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Abstract

Hyperparameter Optimization and Neural Architecture
Search are powerful in attaining state-of-the-art machine
learning models, with Bayesian Optimization (BO) stand-
ing out as a mainstream method. Extending BO into the
multi-fidelity setting has been an emerging research topic
in this field, but faces the challenge of determining an ap-
propriate fidelity for each hyperparameter configuration to
fit the surrogate model. To tackle the challenge, we propose
a multi-fidelity BO method named FastBO, which excels in
adaptively deciding the fidelity for each configuration and
providing strong performance while ensuring efficient re-
source usage. These advantages are achieved through our
proposed techniques based on the concepts of efficient point
and saturation point for each configuration, which can be
obtained from the empirical learning curve of the configu-
ration, estimated from early observations. Extensive experi-
ments demonstrate FastBO'’s superior anytime performance
and efficiency in identifying high-quality configurations and
architectures. We also show that our method provides a way
to extend any single-fidelity method to the multi-fidelity set-
ting, highlighting the wide applicability of our approach.

1. Introduction

Hyperparameters are crucial in machine learning pipelines.
Hyperparameter optimization (HPO) [11] and Neural Ar-
chitecture Search (NAS) [9] aims to find the hyperparame-
ters or architectures that can yield good performance with-
out human experts. Among different HPO and NAS meth-
ods, Bayesian Optimization (BO) [2, 14, 37] is an effec-
tive model-based method that has shown remarkable suc-
cess [8, 36]. BO maintains a surrogate model of the tar-
get performance metric based on past evaluations of hyper-
parameter configurations, which guides the choice of more
promising configurations to evaluate.

Despite its sample efficiency, standard BO requires a
full evaluation of each configuration, involving full-scale
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training and testing of models, which can be highly time-
consuming, particularly with the recent trend to larger mod-
els. To avoid expensive full evaluations, multi-fidelity
methods [4, 16, 22, 23] have been proposed, where the fi-
delities refer to the levels of performance metrics obtained
under different resource levels. These methods follow the
principle of successive halving (SHA) [16]: initially, they
evaluate a set of randomly selected configurations using a
small number of resources; then, based on the low-fidelity
performances, the poorly-performing ones are successively
eliminated, while the well-performing ones continue to
be evaluated with increasing resources. Follow-up stud-
ies [10, 19, 24, 34, 44] propose model-based multi-fidelity
methods, replacing the random configuration selection with
a more informed model to improve sample efficiency.

Nevertheless, current model-based multi-fidelity meth-
ods face a major limitation: they are built upon the SHA
framework, which operates under the assumption that learn-
ing curves of different configurations rarely intersect. This
assumption does not hold in practice [43], i.e., early perfor-
mance observations cannot always indicate the final fidelity
performance at the full resource level. This leads to a fun-
damental challenge when extending model-based methods
to the multi-fidelity setting: What is the appropriate fidelity
for each configuration to fit the surrogate model? In other
words, which fidelity can provide performance observations
that reliably indicate the final fidelity performance? Exist-
ing methods struggle to address this fundamental challenge.
In particular, BOHB [10] and Hyper-Tune [24] fit separate
surrogate models for different fidelities, failing to capture
inter-fidelity correlations. FTBO [41] and A-BOHB [19]
fit a joint model but require strong assumptions to remain
tractable. Another work by Salinas et al. [34] suggests us-
ing the last observed fidelity performance to fit the surro-
gate model. However, it widens the gap between poorly-
and well-performing configurations at the early stage, po-
tentially leading to an inaccurate surrogate model.

To this end, we propose a multi-fidelity extension of BO,
namely FastBO, which tackles the challenge of deciding the
appropriate fidelity for each configuration to fit the surro-
gate model. FastBO identifies a so-called efficient point for



each configuration to be the fidelity. The point balances
computational cost and performance quality while captur-
ing valuable learning curve trends. In essence, FastBO se-
lects the fidelity for each configuration instead of evaluating
all the configurations at the same fidelity. Additionally, a
saturation point for each configuration is identified to be an
approximation of the final fidelity, leading to high-quality
performance while reducing resource wastage. The two cru-
cial points are adaptively derived from the estimated learn-
ing curve of each configuration. Furthermore, the warm-up
and post-processing stages are carefully designed to enable
judicious early-termination detection and efficient satura-
tion level evaluation. Empirical evaluation against the state-
of-the-art methods shows that FastBO has strong anytime
performance and can considerably save up to 87% of the
time required to identify a good configuration or architec-
ture, lowering the barriers for engaging in HPO and NAS.
In summary, we make the following major contributions.

