
Enhancing the Performance of Bandit-based
Hyperparameter Optimization

Yile Chen1,2, Zeyi Wen2,3*, Jian Chen1*, Jin Huang4

1South China University of Technology, 2HKUST (Guangzhou), 3HKUST, 4South China Normal University
jireh.x6@gmail.com, wenzeyi@ust.hk, ellachen@scut.edu.cn, huangjin@m.scnu.edu.cn

Abstract—Bandit-based methods are commonly used for hy-
perparameter optimization (HPO), which is significant in data
analytics. When confronted with numerous configurations and
high-dimensional large problems, existing bandit-based methods
face challenges of high evaluation cost and poor optimization
performance. To address these challenges, we introduce an im-
proved bandit-based approach that exhibits enhanced evaluation
ability and is suitable for situations with limited resources.
Specifically, our method first effectively utilizes the feature and
label information to conduct representative groups for further
evaluation. After that, two kinds of folds (i.e., general folds and
special folds) are constructed to facilitate better evaluation of
the configuration in the cross-validation process. Additionally, we
incorporate variance and subset size into the evaluation metric
to comprehensively evaluate the configuration. We integrate
our proposed method into three commonly used bandit-based
methods, and experimental results on multiple datasets show
that our method has advantages in stability with accuracy
improvement of 1% to 15% on the datasets tested. In addition,
since our method can avoid configurations that are low-quality
but time-consuming to evaluate, it is always more efficient than
the existing bandit-based methods, and can even reduce the
execution time by half in some datasets. Sometimes it takes a little
more time, but the improvement in accuracy can be significant.

Index Terms—HPO, Bandit-based Hyperparameter Optimiza-
tion, Data Sampling

I. INTRODUCTION

Hyperparameter configurations have a significant impact on
the performance of data analytic models, and hyperparameter
optimization (HPO) [19] aims to find the best configurations
for different problems. Among various HPO techniques, the
bandit-based methods have demonstrated high performance
and reliability in practice [20], [33]. The common imple-
mentations include Successive Halving [27], Hyperband [31],
ASHA [30], and BOHB [17]. In the bandit-based methods, the
whole evaluation process is divided into multiple iterations,
each of which needs to be completed under a pre-defined
budget (e.g., the number of instances). Firstly, all the config-
urations are evaluated, then the low-quality ones are filtered
out, and the rest are passed to the next iteration. Hence, the
number of candidate configurations decreases in each iteration,
while the budget for each candidate configuration increases.
Compared with other HPO methods (e.g., Bayesian optimiza-
tion), the bandit-based methods evaluate all the configurations
to find a satisfactory configuration within a budget.

*Corresponding authors.

However, the performance of bandit-based methods de-
grades when dealing with a vast number of configurations and
challenging problems characterized by high-dimensional large
problems. More candidate configurations lead to a smaller
budget for each configuration, and hence a good configuration
may get filtered out due to the coarse evaluation. Besides,
a high-dimensional and large problem increases the cost
of evaluating configurations. This phenomenon may lead to
missing good-quality configurations. Increasing the budget
can improve performance, but it also results in high time
consumption.

To tackle these problems, this paper presents an enhanced
bandit-based method that improves the performance of op-
timization, and meanwhile reduces time consumption. Our
proposed method integrates feature and label information to
construct representative groups for a more precise subset
sampling for each configuration evaluation. Moreover, our
method constructs general and special folds for the cross-
validation process, to better evaluate the configurations. We
further augment the performance and stability of the optimiza-
tion process by incorporating variance and subset information
into the evaluation metric. To summarize, this paper makes
the following major contributions.

• We investigate the challenges faced by bandit-based methods
in terms of performance, stability, and time consumption
when dealing with a large number of configurations and
complex problems. Meanwhile, we further explore and high-
light the significant impact of the subset sampling process
and the cross-validation process on optimization.

• To overcome these issues, we present a method that utilizes
both feature and label information to perform better sub-
set sampling through group construction. Furthermore, we
introduce general and specific folds in the cross-validation
process to better evaluate configurations. We further inte-
grate variance and subset size into the evaluation metric,
which enhances the optimization performance.

• Our experimental and theoretical findings showcase the
superiority of our method in terms of performance, stability,
and efficiency, especially in scenarios with a large number of
configurations. Our proposed method achieves accuracy im-
provement ranging from 1% to 10%, while consuming less
time and exhibiting lower variance. Furthermore, we have
successfully employed our techniques in cross-validation
experiments and regression problems, which further vali-

dates the efficiency of our method. By conducting separate
experiments for each component, we have gained a deeper
understanding of the characteristics and importance of each
design aspect of our method.

II. BACKGROUND

In this section, we begin by introducing various HPO
techniques and then delve into the bandit-based method with
cross-validation, which is the commonly used optimization
method in HPO. Finally, we identify the shortcomings of
existing bandit-based methods.

A. Hyperparameter Optimization

The quality of machine learning models is significantly
impacted by the selection of hyperparameters, such as the
learning rate for neural networks. How to select hyperpa-
rameters for specific problems, namely hyperparameter op-
timization (HPO), has recently gained significant attention
in various domains. For example, AutoSF [49] investigates
how to automatically select scoring functions for knowledge
graphs. Auto-Model [45] utilizes existing research papers and
HPO techniques to address the algorithm selection and HPO
problem.

Traditionally, researchers use grid search [29], random
search [8], or some rule-based heuristic methods [23], [25]
to find good configurations. However, these methods are
time-consuming and ineffective when dealing with high-
dimensional large problems and numerous configurations [15].
State-of-the-art methods mostly rely on empirical information
to build predictive models for HPO. These methods can be
categorized into two groups based on their use of empirical
information: utilizing the results from other datasets and
utilizing the results from the current dataset.

The first group of methods utilizes results from other
datasets to find high-quality configurations for new datasets.
This involves constructing a mapping model between datasets
and their best configurations. Meta-learning-based methods
are commonly used in this category of HPO [24]. For
example, auto-sklearn [18] uses the dataset similarity to
recommend configurations for warm-starting, while methods
like SmartML [35] and cSmartML [16] utilize meta-learning
techniques to make recommendations. In addition, some re-
searchers utilize transfer learning for HPO by exploiting
different datasets [32], [41].

The second group of methods involves evaluating some
configurations on the current dataset, and using the results to
construct a model that predicts the quality of not yet evaluated
ones for future recommendations. This group of methods in-
cludes three major types: Bayesian optimization based method,
genetic algorithm based method and heuristic based methods.
The Bayesian optimization based methods [43], one of the
Sequential Model-Based Optimization (SMBO) methods [7],
[26], use the Gaussian model to fit the mapping relation-
ship between configurations and model performance. Genetic
algorithm based HPO methods also utilize configurations
evaluated on the current dataset for the next configuration

recommendation [46], [48]. Optuna [2] is a representative of
the heuristic based methods, and uses the trajectory details
from past evaluations to identify promising configurations for
finding the best hyperparameters in the shortest possible time.

The above-mentioned two groups of methods have their pros
and cons. Configuration evaluation using information from
other datasets offers the benefit of faster evaluation and the
ability to swiftly tackle various problems. However, due to
the differences between datasets, it is quite challenging to
obtain a large amount of unified expression. Additionally, the
differences in dataset distributions also affect the accuracy
of the optimization. In contrast, training exclusively on the
current dataset tends to produce more reliable and applicable
results at each stage, but it is more time-consuming and often
cannot cover every possible hyperparameter configuration.
Next, we review bandit-based methods [11] which combine
the advantages of two groups of optimization methods.

B. Bandit-based Optimization and Cross-Validation

Multi-fidelity optimization [19], especially the bandit-based
methods [11], combines the advantages of two groups of
optimization methods. Bandit-based methods strike a balance
between budget (e.g., the number of instances) and the number
of configurations. The fundamental concept of this method
involves assigning a partial budget for each configuration and
using the local results to filter low-quality configurations.
Thus, this technique saves time during the evaluation process.

0.90
0.80
0.85
0.92
0.89
0.83
0.84
0.81

0.91

0.86

0.93

0.88

0.93

0.97

0.98

bu
dg
et

iteration

𝑐!
𝑐"
𝑐#
𝑐$
𝑐%
𝑐&
𝑐'
𝑐(

𝑐!

𝑐#

𝑐$

𝑐%

𝑐!

𝑐$

𝑐$

bu
dg

et

training iteration

0.90

0.85

0.92

0.89

0.80

0.83

0.84
0.81

0.91

0.86

0.93

0.88

0.93

0.97

0.98

bu
dg

et
training iteration

0.90

0.85

0.92

0.89

0.80

0.83

0.84

0.81

0.91

0.86

0.93

0.88

0.93

0.97

0.98

Fig. 1. SHA example.

