, no. 4, p. 65, 2014.

[11] M. Levy and M. Sandler, “Music information retrieval using social tags
and audio,” IEEE Transactions on Multimedia, vol. 11, no. 3, pp. 383–
395, 2009.

[12] G. Richard, S. Sundaram, and S. Narayanan, “An overview on percep-
tually motivated audio indexing and classification,” Proceedings of the
IEEE, vol. 101, no. 9, pp. 1939–1954, 2013.

[13] B. Logan, P. Moreno, J.-M. v. Thong, and E. Whittaker, “An experimen-
tal study of an audio indexing system for the web,” in Sixth International
Conference on Spoken Language Processing, 2000.

[14] A. Wang, “An industrial strength audio search algorithm,” in Ismir, vol.
2003. Washington, DC, 2003, pp. 7–13.

[15] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[16] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implemen-
tations of mfcc,” Journal of Computer Science and Technology, vol. 16,
no. 6, pp. 582–589, 2001.

[17] D. E. Knuth, “Dynamic huffman coding,” Journal of algorithms, vol. 6,
no. 2, pp. 163–180, 1985.

[18] L. Wu, W. Lin, X. Xiao, and Y. Xu, “Lsii: An indexing structure for
exact real-time search on microblogs,” in Data Engineering (ICDE),
2013 IEEE 29th International Conference on. IEEE, 2013, pp. 482–
493.

[19] J. C. Tang, G. Venolia, and K. M. Inkpen, “Meerkat and periscope: I
stream, you stream, apps stream for live streams,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM,
2016, pp. 4770–4780.

[20] M. Z. Rafique, T. Van Goethem, W. Joosen, C. Huygens, and N. Niki-
forakis, “It’s free for a reason: Exploring the ecosystem of free live
streaming services,” in Proceedings of the 23rd Network and Distributed
System Security Symposium (NDSS 2016). Internet Society, 2016, pp.
1–15.

[21] H. Nagano, R. Mukai, T. Kurozumi, and K. Kashino, “A fast au-
dio search method based on skipping irrelevant signals by similarity
upper-bound calculation,” in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp.
2324–2328.

[22] O. Siohan and M. Bacchiani, “Fast vocabulary-independent audio search
using path-based graph indexing,” in Ninth European Conference on
Speech Communication and Technology, 2005.

[23] V. Gupta, J. Ajmera, A. Kumar, and A. Verma, “A language indepen-
dent approach to audio search,” in Twelfth Annual Conference of the
International Speech Communication Association, 2011.

[24] W. Liu, T. Mei, and Y. Zhang, “Instant mobile video search with layered
audio-video indexing and progressive transmission,” IEEE Transactions
on Multimedia, vol. 16, no. 8, pp. 2242–2255, 2014.

[25] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system.”
in Ismir, vol. 2002, 2002, pp. 107–115.

[26] R. Typke, F. Wiering, and R. C. Veltkamp, “A survey of music informa-
tion retrieval systems,” in Proc. 6th International Conference on Music
Information Retrieval. Queen Mary, University of London, 2005, pp.
153–160.

[27] F. Kurth, A. Ribbrock, and M. Clausen, “Efficient fault tolerant search
techniques for full-text audio retrieval,” in Audio Engineering Society
Convention 112. Audio Engineering Society, 2002.

[28] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[29] H. Schütze, “Introduction to information retrieval,” in Proceedings of
the international communication of association for computing machinery
conference, 2008.

[30] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,” Information Retrieval, vol. 8, no. 1, pp. 151–166,
2005.

[31] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,
“Earlybird: Real-time search at twitter,” in Data Engineering (ICDE),
2012 IEEE 28th International Conference on. IEEE, 2012, pp. 1360–
1369.

[32] R. Sears and R. Ramakrishnan, “blsm: a general purpose log structured
merge tree,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 217–228.