1. We propose a multi-fidelity model-based HPO method
that adaptively decides the fidelities for configurations
and efficiently offers strong performance, thanks to the
introduced concepts of efficient and saturation points.

2. We develop a learning curve modeling module to enable
adaptive derivation of the key points, a warm-up stage to
allow early-termination detection, and a post-processing
stage to ensure efficient saturation-level evaluation.

3. We show that our strategy can be used to extend exist-
ing single-fidelity methods to the multi-fidelity setting,
demonstrating the effectiveness and generality of our
method and highlighting promising future opportunities.

2. Related Work

HPO and NAS are very costly endeavors, especially consid-
ering the escalating model evaluation overhead. Two crucial
directions to efficiently solve the problem are model-based
and multi-fidelity methods. Ideas from them can also be
combined. Here, we review the methods in these categories.
Model-based methods. BO is the representative of model-
based methods. Based on the surrogate model constructed
by historical evaluation results, BO selects the configura-
tions to evaluate via an acquisition function that balances
exploration and exploitation. Commonly used surrogate
models are Gaussian processes [37], random forests [14],
tree-structured Parzen estimator [2], and deep networks [38,
39]. Popular acquisition functions include Expected Im-
provement [25], Knowledge Gradient [12], Upper Confi-
dence Bound [40], and Predictive Entropy Search [13]. Re-
cent studies on BO have explored the utilization of expert
priors [15, 21, 30, 35] and derivative information [1, 31, 46].
There also has been a recent focus on enhancing the inter-
pretability [5, 47] of the HPO process [3, 28, 29].

Multi-fidelity methods. Multi-fidelity methods exploit low
and high fidelities for configurations to save the evaluation

time. Successive halving (SHA) [16] runs a set of config-
urations using a small number of resources and promotes
only the best-performing half of configurations to continue
for twice as many resources. Hyperband [22] calls SHA as
a sub-routine with varying maximum resources and intro-
duces a reduction factor to control the fraction of promo-
tion. ASHA [23] extends SHA to the asynchronous setting
by aggressive early-stopping. Later, PASHA [4] further ex-
tends ASHA through more aggressive early-stopping based
on the ranking of configurations during the tuning process.
Combination of model-based and multi-fidelity meth-
ods. BOHB [10] and a parallel work [44] first propose
to combine model-based and multi-fidelity methods by re-
placing the random sampling in Hyperband with BO. A-
BOHB [19] employs a joint GP surrogate over fidelities and
supports asynchronous scheduling. Hyper-Tune [24] im-
proves its Hyperband by a delayed strategy to decrease in-
accurate promotions. Salinas et al. [34] proposed to extend
methods to multi-fidelity settings by using the performance
of the last fidelity in an ASHA running. DyHPO [45] and
DPL [17] introduce new surrogates for multi-fidelity BO
considering the learning curves; the former uses deep GP
kernels while the latter integrates deep power law functions.

3. Problem Formulation

Given an algorithm having hyperparameters Ay, ..., A, with
domains Ay, ..., A,,,, we define its hyperparameter space as
A = Ay x ... x A,,. Here, we define the problem and out-
line the key challenge related to hyperparameter optimiza-
tion (HPO). Notations are in Supp. 7 for reference.
Single-fidelity setting. For each hyperparameter config-
uration A, we denote f(A) as the performance achieved
using A. For consistency, the metric in this paper refers
to descending metrics like validation loss, with ascending
metrics being treated similarly. In the single-fidelity HPO
setting, we aim to find A* minimizing function f(\), i.e.,
A" = argminycp f(A). BO is one of the most popu-
lar single-fidelity HPO methods. The vanilla BO has two
key components: a surrogate model M to approximate the
objective function f(A), and an acquisition function a to
identify a promising configuration from search space. With
these ingredients, BO iterates three steps: (i) select a con-
figuration A; by maximizing the acquisition function; (ii)
evaluate \; to get y; and add the data (\;, y;) into the cur-
rent observation set D;—1 = {(A1,91), ., (Ni1,%i-1) }3
(iii) update the surrogate model and the acquisition function
based on the augmented D;. In this work, M is a Gaussian
Process and a is Expected Improvement.