Building on this idea, researchers
have proposed various bandit-based
optimization algorithms. Successive
Halving (SHA) [27] is one of the
most well-known methods in bandit-
based optimization. In each iter-
ation, SHA distributes the budget
evenly and evaluates the perfor-
mance of each configuration. Based
on the evaluation results, half of the
configurations with poor performance are eliminated, and the
remaining half are passed to the next iteration. This process is
repeated until the most promising configuration is obtained.
To better demonstrate this process, Figure 1 provides an
example of SHA, which considers 8 configurations. In the first
iteration, each of the 8 configurations is allocated 1/8 of the
total budget for evaluation. Based on the evaluation results,
the top 4 configurations are retained and they enter into the
next iteration of evaluation. During the second iteration, each
configuration is evaluated with 1/4 of the budget. This process
is iterated until only one configuration remains in the fourth
round. Finally, the model trained on the full dataset using the
remained configuration becomes the result of SHA.

Nevertheless, SHA may squander resources on substandard
configurations due to inadequate resource allocation (i.e.,
some configurations need more resources while others allow
for less). HyperBand [31] addresses this issue by using an
“exploration-exploitation” strategy to efficiently allocate re-
sources for various configurations, and it performs multiple

runs of SHA. HyperBand allocates different partial budgets
for different configurations based on their performance in the
previous iterations (i.e., exploiting high-quality configurations
as a prior). Since the proposed of HyperBand, much work has
been done to improve it: (i) to mitigate the slow convergence
caused by random sampling in configurations of HyperBand,
BOHB [17] integrates Bayesian Optimization into HyperBand;
(ii) Asynchronous SHA (ASHA) [30] enhances the efficiency
of the original HyperBand through asynchronous paralleliza-
tion; (iii) Progressive ASHA (PASHA) [10] dynamically allo-
cates computational resources during the optimization process,
enabling more efficient exploration of the search space and
faster convergence to suitable solutions; (iv) Differential Evo-
lution HyperBand (DEHB) [5] utilizes a differential evolution
algorithm to select configurations; (v) SMAC3 [34] integrates
HyperBand and random forest into the process of Bayesian
optimization.

In bandit-based methods, cross-validation is a widely used
technique for the evaluation of individual configurations. The
k-fold cross-validation divides the dataset into k folds, where
k − 1 folds are used for training a model and the remaining
fold is used for validation to obtain a score. The process
is repeated for k times and the average score serves as
the evaluation result of the configuration. Experiments and
research have shown that this is an effective validation method
to mitigate overfitting in supervised learning [9], [22], [47].
However, due to the budget limit in bandit-based methods,
the size of each fold may be quite small, especially when
the number of configurations is large. As a result, the quality
of evaluation using k-fold cross-validation in bandit-based
methods is unstable, and we aim to improve it in this paper.

C. Limitations of Bandit-based Optimization

Current research mainly focuses on the selection of con-
figurations and the allocation of the budget, but there is less
attention given to the allocation quality. The budget allocated
for each configuration is mostly constructed by random or
stratified sampling in current bandit-based methods, which
is also the same in the cross-validation process. This paper
discovers that a more detailed instance sampling method can
lead to notable enhancements in bandit-based optimization. At
the same time, we have also identified three challenges with
existing bandit-based optimization, which are outlined below,
• Unstable Results: The reliability of sampling is heavily

influenced by the sampling size. In cases where the sample
size is small, the sampling method can greatly impact
the optimizing process. However, the sample size is often
small in bandit-based methods, particularly when there are
numerous configurations together with the need for further
division into folds in k-fold cross-validation. This instability
is most pronounced during the initial stages of optimization,
impacting the evaluation of the majority of configurations
and ultimately affecting the overall stability of the optimiza-
tion process. This issue often leads to high variance.

• Affected Performance: A limited sampling size not only
undermines the stability of finding high-quality configura-

tions, but also compromises the accuracy performance of the
recommended configuration. As only one model is trained
on the entire dataset, other configurations are excluded dur-
ing the optimization process. Unstable evaluation outcomes
can result in superior configurations being disregarded,
thereby affecting the final accuracy performance. This issue
results in lower quality of the found configurations.

• Time-consuming Process: Unreliable evaluations can easily
overlook superior configurations, resulting in a waste of time
on suboptimal configurations. When these configurations
require more search time, it increases the overall cost. While
more attempts or a larger budget can decrease this instability,
they also increase time consumption. Furthermore, as the
number of potential hyperparameters, dataset complexity,
and model size increases, the elapsed time also increases.
Hence, discovering a way to achieve a more stable outcome
in a shorter time is vital for the bandit-based method.

III. OUR PROPOSED METHOD

To address the limitations of bandit-based optimization
methods, we propose a novel bandit-based method in this
paper, which considers the sampling and variance information
to enhance optimization performance and stability. To facilitate
presentation and understanding, a description of the main
notations used in the paper is given in Table I.

TABLE I
THE DESCRIPTION OF NOTATIONS USED IN THIS PAPER.

Notation Description

D the dataset of n instances with u classes {di|i = 1, 2, ..., n}
T the space with m configurations {τi|i = 1, 2, ...,m}
B the budget allocated for the problem, which is the same as the

instance number n in our method
C feature clusters for group construction {ci|i = 1, 2, ..., v}
Ω the intermediate sampling groups for subsequent cross-

validation folds {ωi|i = 1, 2, ..., v}
F the set of k folds for k-fold cross-validation

Here, we introduce our method, utilizing SHA as the
underlying framework, although our method is applicable to
all other bandit-based methods. Figure 2 provides the overall
framework of the proposed method. Prior to starting the HPO
process, our method clusters the instances based on their
features. Then, we can divide the original dataset into multiple
groups using clustering results and instance labels, to assist
in subsequent configuration evaluation (from subfigure (a)
to subfigure (d)). Once the HPO process starts, the method
iteratively evaluates and filters candidate hyperparameter con-
figurations until the desired configuration is selected (from
subfigure (e) to subfigure (j)). During each evaluation of a
configuration τi, our proposed method constructs two types
of folds, general and special folds, from the groups for cross-
validation (subfigure (f)). After obtaining evaluation results on
each fold (subfigure (g)), the method calculates the evaluation
score s using the mean µ, the variance σ, and the subset size γ
to aid in the halving operation (subfigure (h)). In the following

a) Original Dataset b) Dataset with Clusters c) Dataset with Groups
d) Groups

f) Folds

…
…

general special

label 𝑦!
feature 𝑥!

instance

label 𝑦!

feature 𝑥!
instance

cluster 𝑐!
"

label 𝑦!

feature 𝑥!
instance

group 𝑐!

e) Configurations

…
…

general special

… …

g) Trained Results

train with config.

h) Evaluation Metric

mean 𝜇

std 𝜎

ratio 𝛾score 𝑠

ra
tio

 𝛾

i) Scores for each Config.i) Halving Config.

↑ ↑ ↑

↑

↑↑

↓

↓

↓ ↓

↓ ↓

next
iteration

next iteration

before HPO

during HPO

Notations

𝜔$ Ω−𝜔$

Fig. 2. The overall framework of our proposed sampling-based hyperparameter optimization methods.

section, we provide a detailed explanation of three main parts
of the proposed method, including: i) the instance grouping;
ii) the fold construction; and iii) the score calculation.

A. Instance Grouping based on Features and Labels

Bandit-based optimization with instances as budget is a
method that samples a subset from the entire dataset and
evaluates the performance of hyperparameter configurations
on that subset. Current methods usually employ a random or
stratified approach to sample these subsets. When the subset is
sizable, constructing it in a vanilla way can effectively capture
the overall dataset’s distribution. However, for hyperparameter
optimization, the candidate hyperparameter space is often vast
and intricate, resulting in a limited number of instances that
can be assigned to each subset. Therefore, subsets obtained
using vanilla methods often face difficulty in accurately re-
flecting the overall distribution and exhibit randomness.

To overcome this limitation, we propose a grouping-based
subset sampling method to obtain a more representative subset
for evaluation. Specifically, our method involves constructing
multiple groups with label and feature information before
initiating hyperparameter optimization process, and subse-
quently sampling subsets from these groups for evaluating
configurations. The group construction process is depicted in
the blue part of Figure 2, specifically in subfigures (a) through
(d). Initially, each instance di in the dataset D consists of a
feature vector xi and a label yi, as shown in Figure 2(a). We
start by applying clustering methods to cluster the instances
based on their features, which provide category characteristics
and are denoted as cxi . Additionally, we process the label
information to obtain category characteristics for each instance
and denote it as cyi , as illustrated in Figure 2(b). Finally, we
merge the two types of category information, resulting in the
final groups ci shown in Figure 2(d).