[33] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi, “Tree indexing on solid
state drives,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 1195–1206, Sep.
2010. [Online]. Available: http://dx.doi.org/10.14778/1920841.1920990

[34] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem,
S. Ghani, and M. F. Mokbel, “Taghreed: a system for querying,
analyzing, and visualizing geotagged microblogs,” in Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2014, pp. 163–172.

[35] A. Magdy, R. Alghamdi, and M. F. Mokbel, “On main-memory flushing
in microblogs data management systems,” in Data Engineering (ICDE),
2016 IEEE 32nd International Conference on. IEEE, 2016, pp. 445–
456.

[36] J. Wang, Y. Zhang, Y. Gao, and C. Xing, “plsm: A highly efficient lsm-
tree index supporting real-time big data analysis,” in Computer Software
and Applications Conference (COMPSAC), 2013 IEEE 37th Annual.
IEEE, 2013, pp. 240–245.

[37] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, 2003, pp. 133–142.

APPENDIX A
RTSI MERGE TIME COMPLEXITY

For the ease of presentation, suppose the ratio of the LSM-
tree is 2. Assume we build (l+1) inverted indices in the LSM-
tree, which means we have Il, Il−1, . . . , I0. Let us deduce the
total number of merge processes triggered during the creation
of the (l + 1) inverted indices. The construction of Il needs
two Il−1 to be merged, so the number of merge operations
occurs is 20. The construction of two Il−1 needs to merge
four Il−2, and hence the number of merge operations occurs
is 21. Following this pattern, we can calculate the total number
of merge operations as follows.

of merge processes = 1 + 21 + 22 + · · ·+ 2l−1

= 2l − 1

Suppose I0 has m0 number of unique terms, and each term
has an average length of n̄. Then the size of I0 is (m0n̄). The

size of I1 is (21×m0n̄), the size of I2 is (22×m0n̄), ..., and
the size of Il−1 is (2l−1 ×m0n̄).

Now, let us calculate the average index size of a merge
operation. The number of merge operations on Il−1 to get Il
is one, because we only create one Il during building the LSM-
tree. The index size of the merge operation is 2×(2l−1×m0n̄).
Since we have created two Il−1 inverted indices (which are
later merged to obtain Il), we have merged four Il−2. So,
the merging size is 22 × (2l−2 × m0n̄). From this pattern,
we know that we need to create 2l−1 number of I1 inverted
indices, the size of merging I0 to obtain I1 is (21 × m0n̄),
and hence the total size of indices to merge for Il creation is
2l−1 × (21 ×m0n̄). So we can deduce the average merging
size by the following equation.

=
2× (2l−1 ×m0n̄) + · · ·+ 2l−1 × (21 ×m0n̄)

1 + 21 + 22 + · · ·+ 2l−1

=
l × 2lm0n̄

2l − 1

≈ l ×m0n̄ = m0n̄ log2

M

m0

To generalize the result above to the ratio ρ instead of
2, we get m0n̄ logρ

M
m0

. Note that the number of merge
operations is much smaller than the number of insertions
(i.e., logρ

M
m0
� Mn̄), and therefore the insertion cost is

approximately O(logm0).

APPENDIX B
RTSI QUERY TIME COMPLEXITY ANALYSIS

For ease of presentation, suppose the ratio of the LSM-tree
is 2. In the best case, the top-k results are all contained in
I0 and are at the beginning of the inverted list. Hence, the
best case time complexity is O(logm0). Here, we focus on
the worst case time complexity. We know the size of I0 is m0

(i.e., m0 number of terms). Then the size of I1, I2, ..., Il are
21 ×m0, 22 ×m0, ..., 2l ×m0, respectively. So, the cost of
search cost on the inverted indices is O(logm0 + log(21 ×
m0) + · · · + log(2l × m0)) = O(l logm0 + l2

2). Each term
has an inverted list of n̄, and therefore the worst case time
complexity of query is O(ln̄ logm0 + n̄l2). In practice, l is
small thanks to the log structured property. The average case
time complexity is O(n̄ logm0).