Multi-fidelity setting. Multi-fidelity methods consider re-
source information, such as training epochs or training sub-
set ratios. Evaluations at various resource levels results in
different performance levels, known as the fidelities. Differ-
ent fidelities provide a way to balance computational cost



and performance quality. In multi-fidelity HPO problems,
the target is extended to A" = argminyca f(A,7), where
f(X, r) is the objective function obtained for A at r. We use
r to denote the resource level, which can also be interpreted
as the fidelity, and 7 € {rsin, -y Tmaz }-

Extending single-fidelity methods to the multi-fidelity
setting. The inefficiency of single-fidelity methods stems
from their reliance on the final fidelity evaluation of
F(A Tmaz) to be the evaluation of its objective f(A,r).
Fitting surrogate models by such final fidelity evaluations
incurs high cost due to the full evaluation of the configu-
rations. Notably, low-fidelity evaluations at r < 7,4, pro-
vide informative insights into the objective but are computa-
tionally cheaper, which is valuable to the optimization pro-
cess. Therefore, we seek an effective way to extend single-
fidelity methods like BO to the multi-fidelity setting. More
specifically, recalling the earlier steps of BO, when eval-
uating the configuration A; in the second step, we instead
acquire its low-fidelity performance y;* at r;, where r; de-
notes the fidelity used for A; to fit the surrogate model. The
observations D; then becomes {(A1,y1"), ..., (A, y;')}. To
conclude, in order to extend single-fidelity methods to the
multi-fidelity setting, the key challenge to be addressed is
to determine r; for each \;.

4. Methodology

In this section, we propose a novel multi-fidelity model-
based algorithm FastBO. We first propose the key concepts
of efficient point and saturation point, which are crucial in
deciding the fidelity level to fit the surrogate model and to
approximate the final fidelity respectively. Secondly, we
elaborate on the details of learning curve modeling, where
the two crucial points can be extracted. Then, we present
the techniques associated with the auxiliary warm-up and
post-processing stages. Finally, we summarize FastBO and
discuss its wide applicability to any single-fidelity methods.

4.1. Estimation of Efficient and Saturation Points

In our method, we adaptively identify efficient and satura-
tion points for each configuration. The two points are cru-
cial in the optimization process. We first formally define the
efficient point as follows.

Definition 1 (Efficient point). For a given learning curve
Ci(r) of hyperparameter configuration \;, where r repre-
sents the resource level (also referred to as fidelity), the ef-
ficient point e; of A; is defined as: e; = min{r | C;(r) —
Ci(2r) < 81}, where 01 is a predefined small threshold.

The semantic of Definition | is that starting from the ef-
ficient point onwards, when the resources are doubled (i.e.,
from r to 2r), the performance improvement falls below a
small threshold ;. Consequently, this point characterizes
the fidelity at which a configuration demonstrates strong

performance while still efficiently utilizing resources. In
simpler terms, it signifies an appropriate fidelity of perfor-
mance that can be achieved with comparably efficient re-
source usage. Therefore, we make the following remark.

Remark 1. The efficient points of the hyperparameter con-
figurations can serve as their appropriate fidelities used for
fitting the surrogate model. This is due to their (i) opti-
mal resource-to-performance balance, (ii) ability to capture
valuable learning curve trends, and (iii) customization for
different hyperparameter configurations.

We elaborate on the reasons in Remark 1 as follows.
Firstly, efficient points balance the trade-off between com-
putational cost and result quality. Beyond the efficient point
of a given configuration, allocating additional resources to
that configuration becomes less efficient. Secondly, ef-
ficient points capture valuable trends within the learning
curves. For example, the learning rate influences the shape
of learning curves; the identification of efficient points for
configurations with smaller learning rates often occurs at
later stages. The insights into learning curve behaviors en-
able more informed decision-making. Thirdly, the ability
to customize the fidelity for each specific configuration is a
significant advantage. This adaptive approach is more rea-
sonable than previous studies that use a fixed fidelity for all
configurations, as it better accounts for the unique charac-
teristics of individual learning curves.

This insight leads us to use the efficient point e; iden-
tified for each configuration \; as its fidelity used to fit the
surrogate model. Specifically, we evaluate \; until reaching
e; and obtain the observed performance y;*. The resulting
data point (X;, y;*) is then added into the current observa-
tion set D;_; to refit the surrogate model. We proof the
superiority of FastBO over SHA-based methods in Supp. 8.

Besides efficient points, we identify saturation points for
all configurations from their learning curves as well. We
provide the definition of the saturation point as follows.

Definition 2 (Saturation point). For a given learning curve
Ci(r) of configuration X\;, where r represents the resource
level (also referred to as fidelity), the saturation point s; of
i is defined as: s; = min{r | ¥r' > r,|C;(r") — C;(r)| <
d2}, where 02 is a predefined small threshold.