To perform the feature clustering process, our method can
employ various clustering algorithms such as k-means, mean-
shift, and affinity propagation. For the sake of simplicity
and efficiency, we utilize the k-means method for clustering

in this paper. As the oldest but most popular method, k-
means has been extensively studied and applied in various
domains [38], [50]. In our method, we propose to use k-
means as the clustering algorithm. Performing k-means should
consider the number of instances within each cluster to
avoid imbalanced instance distribution affecting subsequent
cross-validation. Therefore, the clustering process involves
iteratively performing k-means multiple times. If a particular
cluster has very few instances (less than rgroup ratio of the
average number of instances per cluster, n

k × rgroup), we
remove these instances and re-cluster the rest until each cluster
has the desired number of instances, as shown in Figure 2(b).
After completing the clustering, each instance is associated
with a cluster and we can represent the clustering results by
Cx = {cx1 , cx2 , ..., cxn}, where the superscript indicates that the
results are obtained based on feature information (i.e., x). To
distinguish the notation, we use the v to represent the number
of clusters to construct. Considering the fold construction in
subsequent cross-validation, we typically choose a smaller
value as the v (such as 2-5). We provide further details on this
value setting in Section III-B when we elaborate on the details
of special folds. Similarly, we can obtain label information for
each instance (i.e., Cy = {cy1, c

y
2, ..., c

y
n}), and we can use the

original label yi directly as cyi . However, when dealing with
highly imbalanced datasets where there are very few instances
in a certain class (less than n

µ × 10%), we merge that class
with other less frequent classes for further processing. As for
the regression problem without classification labels, we can
directly divide numerical labels based on their magnitude and
assign them to different categories.

Through label-based and feature-based division, we get
two different categories of labels, the feature category Cx

obtained by clustering and the label category Cy obtained
by classification. Both categories are utilized to construct
groups for future configuration evaluation in our proposed
method. The number of groups constructed in our method
equals the cluster number v, which serves for subsequent
cross-validation. Operation 1 shows the group construction

Operation 1: GenGroups(Cx, Cy , D).

Input: Feature Cluster Cx = {cx1 , ..., cxn}; Label Class
Cy = {cy1 , ..., c

y
n}; Original Dataset D = {d1, ..., dn}.

1 Ω = {ω1, ..., ων};
2 /* count class-cluster: counts[i, j] is the number

of instance with class i & cluster j */
3 counts← CountNumber(Cx, Cy);
4 /* s1. allocate ins. in clusters */
5 Ding ← D;
6 for j ∈ ν do
7 class← top-k(counts[:, j]);
8 ωj ← {di; cxi = j, cyi ∈ class};
9 Ding ← Ding \ ωj ;

10 end
11 /* s2. allocate remaining ins. */
12 for i ∈ m do
13 c← Argmax(p[i, :]);
14 ωc ← ωc

⋃
{dk; dk ∈ Ding , c

x
k = c};

15 Ding ← Ding \ ωc;
16 end

Output: the instance groups Ω = {ω1, ..., ων}

process balancing instances from two categories. Meanwhile,
Figure 2(c) provides an example of group construction with
three classes and three clusters. Firstly, our method counts the
number of instances with different classes cyi and clusters cxi
(Line 2). Then, the method analyzes each cluster individually
to assign their corresponding group labels (Lines 3-8). In a
single cluster j, the top-k classes with the highest proportions
are selected (Line 5), and their instances are assigned to the
corresponding group (Line 6), shown in the left subfigure of
Figure 2(c). The selection of the k value here is determined
by the total number of categories in our method. Afterward,
the remaining unallocated instances are assigned based on the
relationship between categories and clusters. Each instance is
assigned to the group corresponding to the cluster with the
highest proportion in that category, as shown in the right
subfigure of Figure 2(c). Thus, we can generate the groups
and obtain the group labels ci corresponding to each instance
di, as depicted in Figure 2(d).

B. General and Special Fold Construction

During the evaluation of each configuration, bandit-based
optimization typically employs k-fold cross-validation to ob-
tain a more generalizable result. In this approach, each fold
is obtained by random or stratified sampling based on the
label. However, when the subset for configuration evaluation
is small, we find that such a sampling method easily results in
unstable evaluation since the subset distribution is difficult to
reflect the characteristics of the complete dataset. In contrast,
our method achieves a more comprehensive evaluation for con-
figurations by utilizing general folds, which closely reflect the
average distribution of the complete dataset, and special folds,
which reflect the distribution specific to particular groups to
address the problem of insufficient data. The construction
process of these folds is depicted in Figure 2(f).

Similar to stratified sampling, a general fold is uniformly
sampled from different groups, which tries to simulate the
global distribution. Compared to stratified sampling, which

only considers the class labels, group-based sampling compre-
hensively considers the whole dataset distribution. The folds
obtained by sampling in this manner better align with the over-
all dataset distribution, and the scores obtained by training and
calculating on such folds are more similar to the overall dataset
than other random folds, resulting in good generalization.
However, the generalization performance is closely related to
the subset size used for evaluation. Meanwhile, the subset size
is relatively small in the bandit-based optimization when a
large number of configurations are involved, especially at the
start of the optimization process. To address the shortcomings
of general folds when dealing with small subsets, our method
introduces the special fold in cross-validation.

Different from the general folds, the special folds try to find
a set of instances that deviates from the overall distribution.
Meanwhile, there are significant differences between each
special fold to ensure the diversity of folds. Although the
result on a single special fold may not accurately reflect the
configuration performance on the entire dataset, the combined
results from multiple special folds can provide insight into
its performance under different conditions. Specifically, our
method samples corresponding special folds based on the
previously generated groups. Each of these special folds
represents the data distribution within a particular group.

Operation 2: GenFolds(Ω, kgen, kspe).

Input: Instance Groups Ω = {ω1, ..., ωm}
1 Initialize: F ← {};
2 /* Generate general Folds */
3 Fgen ← StratifiedKFold(Ω, kgen);
4 /* Generate special Blocks */
5 for i ∈ kspe do
6 Fspe ← Fspe + {StratifiedSample(Ω \ ωi), Sample(ωi)}
7 end

Output: the instance folds F = Fgen
⋃
Fspe

The overall algorithm for the fold construction is shown as
Operation 2. Firstly, the method performs stratified sampling
on groups to obtain kgen general folds (Line 2). Then, for each
group ωi, our method samples several instances from ωi (e.g.,
80% of the fold) and some instances from remaining groups
Ω \ ωi (e.g., 20% of the fold) to construct kspe special folds
(i.e., the number of clusters v in Section III-A). This approach
ensures that the folds have both a general distribution and
a special distribution for subsequent evaluation. Furthermore,
while methods like the elbow strategy [42] automatically select
the value of v to improve the quality of clusters, considering
that v is also needed in fold construction and cross-validation,
we choose to set v to be not larger than 5. This allows the total
number of folds, kgen + kspe, to be equal to the commonly
used setting of 5 in cross-validation for small subsets [3], [4],
[12]. Additionally, a smaller value for v can also help reduce
the cost of clustering and cross-validation.

C. Evaluation Metric with Variance and Sampling Size
After obtaining the folds, we proceed to train and calculate

accuracy results for each fold, as depicted in Figure 2(g).
Traditional optimization methods typically evaluate the per-
formance of configurations based on the average accuracy µ.

However, to find high-quality configurations and prevent the
exclusion of potentially good configurations, we incorporate
information on variance σ and sampling size γ into our
evaluation metrics during the development process. In the
following section, we provide a comprehensive explanation
of our metric design.

Using the Variance Information:
The bandit-based method allocates budgets to different con-

figurations, and evaluating each configuration on a relatively
small number of instances is often unstable due to the sampling
process. Inspired by the acquisition function in Bayesian
optimization, we propose a novel metric that considers both
the average accuracy and the variance to effectively analyze
the future performance of each configuration.

In Bayesian optimization, the algorithm trains a surrogate
model on the available results to obtain the mean µ and
variance σ accuracy of the not yet evaluated points. The
exploration-exploitation trade-off is then adjusted through the
acquisition function to select the next configuration. Different
acquisition functions balance the mean and variance differ-
ently, but all tend to favor configurations with higher mean
(better exploitation) and higher variance (better exploration).
The Upper Confidence Bound (UCB) is a direct metric design
that combines the mean and standard deviation results in a
weighted manner, as shown in the formula below,

UCB = µ(x) + ασ(x) (1)

where α represents the adjustment parameter.
In this paper, we adopt this weighted form to compre-

hensively evaluate configurations by considering both mean
and variance information. Unlike the results estimated by the
Bayesian optimization surrogate model, both the mean and
variance results used in our method are derived from actual
results. For the selection of weights, we still take positive
values to ensure their exploratory ability. Although a smaller
variance indicates more stable results, a larger variance is
more meaningful for bandit-based subset training evaluation.
However, the influence of variance is also related to the subset
size, which is also the reason we take sampling information
into consideration when designing the evaluation metrics.

Using the Sampling Information:

0 50 100
subset size (%)

0

5

10

we
ig

ht

Fig. 3. β − γ line figure.

In the design of the met-
ric, our consideration of vari-
ance is not only limited to the
exploration, but also the relia-
bility of the evaluation. In or-
der to achieve better exploration,
the method selects configurations
with higher variance. However,
as the bandit-based optimization
progresses, the candidate hyperparameter configurations grad-
ually decrease, and the subset size used for evaluating each
configuration increases. Models trained on subsets of different
sizes have varying levels of stability, and results obtained from
larger subsets are more reliable. In other words, for datasets

of different sizes, we need to adjust the weight for variance
in the evaluation metrics. Therefore, we add a new weight β
to Equation 1 to consider the impact of the subset size.

The weight β represents the impact of the subset size on
the evaluation, and its design is based on two assumptions:
i) the larger the dataset, the smaller the weight, and ii) the
weight change should not be a uniform process. Firstly, the
subset size directly affects the difference between the evalu-
ation results and the overall results. Evaluations on smaller
datasets are more unstable and more prone to bias, so in this
case, greater consideration should be given to variance in the
evaluation. Secondly, in bandit-based optimization, the subset
size is determined by the number of configurations, denoted
as B/n, and changes exponentially. Therefore, the change
in weight should be similar to the change in the number of
configurations, rather than a linear relationship with the size.
In other words, the weight should change more significantly
for smaller sizes. Additionally, considering that the method
can also be directly applied to cross-validation, we have made
a symmetric design for sizes larger than 50% (corresponding
to only two configurations participating in the optimization).
To address these considerations, we use the hyperbolic tangent
function tanh(x) and hyperbolic arctangent function atanh(x)
to design the sampling weight, which aligns with the above
hypothesis. The definitions of tanh(x) and atanh(x) are as
follows,

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x

atanh(x) =
1

2
log

1 + x

1− x

We set the maximum weight value as βmax, which is recom-
mended to be 1/α to get achieve the normalization for the
combined weight α× β. Then, β is expressed as follows,

β(γ) = 2atanh(1− 2max(γmin,min(γmax, γ))) +
βmax

2
(2)

where, γmin = 50(1 − tanh(βmax
4)) and γmax = 50(1 −

tanh(−βmax
4)) represent the maximum and minimum thresh-

olds, preventing weights from being excessively large or small.
Figure 3 shows a line graph of β changing with the sampling
ratio γ = ∥bt∥

∥B∥ × 100, in which βmax = 10. The design of
weight β complies with the two assumptions mentioned above
and exhibits the expected effects in the experiments.

The Final Evaluation Metric:
Combining the variance weight α (as Equation 1) and

sampling weight β (as Equation 2), we obtain the evaluation
metric of the proposed method in this paper as follows,

s(x, y, γ) = µ(x, y) + αβ(γ)σ(x, y) (3)

where x, y, and γ represent the features, labels, and dataset
sampling size used for training respectively, while µ and σ
represent the mean and standard deviation of the results across
different fold results.

Based on the results of cross-validation and the subset
size used for training, we obtain the metric for evaluating

configurations, as shown in Figure 2(h). After obtaining scores
for different configurations, the halving operation can be
performed based on these results, as illustrated in Figure 2(i)
and (j). Through iterative steps, our proposed method can
determine the best configuration τ∗.

D. Overview of Our Method

Here, we present an overall explanation of our proposed
method by providing the pseudocode in Algorithm 1 after
introducing its three main components. Consistent with the
vanilla optimization method, we have the dataset D, a budget
B (i.e., the total number n of instances in the training dataset),
and m configurations at the beginning of optimization.

Before beginning the evaluation of each configuration, the
method first constructs multiple groups Ω based on the feature
and label information of the dataset D to assist with the
subsequent optimization process (Line 3). Specifically, the
method performs multiple rounds of k-means clustering on
all instances based on their features x to obtain v clusters C
with relatively even assignments. Each instance di is assigned
a feature-based category cxi , and a corresponding label-based
category cyi can be obtained from the label y. Afterward, our
method mixes the two types of categories and generates the
desired groups Ω, as shown in Operation 1.

During the optimization process, similar to vanilla bandit-
based methods, the proposed method iteratively evaluates and
halves candidate configurations (Lines 5-18) until the final
configuration τ∗ is selected (Line 20). In a single iteration,
our method allocates a budget bt for each configuration, and
in the case of SHA, the budget is allocated evenly to all
candidate configurations (Line 7). Once the allocated budget
is obtained, the method evaluates each configuration through
cross-validation (Lines 9-14) and performs halving operations
based on the evaluation results (Line 16).

Our method also enhances the vanilla cross-validation from
two aspects: (i) the fold construction (Line 11) and (ii) the
evaluation design (Line 13). Firstly, in the construction of
folds, unlike the vanilla method that obtains folds through
random sampling or stratified sampling from the subset with
bt, our method uses the groups obtained before optimization
to construct folds. Moreover, to better evaluate with small
subsets, we construct two types of folds, general and special,
in cross-validation, as shown in Operation 2. The general
fold is obtained by uniform sampling from each group, while
the special fold is obtained through biased sampling. Biased
sampling means sampling the most instances from a certain
group and a few instances from other groups. The number
of special folds, kspe, is equal to the number of groups v.
It is advisable to keep the value of v within 5 in order to
ensure that the fold number kgen + kspe remains 5. Secondly,
in the design of the evaluation metric, we add considerations
for variance and sampling information to the vanilla metric of
mean accuracy. The complete metric is shown in Equation 3.
The variance information is added to the metric in a weighted
form and the subset size γ used for evaluation is also included
in the metric as a parameter for the weight β. This metric

Algorithm 1: Our proposed optimization method.

Input: Dataset D = {Dtrain, Dtest}, budget B, m configurations
T = {τ1, ..., τm}

1 initialize: t← 0, Tt ← T
2 /* form groups for optimization */
3 Ω← GenGroups(D)
4 /* evaluation for configurations */
5 while ∥Tt∥ > 1 do
6 // budget for each τi
7 bt ← B/∥Tt∥
8 // evaluate configuration
9 for τi ∈ Tt do

10 // generate folds
11 Fi ← GenFolds(Dtrain,Ω, bt)
12 // calculate the score
13 St ← CalScore(τi,Fi)
14 end
15 // filtrate the configurations
16 Tt+1 ← HalvingConfig(Tt, St)
17 t← t+ 1
18 end
19 /* get the best configuration */
20 τ∗ ← GetBestConfig(Tt)

Output: the selected configuration τ∗

considers the significance of variance in the evaluation under
subsets of different sizes. Specifically, in small subsets, the
validation stability is weak, and considering variance helps
retain configurations with greater potential. In large subsets,
the validation results are closer to the results of overall
training, and the mean value is more important than the
variance. Through the two improvements, our improved cross-
validation can better adapt to the characteristics of resource
allocation and iterative optimization in bandit-based methods.

E. Discussion on Our Method

After the description of our method, we discuss our method
from the accuracy performance, time cost, and memory cost
in this section.

Accuracy Performance: The bandit-based method, which
uses the instances as the budget, reduces the optimization
time by evaluating configurations on subsets rather than the
whole dataset. However, the results on the subset lead to
unstable evaluation results and are more likely to discard good
configurations in early iterations, especially when there are
a large number of configurations. In this paper, we improve
the performance of bandit-based methods by considering vari-
ance and sampling information in subset sampling and cross-
validation. A more detailed subset sampling approach that
utilizes both features and labels makes the sampling subsets
more representative, helping boost small subset evaluation
quality. Moreover, the cross-validation using both general and
special folds is more suitable for small subsets in bandit-
based optimization than the vanilla approach. In addition, the
proposed method considers variance and subset size in the
evaluation metric, which helps preserve configurations with
high possibility and alleviates prematurely discarding good
configurations.

Optimization Stability: In terms of stability, our method
exhibits better stability compared to existing methods in
both sampling methods and optimization approaches. Firstly,
the group-based sampling method proposed in this paper
effectively utilizes information from both features and labels,
making it more stable compared to random sampling and
stratified sampling which only utilize label information. We
analyze the stability of sampling using a binary distribution
as an example, as shown in Proposition 1. Secondly, the
stability of the sampled subsets contributes to the overall
stability of the training and evaluation process in optimization.
By ensuring stable sampling, the subsets used for training
become more consistent, leading to reduced variability among
the trained models and improved overall stability. Furthermore,
it is worth noting that when the evaluation is performed on a
small subset, the performance may not accurately reflect the
results of the entire dataset. In our method, the introduction
of special folds and evaluation methods that consider the
sampling size and evaluation variance enhances the tolerance
of the evaluation process and, consequently, improves the
stability of the optimized configurations.