The semantic of Definition 2 is that beyond the satura-
tion point, the observed performance no longer exhibits no-
table variations with more resources. Thus, this point char-
acterizes the fidelity at which the performance of a config-
uration stabilizes. The concept of saturation point is well-
recognized within the machine learning community. Build-
ing on the above definition, we make the following remark.

Remark 2. The saturation points of the hyperparameter
configurations can serve as their approximate final fideli-



ties, as they provide performance results that meet prede-
fined quality thresholds while reducing resource wastage.

This insight leads us to use the saturation point s; identi-
fied for each configuration \; as its final fidelity approxima-
tion. The point is used in the post-processing stage for pro-
moting some well-performing configurations to get higher-
fidelity performances. In essence, when aiming for a full
evaluation of the configurations, we suggest that terminat-
ing the evaluation at the saturation point is sufficient. A
more intuitive illustration of the concepts of efficient and
saturation points is provided in Supp. 9.

4.2. Learning Curve Modeling

From Definitions 1 and 2, we can extract the efficient
and saturation points of configurations from their learn-
ing curves. The curve C;(r) corresponds to configuration
A; and describes the predictive performance with A; as a
function of the fidelity r. Here, r can be either the num-
ber of training instances or the number of training epochs.
In the context of learning curves, the former is referred
to as observation learning curves, while the latter is iter-
ation learning curves [26]. Both types are applicable to
FastBO, so we use the term learning curve to encompass
both. Given the observation set O = {(r,¥}) }r=rpin,... w
for A;, which comprises pairs of data points representing
fidelities » € {r,in,...,w} and the corresponding evalua-
tions y;, where w is a pre-defined warm-up point to stop
collecting data, FastBO can estimate a learning curve for
A; based on O}’ by first constructing a parametric learning
curve model, then estimating the parameters.

Constructing a parametric learning curve model. Empir-
ical learning curves can be modeled with function classes
relying on some parameters. Viering and Loog [43] com-
prehensively summarized the parametric models studied in
machine learning. In practice, different problems have dif-
ferent learning curves; even under the same problem, differ-
ent hyperparameter configurations (e.g., learning rate, regu-
larization, etc.) may lead to significantly different learning
curves. Since one single parametric model is not enough
to characterize all the learning curves by itself, we consider
combining different parametric models into a single model.
Specifically, we consider three parametric models POW3,
EXP3 and LOG?2, as listed in Tab. 1, which have shown
good fitting and predicting performance in previous empiri-

Table 1. Parametric learning curve models used.

Model Formula Family
POW3 y=d+ax™™  Power law
EXP3 y=d+e %" Exponential
LOG2 y=d+alog(x) Logarithmic

cal studies [26, 43]. We provide detailed discussions on the
choice of parametric models in Supp. 10.

Here, we denote each parametric model as ¢;(r|0;) with
parameters 6 ;, where the independent variable 7 represents
the fidelity. We combine three models into one model via a
weighted linear combination:

C(r|p) = Z]Em’g} wjc;(r]0;), ()

where ¢ = {w1, w2, ws, 01, 02,05} is the parameter of the
combined model, which consists of parameters {61, 02, 03}
and weight {wy,ws, w3} of every single model. Therefore,
each pair of observations (r,y]) in O}" can be modeled by
the combined model as y! = C(r|®) + €, where y! is the
observed dependent variable and e represents the error term.
Estimating parameters in the parametric learning curve
model. We employ maximum likelihood estimation to esti-
mate the parameters ¢ in the parametric model C(r|¢). As-
suming that € ~ A/(0,0?), the probability of an observed
performance ! under parameters is given by p(y!'|¢, 0?) =
N (yr;C(r|@),o?). Given the observations O of \; that
contains a set of observed data points (r, y] ), the likelihood
function can be expressed as:

L(p,0”%r,y]) = [ [ p(vf|#,07)
_ H 1 eXp(_(yf—C(rzkm))?) @

oV 2m 202

k=Tmin

We estimate ¢ by maximizing log-likelihood function,
which is easily calculated given Eq. 2.

An existing model-free method [7] also considers us-
ing learning curves for the HPO problem. However, it tar-
gets predicting the high-fidelity performance from the low-
fidelity observations and thus stopping configurations that
are unlikely to beat the current best values, which is differ-
ent from our main target of identifying appropriate fidelity
levels for the configurations to fit the surrogate model from
their estimated learning curves.

4.3. Warm-up And Post-processing Stages

In addition to its core components, FastBO incorporates
two auxiliary stages: the warm-up and post-processing
stages. For the completeness of our method, we provide an
overview of these stages, outlining their targets and present-
ing the key techniques of early-termination detection and
saturation-level evaluation that are applied within.