Proposition 1 (Sampling Stability). Suppose we have a
dataset that is evenly distributed between two categories.
When the subset obtained from sampling is small, we can
use a binomial distribution to represent the process of ran-
dom sampling. The probability function can be expressed as
P (x;n, p) = Cx

np
x(1−p)n−x, where x represents the sampled

number of positive instances, n represents the sampling size,
and p represents the number of positive instances. For our
method, assuming there are two groups with the same size
n/2, the probabilities of the positive category are denoted as
p1 = p − ϵ and p + ϵ respectively. Then, the distribution
of the subset can be represented as Pour(x;n, p1, p2) =∑x

i=0 P (i; n
2 , p − ϵ) · P (x − i; n

2 , p + ϵ), where ϵ ∈ [0, p].
We consider two extreme scenarios here, ϵ = 0 and ϵ = p.
When ϵ = 0, the distribution of the group is consistent with
the distribution of the overall dataset. The sampling results
of our method are consistent with those of random sampling,
and the probability of being consistent with the distribution
of the overall dataset is P (n2 , n, p). On the other hand, when
ϵ = p, each group corresponds exactly to one category of
instances, and the sampling results of our method always
match the distribution of the overall dataset. Compared to
random sampling and stratified sampling using only label
information, our method is more likely to achieve an ϵ that
is closer to the actual distribution p, thereby demonstrating
better sampling stability.

Time Complexity: In terms of time consumption, the main
difference between our proposed method and the vanilla
method is on the grouping operations before evaluation. The
time consumption of grouping operations primarily depends on
feature clustering. The time complexity of k-means clustering
is O(n∗f ∗v ∗d), which is related to the number of instances,
the dimension of features, the number of iterations in cluster-

ing, and the number of clustering centers. Among them, the
number of clusters in our method is usually less than 5, and
the number of iterations of k-means defaults to 10, so the time
spent at this time is less than 50nf . For the searched model,
take the simplest three-layer binary classification BP neural
network as an example, assuming that the number of neurons
in each layer is (f, h, 2), then its feedforward calculation and
feedback for a single instance is f ∗h+h ∗ 2, and the time to
train the entire data set is 2(fh+ 2h) = 2hnf + 4h. In other
words, the time required for clustering is equivalent to training
a hidden layer with 25 neurons for one epoch, which can be
ignored in hyperparameter optimization problems. Therefore,
the method proposed in this paper does not bring significant
time consumption compared with the vanilla method. On
the contrary, an improved hyperparameter selection process
reduces the time spent on repeated training attempts and
on inefficient large-scale models, ultimately resulting in a
decrease in overall optimization time.

Memory Complexity: In terms of memory cost, the memory
usage of k-means is introduced during the construction of
grouping, and its space complexity is O((n+ v)f). However,
when the cluster labels are obtained, the cluster model does
not need to be saved, and the memory can be freed. The final
memory occupied is only the group tags of n instances. In
addition, the clustering accuracy requirement in the method
proposed in this paper is not high, which is only used to obtain
certain feature information. When the amount of data is huge,
it is sufficient to take only a part of the dataset for training
the cluster. In other words, the memory cost of k-means can
be further reduced.

IV. EXPERIMENTAL STUDIES

To investigate the rationality of the design of our method,
we conduct experiments and present the experimental results
in this section. We first introduce the datasets and exper-
imental settings used in the study. Then, we exhibit two
overall experiments to compare the proposed methods with
some baselines in terms of hyperparameter optimization and
cross-validation. Furthermore, we illustrate the significance of
three main components in our method through corresponding
independent experiments, including: i) the group construc-
tion based on feature and label; ii) the general and special
folds in cross-validation; and iii) the evaluation metric with
variance and sampling information. The corresponding code
for our method can be found in the respective repository on
GitHub https://github.com/JirehChan/EnhancingBHPO.

A. Datasets and Experimental Setup

We used 12 public datasets from LibSVM [14], UCI [36]
and Kaggle [1] in the experiments, including eight binary
classification datasets and two multi-category datasets and
two regression datasets. Most of the datasets utilized in the
experiments exhibit a balanced distribution, while a few are
imbalanced (i.e., machine, a9a, fraud, and satimage). Table II
shows the summary of these datasets. For the datasets that do
not contain a test set, we used the 80/20 rule to construct

the train set and test set. In this paper, each experiment
was repeated five times with different random seeds, and the
average value was taken as the result for presentation.

TABLE II
INFORMATION OF THE DATASETS USED.

type dataset #classes #train #test #features

binary
classification

australian 2 690 - 14
splice 2 1,000 2,175 60
gisette 2 6,000 1,000 5,000
machine [28] 2 10,000 - 9
NTICUSdroid [37] 2 29,332 - 86
a9a 2 32,561 16,281 123
fraud [44] 2 284,807 - 86
credit2023 [39] 2 568,630 - 29

multi-category
classification

satimage 6 4,435 2,000 36
usps 10 7,291 2,007 256

regression molecules [13] / 16,242 - 1275
kc-house [21] / 21,613 - 18

In the experiment, we used a neural network as the model
for optimization. The configuration space for hyperparameter
search is shown in Table III, which includes 8 different
hyperparameters involving model structure and training hy-
perparameters. In this study, we utilized the implementation
of MLPClassifier and MLPRegressor from the scikit-learn
library [40], and the specific meanings of each hyperparameter
can be found in its documentation [12]. The experiments were
conducted on a machine with an Intel(R) Xeon(R) Silver 4210
CPU of 126GB main memory running on a Linux OS.

TABLE III
INFORMATION OF THE HYPERPARAMETER SEARCH SPACE.

name range

hidden layer sizes [(30), (30,30), (40), (40,40), (50), (50,50)]
activation [‘logistic’, ‘tanh’, ‘relu’]
solver [‘lbfgs’, ‘sgd’, ‘adam’]
learning rate init [0.1, 0.05, 0.01]
batch size [32, 64, 128]
learning rate [‘constant’, ‘invscaling’, ‘adaptive’]
momentum [0.7, 0.8, 0.9]
early stopping [True, False]

B. Hyperparameter Optimization Experiment

In this section, we present our experiments on HPO.
Initially, we applied the proposed method to three bandit-
based methods (SHA, HyperBand, and BOHB) and compared
them with its vanilla version. Secondly, we evaluated the
proposed method and vanilla method under varying settings of
configurations and analyzed the impact of the hyperparamer
types and model complexity for different methods.

Compare with Different HPO Methods:
Firstly, we conducted a comparison between our proposed

method and vanilla methods in terms of hyperparameter op-
timization with 4 hyperparameters (i.e., “hidden layer sizes”,
“activation”, “solver” and “learning rate init”) and 6 × 33 =

162 configurations. The vanilla methods included the random
search and three bandit-based methods, as detailed below,

• random: randomly select 10 configurations for evaluation.
• SHA: the vanilla Successive Halving algorithm, which is

implemented in the scikit-learn library.
• HB: an improved algorithm for SHA, this paper uses the

implementation in the HpBandSter-sklearn library [6].
• BOHB: an improved bandit-based method that combines

the Bayesian optimization. In the experiments, we use the
HpBandSter-sklearn’s implementation for experiments.

In addition to the above baselines, we also compared our
method with other optimization methods (i.e., SMAC3 [34]
and Optuna [2]). We found that these methods performed
similarly to random search when the time budget was similar
to Successive Halving which was the ground truth we com-
pared with. For example, in NTICUSdroid, SMAC3 achieved
a test accuracy of 96.62% in 1880 seconds, Optuna achieved
96.42% in 1776 seconds, and the random approach achieved
96.73% in 1798 seconds. Therefore, we only kept the random
search to showcase the performance of our method in the
paper. As for our method, we applied it to three bandit-based
optimization algorithms, denoted as “SHA+”, “HB+”, and
“BOHB+”, respectively. All the methods were evaluated using
5-fold cross-validation. We set the number of general folds
kgen to 3 and the number of special folds kspe to 2 in our
method. For other settings in our method, we set the rgroup
as 0.8, α as 0.1 and βmax as 10. The remaining parameters
are consistent with the vanilla bandit-based methods. For more
details, please refer to the scikit-learn and HpBandSter-sklearn.

Table IV presents the final results of performance evalua-
tion, including accuracy or F1-score for classification datasets
and R2 score for regression datasets, along with the cor-
responding search times for different methods. It can be
observed our improved version outperforms the vanilla method
in all bandit-based methods by finding configurations with
higher test accuracy and lower variance. This highlights the
importance of a more refined sampling strategy and metric
evaluation for optimizing results and stability. In general, the
proposed method can achieve an improvement of more than
1% in test accuracy than the vanilla method. Furthermore, our
improvements can achieve good results in cases where vanilla
methods perform poorly. For instance, our BOHB+ method
achieved a 14% increase in test accuracy compared to the
vanilla method in the usps dataset. In terms of search time,
the proposed method did not result in a significant increase
in search time. On the contrary, in most cases, the search
time of the proposed method is less than the vanilla method.
This is because the proposed method accurately evaluates
and selects hyperparameter configurations, avoiding the time-
consuming training of large-scale models but having poor
performance. In some cases, this reduction in search time
can be as much as nearly 50%, such as the a9a dataset with
HB. The proposed method may take longer than the vanilla
method for a few datasets, but its accuracy improvements are
also quite significant (e.g., HB+ improves 15% accuracy in

TABLE IV
TRAIN RESULT (%), TEST RESULT (%) AND SEARCH TIME (SEC.) OF DIFFERENT HYPERPARAMETER OPTIMIZATION METHODS.

bandit-based methods
dataset metric random SHA SHA+ HB HB+ BOHB BOHB+

trainAcc. (%) 99.97±0.06 100.00±0.00 99.96±0.07 82.67±28 99.79±0.32 99.27±1.24 99.99±0.01
testAcc. (%) 96.87±0.35 97.00±0.36 97.43±0.25 ✔ 81.43±27 96.87±0.35 ✔ 96.10±0.36 97.27±0.25 ✔gisette
time (sec.) 3613±71 1927±145 2098±290 ✘ 365±179 816±286 ✘ 408±285 454±130 ✘

trainAcc. (%) 97.69±0.02 97.72±0.57 97.80±0.26 97.42±0.76 97.68±0.95 98.02±0.38 98.05±0.17
testAcc. (%) 96.73±0.06 96.78±0.07 96.92±0.07 ✔ 96.61±0.36 96.64±0.28 ✔ 96.39±0.06 96.43±0.03 ✔NTICUSdroid
time (sec.) 1798±246 359±57 344±87 ✔ 1782±126 1102±37 ✔ 732±596 424±586 ✔

trainAcc. (%) 95.83±0.32 94.93±0.30 96.01±0.38 77.72±24.09 80.35±26.21 89.91±5.82 89.50±2.75
testAcc. (%) 95.02±0.35 94.81±0.38 95.92±0.37 ✔ 77.76±24.11 80.36±23.23 ✔ 84.91±5.82 89.50±2.76 ✔credit2023
time (sec.) 3761±389 1897±295 1780±332 ✔ 5274±360 7510±439 ✘ 11851±1234 6132±149 ✔

trainF1. (%) 98.18±0.17 98.37±0.15 98.33±0.14 98.20±0.01 98.37±0.19 98.20±0.00 98.30±0.16
testF1. (%) 98.09±0.33 98.30±0.01 98.39±0.16 ✔ 98.24±0.02 98.44±0.20 ✔ 98.25±0.00 98.32±0.19 ✔machine
time (sec.) 46±3 16±1 18±4 ✘ 81±21 38±39 ✔ 52±29 35±14 ✔

trainF1. (%) 90.18±0.21 90.84±0.49 90.33±0.02 91.08±1.30 90.76±0.70 92.21±1.40 91.06±1.32
testF1. (%) 90.21±0.20 90.12±0.18 90.50±0.08 ✔ 89.51±0.52 90.33±0.18 ✔ 89.06±1.18 90.00±0.49 ✔a9a
time (sec.) 12500±1398 1702±241 1562±226 ✔ 3590±2798 1795±622 ✔ 1802±2389 3508±488 ✘

trainF1. (%) 99.91±0.02 99.88±0.04 99.92±0.00 99.92±0.00 99.92±0.00 99.92±0.00 99.92±0.00
testF1. (%) 99.90±0.02 99.88±0.04 99.91±0.00 ✔ 99.91±0.00 99.91±0.00 ✔ 99.91±0.00 99.91±0.00 ✔fraud
time (sec.) 2191±202 294±84 225±69 ✔ 7197±8385 2688±38 ✔ 8849±8913 2958±56 ✔

trainAcc. (%) 99.98±0.00 99.87±0.16 99.97±0.01 99.94±0.06 99.91±0.13 83.28±28.95 98.69±2.22
testAcc. (%) 92.91±0.25 92.89±1.00 93.74±0.32 ✔ 92.01±1.01 93.11±0.67 ✔ 78.39±25.65 92.31±0.78 ✔usps
time (sec.) 2242±126 962±268 1031±68 ✘ 63±23 41±4 ✔ 165±147 34±9 ✔

trainF1. (%) 98.75±1.09 94.19±0.68 96.18±2.44 87.80±7.92 98.32±1.47 88.22±7.19 98.58±1.39
testF1. (%) 86.68±0.20 86.62±0.46 87.88±0.13 ✔ 82.77±3.64 86.22±1.52 ✔ 84.26±4.84 86.52±0.64 ✔satimage
time (sec.) 949±117 339±102 273±26 ✔ 40±40 60±35 ✘ 17±11 23±16 ✘

trainR2 (%) 99.00±0.20 98.85±0.16 98.90±0.20 98.04±1.15 98.80±0.07 98.98±0.05 98.74±0.07
testR2 (%) 98.55±0.17 98.51±0.17 98.75±0.13 ✔ 97.97±1.03 98.68±0.02 ✔ 98.23±0.74 98.84±0.11 ✔molecules
time (sec.) 1235±235 1058±50 960±213 ✔ 1932±1856 1534±1374 ✔ 984±477 639±158 ✔

trainR2 (%) 93.53±0.16 92.05±0.58 92.45±0.63 52.75±11.19 84.54±7.57 70.05±25.23 85.41±12.33
testR2 (%) 88.95±0.36 88.27±0.55 89.24±0.49 ✔ 52.17±11.12 82.56±6.34 ✔ 70.64±26.97 81.97±12.06 ✔kc-house
time (sec.) 735±35 238±35 222±42 ✔ 1038±986 1032±1321 ✔ 556±610 197±208 ✔

gisette). Additionally, although our method’s grouping strategy
is primarily designed for classification problems, its simple
transfer to regression problems can also yield improvements
in accuracy and efficiency.

Compare with Method under Different Configurations:
The performance of bandit-based methods is greatly influ-

enced by the number of configurations, which is one of the
main motivations behind our work. When dealing with a large
number of configurations, each configuration may only have a
small number of instances assigned to it, which can result in
poor optimization performance. Our method improves bandit-
based methods in various aspects including subset sampling,
cross-validation, and metric design, which is theoretically
better than the vanilla method for multiple configurations. To
verify this claim, we conducted experiments with “SHA” and
“SHA+” in the australian dataset from two perspectives: i)
the number of hyperparameters and ii) model complexity.

Regarding the number of hyperparameters, we sequen-
tially added new hyperparameters to the configuration space
according to the order in Table III. As for model com-
plexity, we selected the number of neurons per layer from
[10, 20, 30, 40, 50], and analyzed the performance of different
methods by increasing the number of layers to observe the
changes in model complexity. Figure 4 illustrates the accuracy
and time cost variations of different methods with varying
numbers of configurations. The increase in the number of

configurations brings greater performance potential, which
raises the upper limit of accuracy. This is the reason why
both methods’ accuracy improved when the number of settings
initially increased from 1 to 4. However, as the number of
configurations continued to increase, the instability of opti-
mization led to fluctuations and even a decrease in accuracy.
However, compared with the vanilla methods, our method
exhibits superior accuracy as the number of configurations
increases, especially for the increasing of layers. As for the
search time, our method exceeds the vanilla method in terms
of time efficiency, and this advantage becomes more noticeable
as the number of settings increases. The experimental results
indicate that our method performs well and efficiently under
numerous hyperparameters and complex models.

45

60

75

90

105

89

90

91

92

93

6 18 54 162

tim
e

(s
ec

.)

te
st

Ac
c.

 (%
)

#configurations

BOHB

vallina ours vallina ours

0

400

800

87

88

89

1 2 3 4 5 6 7 8

tim
e

(s
ec

.)

te
st

Ac
c.

 (%
)

#HPs

3

9

15

88

88.3

88.6

1 2 3 4 5 6 7 8

tim
e

(s
ec

.)

te
st

Ac
c.

 (%
)

#layers

Fig. 4. Performance changes as the increase of HPs and model size.

C. Cross-Validation Experiment

In addition to optimizing hyperparameters, our approach
can also be directly applied to k-fold cross-validation. To

better analyze the performance of the proposed method in the
configuration evaluation, we conducted separate experiments
on cross-validation. In this experiment, we improved the fold
generation method and metrics in our proposed approach and
compared them with several commonly used cross-validation
methods, including random KFold and stratified KFold. The
details about the baselines are shown below.
• random: the RandomKFold, which uses the method of

random sampling to get different folds. We used the KFold
implementation of the scikit-learn library.

• stratified: the StratifiedKFold, in which different folds are
obtained by uniform sampling according to the distribution
of labels, which is implemented in scikit-learn library.

• ours: the implementation of the proposed method on k-
fold cross-validation. The folds are constructed using a
group-based sampling method, which constructs general and
special folds, and the quality of configurations is evaluated
based on variance and sampling information.

Due to the time-consuming nature of training all models
on the dataset to assess the quality of the recommended
results, we limited our experimentation to modifying two
hyperparameters: hidden layer sizes (in [(30), (30,30), (40),
(40,40), (50), (50,50)]) and activation (in [‘logistic’, ‘tanh’,
‘relu’]]). There are a total of 6 × 3 = 18 configurations.
We maintained the same 5-fold cross-validation setup as in
the previous experiment, while keeping the other training
parameters at their default values. In the experiment, we
performed cross-validation on each configuration with differ-
ent proportion subsets to obtain validation scores. Based on
the validation scores, we recommended a configuration and
calculated its actual accuracy. At the same time, we ranked the
configurations based on the evaluation scores and compared
the predicted ranking with the actual ranking to analyze their
evaluation ability.

0.60

0.69

0.78

0.87

0.96

84

85

86

87

88

5% 10% 20% 60% 100%

nD
CG

te
st

Ac
c.

 (%
)

sampling size

splice

random stratified ours random stratified ours

0.60

0.80

1.00

85

86

87

88

5% 10% 20% 60% 100%

te
st

Ac
c.

 (%
)

sampling size

australian

0.78

0.87

0.96

84

85

86

87

5% 10% 20% 60% 100%

nD
CG

sampling size

splice

0.80

0.90

1.00

82

83

84

85

1% 5% 20% 60% 100%

te
st

Ac
c.

 (%
)

sampling size

a9a

0.95

0.97

0.99

96.6

96.8

97.0

97.2

1% 5% 20% 60% 100%

nD
CG

sampling size

gisette

Fig. 5. Test accuracy (%) and nDCG score under different subset sizes for
our method and other k-fold cross-validation methods.

From the experimental results shown in Figure 5, it can
be observed that our method is capable of recommending
configurations with better test accuracy across all six datasets.
Moreover, the increased nDCG scores suggest that our en-
hancement is not restricted to suggesting a single superior
configuration, but instead, it enables us to more effectively

assess the ranking of various configurations. This enhanced
evaluation capability expands the potential applications of our
method, which can help the comparison and ranking for differ-
ent configurations. In addition, our method outperforms other
methods significantly in small subset sizes, which highlights
the importance of variance in evaluating performance when the
subset is small. Meanwhile, although different methods yield
similar results for large subsets, our method shows significant
advantages on some datasets (e.g., splice and a9a), which are
due to the fine construction of the folds.

D. Independent Experiments

In addition to the two overall experiments, several indepen-
dent experiments were conducted to verify the characteristics
of the main designs in our method. In the experiment, we made
adjustments to the three main parts of the proposed method,
including instance grouping, fold construction, and metric
design. In this section, we provide a detailed explanation of
the experimental details and results.

Feature and Label based Instance Grouping:
First, we examined the impact of group construction in

our method. We employed the same training settings as
Section IV-C, which used cross-validation to make a direct
comparison. To highlight the impact of grouping, both the
vanilla and our method use stratified sampling in this experi-
ment. The vanilla method divides the data equally based on the
labels, while our method divides the data based on the groups.
Meanwhile, the two methods both use mean accuracy as
the evaluation metric. To observe the performance difference
between the two methods on the subset size, we conducted
experiments under two sampling ratios of 10% and 100%.

The experimental results are presented in Table V. Although
the improvements in accuracy and nDCG achieved by our
proposed methods are not significant, it can be observed that
without considering the design of metrics and folds, the fine-
grained grouping method proposed in this paper can still
improve the ranking and recommendation effects. Besides, the
proposed methods generally have smaller variances in most
cases, which also confirms the advantage of our method in
terms of stability. By comparing the results obtained under
different subset sizes, it is apparent that the benefits of groups
become more prominent when the subset size is small, which
is consistent with the characteristics of the complete method.

General and Special in Fold Construction:
Our method not only incorporates group construction but

also considers two types of folds: the general fold and the
special fold. Traditional methods only consider general folds
that conform to the overall distribution, neglecting the potential
benefits of special folds on a limited budget. To analyze the
impact of these two types of folds, we conducted experiments
with different allocations for the two types of folds while
ensuring that the total number of folds remained at 5.

Figure 6 illustrates the results of different fold allocations in
the 5-fold cross-validation experiment. Through experimental
results, it can be observed that cross-validation with all general

TABLE V
TEST ACCURACY (%) AND NDCG SCORE FOR CROSS-VALIDATION WITH OUR PROPOSED BLOCKING METHOD AND VANILLA STRATIFIED METHOD.

data ratio method testAcc. (%) nDCG data ratio method testAcc. (%) nDCG data ratio method testAcc. (%) nDCG

au
str

al
ia

n 10% vanilla 85.02±0.49 0.786

sp
lic

e 10% vanilla 85.16±1.31 0.809

a9
a

10% vanilla 84.65±0.09 0.985
ours 85.83±0.28 0.845 ours 85.39±0.40 0.818 ours 84.70±0.08 0.989

100% vanilla 85.18±0.56 0.764 100% vanilla 85.27±1.15 0.870 100% vanilla 84.70±0.87 0.992
ours 85.51±0.00 0.811 ours 86.05±0.50 0.874 ours 84.70±0.16 0.992

gi
se

tte

10% vanilla 96.73±0.23 0.975

sa
tim

ag
e 10% vanilla 88.49±0.69 0.951

us
ps

10% vanilla 93.37±0.26 0.803
ours 96.87±0.25 0.980 ours 88.73±0.24 0.962 ours 93.49±0.37 0.834

100% vanilla 96.90±0.17 0.976 100% vanilla 88.88±0.20 0.966 100% vanilla 93.42±0.28 0.869
ours 97.03±0.12 0.988 ours 88.95±0.52 0.974 ours 93.42±0.18 0.874

0.77
0.78
0.79
0.8
0.81
0.82
0.83

85
85.5
86

86.5
87

87.5
88

0 2 3 4 5

nD
CG

te
st

Ac
c.

 (%
)

australian

kspe

testAcc. nDCG

0.77

0.79

0.81

0.83

85

86

87

88

0 2 3 4 5

te
st

Ac
c.

 (%
)

australian

kspe

0.72

0.78

0.84

0.9

83

84

85

86

0 2 3 4 5
splice

kspe

0.93

0.95

0.97

0.99

84

85

0 2 3 4 5

nD
CG

a9a

kspe

0.93

0.98

1.03

96

97

98

0 2 3 4 5

te
st

Ac
c.

 (%
)

gisette

kspe

0.93

0.95

0.97

0.99

87

88

89

90

0 2 3 4 5
satimage

kspe

0.7

0.75

0.8

0.85

93

94

0 2 3 4 5

nD
CG

usps

kspe

Fig. 6. Test accuracy (%) and nDCG scores with different allocation of folds.

folds or all special folds usually yields similar results in
terms of test accuracy and nDCG score. This phenomenon
suggests that the average performance of each subset with
special folds is comparable to that of each subset with general
folds, which is an interesting aspect of multi-subset evaluation.
Furthermore, results from multiple datasets indicate that cross-
validation with a mixture of both types of folds has better
evaluation capabilities compared to validation with a single
type of folds, as demonstrated in datasets such as splice,
usps, and gisette. This is also the reason why we introduce
special folds in the evaluation with limited resources. However,
the effectiveness of mixed folds validation is not consistently
stable in other datasets, but with appropriate settings, it can
still lead to significant improvements.

0.60

0.70

0.80

0.90

1.00

84

85

86

87

88

5% 10% 20% 60% 100%

testAcc. (%) nDCG
vallina ours vallina ours

0.40

0.60

0.80

1.00

86

87

88

89

5% 10% 20% 60% 100%

te
st

Ac
c.

 (%
)

australian 0.60

0.70

0.80

0.90

1.00

84

85

86

87

88

5% 10% 20% 60% 100%

nD
CG

splice

0.70

0.80

0.90

1.00

80

82

84

86

5% 10% 20% 60% 100%

te
st

Ac
c.

 (%
)

a9a 0.94

0.96

0.98

1.00

97

97

98

5% 10% 20% 60% 100%

nD
CG

gisette

Fig. 7. Test accuracy (%) and nDCG score for cross-validation with vanilla
metrics and our metrics in subsets with different sizes.

Variance and Sampling in Metric Design:

As one of the main designs in our work, we have con-
sidered both variance and sampling size information in the
evaluation metric. In this section, we compared the differences
in evaluation performance between the improved metric and
the original metric through experiments. Similar to other
independent experiments, we conducted the cross-validation
experiment on different datasets. We maintained the instance
grouping and fold construction unchanged and only altered
the selection of the metric to evaluate the effectiveness of
cross-validation under different subset sizes. Figure 7 shows
the results of the experiment in terms of test accuracy and
nDCG score. The experimental results clearly demonstrate the
advantages of the metric proposed in this paper. When the
sampling size is small, considering the variance and the metric
of sampling, both the test accuracy and nDCG score can be
higher than the vanilla method on all datasets.

V. CONCLUSION

Bandit-based optimization allocates budgets for different
configurations to evaluate and select high-quality hyperparam-
eters with limited resources, which has been widely applied
in academia and industry. However, sampling randomness has
a notable effect on bandit-based optimization, resulting in un-
stable training, poor performance, and high time consumption,
which affects the performance of bandit-based optimization
especially when handling a large number of configurations
with high-dimensional and large problems. To address these
issues, we have proposed a new bandit-based method based
on sampling and variance information. The method effec-
tively addresses the above-mentioned shortcomings by using
more careful subset sampling, considering both general and
special folds, and designing metrics that consider sampling
and variance information. The proposed method achieves
significant improvements in both optimization performance
and efficiency, by accuracy improvement of 1% to 10% while
reducing execution time by half.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant No. 62376099 & 62072186) and
the Guangzhou Municipal Science and Technology Project
(No. 2023A03J0143).

REFERENCES

[1] Kaggle: Your machine learning and data science community, Year
Published.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery and data mining (SIGKDD), pages
2623–2631, 2019.

[3] Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto, Sandro
Ridella, et al. The’k’in k-fold cross validation. In ESANN, pages 441–
446, 2012.

[4] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures
for model selection. 2010.

[5] Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary
hyberband for scalable, robust and efficient hyperparameter optimiza-
tion. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence (IJCAI-21), pages 2147–2153.
International Joint Conferences on Artificial Intelligence Organization,
8 2021. Main Track.

[6] Antoni Baum. hpbandster-sklearn. https://github.com/Yard1/
hpbandster-sklearn.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. Advances in Neural
Information Processing Systems (NeurIPS), 24, 2011.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research (JMLR), 13(2),
2012.

[9] Daniel Berrar. Cross-validation, 2019.
[10] Ondrej Bohdal, Lukas Balles, Beyza Ermis, Cédric Archambeau, and

Giovanni Zappella. Pasha: Efficient hpo and nas with progressive
resource allocation, 2023.

[11] Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on
applications of multi-armed and contextual bandits. In 2020 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8. IEEE, 2020.

[12] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pages 108–122, 2013.

[13] Burakh. (2016). Ground State Energies of 16,242 Molecules, Version
1. Retrieved October 25, 2023 from https://www.kaggle.com/datasets/
burakhmmtgl/energy-molecule.

[14] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vec-
tor machines. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(3):1–27, 2011.

[15] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart
De Moor. Easy hyperparameter search using optunity. arXiv preprint
arXiv:1412.1114, 2014.

[16] Radwa ElShawi, Hudson Lekunze, and Sherif Sakr. csmartml: A meta
learning-based framework for automated selection and hyperparameter
tuning for clustering. In 2021 IEEE International Conference on Big
Data (Big Data), pages 1119–1126. IEEE, 2021.

[17] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and effi-
cient hyperparameter optimization at scale. In International Conference
on Machine Learning (ICML), pages 1437–1446. PMLR, 2018.

[18] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. Auto-sklearn 2.0: Hands-free automl via
meta-learning. The Journal of Machine Learning Research (JMLR),
23(1):11936–11996, 2022.

[19] Matthias Feurer and Frank Hutter. Hyperparameter optimization. Au-
tomated machine learning: Methods, systems, challenges, pages 3–33,
2019.

[20] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and David Sculley. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
1487–1495, 2017.

[21] Harlfoxem. (2016). House Sales in King County, USA, Version
1. Retrieved October 25, 2023 from https://www.kaggle.com/datasets/
harlfoxem/housesalesprediction.

[22] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: Data mining, inference,
and prediction, volume 2. Springer, 2009.

[23] Geoffrey E Hinton. A practical guide to training restricted boltzmann
machines. In Neural Networks: Tricks of the Trade, pages 599–619.
Springer, 2012.

[24] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos
Storkey. Meta-learning in neural networks: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI / PAMI),
44(9):5149–5169, 2021.

[25] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical
guide to support vector classification, 2003.

[26] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In Inter-
national Conference on Learning and Intelligent Optimization (LION),
pages 507–523. Springer, 2011.

[27] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identi-
fication and hyperparameter optimization. In Artificial Intelligence and
Statistics (AISTATS), pages 240–248. PMLR, 2016.

[28] Kihome. (2023, October). machine-predictive-
maintenance-classification, Version 1. Retrieved Octo-
ber 25, 2023 from https://www.kaggle.com/code/kihome/
machine-predictive-maintenance-classification.

[29] PM Lerman. Fitting segmented regression models by grid search.
Journal of the Royal Statistical Society: Series C (Applied Statistics),
29(1):77–84, 1980.

[30] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. Massively parallel
hyperparameter tuning. arXiv preprint arXiv:1810.05934, 5, 2018.

[31] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to hy-
perparameter optimization. The Journal of Machine Learning Research
(JMLR), 18(1):6765–6816, 2017.

[32] Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Zhi Yang, Ce Zhang,
and Bin Cui. Transbo: Hyperparameter optimization via two-phase
transfer learning. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (SIGKDD), pages 956–966,
2022.

[33] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E
Gonzalez, and Ion Stoica. Tune: A research platform for distributed
model selection and training. arXiv preprint arXiv:1807.05118, 2018.

[34] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass,
and Frank Hutter. Smac3: A versatile bayesian optimization package
for hyperparameter optimization. The Journal of Machine Learning
Research (JMLR), 23(54):1–9, 2022.

[35] Mohamed Mohamed Maher Zenhom Abdelrahman Maher and Sherif
Sakr. Smartmml: A meta learning-based framework for automated
selection and hyperparameter tuning for machine learning algorithms.
In 22nd International Conference on Extending Database Technology
(EDBT), 2019.

[36] Kolby Nottingham Markelle Kelly, Rachel Longjohn. The uci machine
learning repository. https://archive.ics.uci.edu.

[37] Akshay Mathur. NATICUSdroid (Android Permissions)
Dataset. UCI Machine Learning Repository, 2022. DOI:
https://doi.org/10.24432/C5FS64.

[38] Yinfeng Meng, Jiye Liang, Fuyuan Cao, and Yijun He. A new distance
with derivative information for functional k-means clustering algorithm.
Information Sciences, 463:166–185, 2018.

[39] Elgiriyewithana Nidula. (2023, October). Credit Card Fraud
Detection Dataset 2023, Version 1. Retrieved October 25,
2023 from https://www.kaggle.com/datasets/nelgiriyewithana/
credit-card-fraud-detection-dataset-2023.

[40] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. The Journal of Machine Learning Research (JMLR),
12:2825–2830, 2011.

[41] Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric
Archambeau. Scalable hyperparameter transfer learning. Advances in
Neural Information Processing Systems (NeurIPS), 31, 2018.

[42] Danny Matthew Saputra, Daniel Saputra, and Liniyanti D Oswari. Effect
of distance metrics in determining k-value in k-means clustering using
elbow and silhouette method. In Sriwijaya International Conference on

Information Technology and Its Applications (SICONIAN 2019), pages
341–346. Atlantis Press, 2020.

[43] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE (Proc. IEEE), 104(1):148–175,
2015.

[44] Machine Learning Group ULB. (2017). Credit Card Fraud Detection,
Version 3. Retrieved October 25, 2023 from https://www.kaggle.com/
datasets/mlg-ulb/creditcardfraud/.

[45] Chunnan Wang, Hongzhi Wang, Tianyu Mu, Jianzhong Li, and Hong
Gao. Auto-model: utilizing research papers and hpo techniques to deal
with the cash problem. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 1906–1909. IEEE, 2020.

[46] Ananto Setyo Wicaksono and Ahmad Afif Supianto. Hyper parameter
optimization using genetic algorithm on machine learning methods for
online news popularity prediction. International Journal of Advanced
Computer Science and Applications (IJACSA), 9(12), 2018.

[47] Xue Ying. An overview of overfitting and its solutions. In Journal of
Physics: Conference Series, volume 1168, page 022022. IOP Publishing,
2019.

[48] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan
Lim, and Robert M Patton. Optimizing deep learning hyper-parameters
through an evolutionary algorithm. In Proceedings of the Workshop
on Machine Learning in High-performance Computing Environments
(MLHPC), pages 1–5, 2015.

[49] Yongqi Zhang, Quanming Yao, Wenyuan Dai, and Lei Chen. Autosf:
Searching scoring functions for knowledge graph embedding. In 2020
IEEE 36th International Conference on Data Engineering (ICDE), pages
433–444. IEEE, 2020.

[50] Jihua Zhu, Zutao Jiang, Georgios D Evangelidis, Changqing Zhang,
Shanmin Pang, and Zhongyu Li. Efficient registration of multi-view
point sets by k-means clustering. Information Sciences, 488:205–218,
2019.