Warm-up stage. The warm-up stage prepares the early
observation set O;" for each configuration A; that is used
to estimate its learning curve, as discussed in § 4.2. Here
w € (Tmin, "maz) 18 a pre-determined fidelity, denoted as
warm-up point. Specifically, we initiate the evaluation of
each newly selected A;, proceeding until reaching w. Dur-
ing this process, we record each fidelity r and its evaluation



result y7, forming pairs (r,y! ). Upon reaching w, we pause
the evaluation for A; and obtain its early observation set
O¥ ={(r,y7) }r=ryrin....,w> and start modeling the learning
curve. During the warm-up stage, we monitor the perfor-
mance changes across every two continuous fidelities. If we
detect that the performance of A; has consecutively dropped
twice by more than a ratio o, i.e., (y] ' —yl %) > ay! 2
and (y7 —y, ') > ay, ', we promptly terminate the eval-
uation for A; at its current fidelity r, because such con-
secutive performance deterioration indicates \; is unlikely
to achieve satisfactory performance. Once terminated, we
directly incorporate the current performance y; of A; into
D;_1 that is used for updating the surrogate model. Thus,
further operations like learning curve modeling are dis-
continued for A;. Moreover, if we observe a single case
of performance drop without subsequent occurrences, i.e,
yi =yt > ayi P and yf —y; Tt < ay; !, we optnot
to include data from fidelity » — 1 in O}". This is to manu-
ally filter out potential noise in the data that may adversely
affect the fitting of the learning curve.

Post-processing stage. The post-processing stage aims
at two tasks: promoting the well-performing configura-
tions for saturation-level evaluations and identifying the
best configuration and its performance. Firstly, FastBO pro-
motes the top-k well-performing configurations and evalu-
ates them to their saturation points to ensure high-quality
performance while maintaining efficient resource utiliza-
tion. We set k to be always less than or equal to the number
of parallel workers available, ensuring a manageable over-
head of saturation-level evaluations. It is worth noting that
the additional time required is factored into the overall time.
Secondly, FastBO finds the best configuration along with its
performance achieved so far, which is a standard final step
in most HPO methods. However, an increase in fidelities
does not always result in performance improvement, possi-
bly due to overfitting, resource saturation, or problem com-
plexity. Therefore, we treat the evaluation at each fidelity
as an individual task and record all these intermediate eval-
uation results, which is also a common practice in recent
implementations. In this way, FastBO finds the best per-
formance by considering all the results, rather than relying
solely on the highest-fidelity performances of the configu-
rations. In the parallel setting, treating each fidelity evalua-
tion as an individual task offers an added benefit due to its
finer granularity. More specifically, when a worker is idle,
it takes on a new task of evaluating a configuration at a spe-
cific fidelity, rather than evaluating an entire configuration.

4.4. FastBO and Generalization

Algorithm | summarizes our proposed FastBO. It takes sur-
rogate model M, acquisition function a, warm-up point w,
performance decrease ratio «, promotion number k, and
thresholds §;, d2 as inputs, and output the best-founded

Algorithm 1: FastBO algorithm
input : M, a, w, o, k, 61, do.
output: \*, y*

1+ 0,D«0

2 while not meet the stop criterion do

3 find A; < argmaxycp a(X, M;_1)

4 O, t < warm-up given w, «  // cf. §4.3
5 if O is not empty then

6 fitC;(r)to OF  //cf. §4.2

7 find €;, S; given Cl (T), 51, 52 Il (f §41
8 y;" < continue evaluating A; to e;

9 else

10 L €; <1, 8 < Tmax

1 D; + D;_1 U()\i,yiel)

12 refit M; to D;

13 1+ 1+1

14 A*, y* < post-process givens = {s; }, k // ¢f. §4.3

configuration A* and its performance y*. FastBO follows
a similar iterative process of model-based methods but re-
places the expensive full evaluations with a more intelligent
alternative (cf. Lines 4-10). Specifically, each configuration
; first enters a warm-up stage to collect its early observa-
tion set O;” and to be detected and terminated if it exhibits
consecutive performance deterioration (cf. Line 4). If \;
is not terminated, FastBO then estimates a learning curve
C;(r) for A; based on O (¢f. Line 6), and thus the efficient
point and saturation point of A; can be obtained (c¢f. Line
7). After that, \; continues to be evaluated until reaching
e; (cf. Line 8); the result is added to the observation set D
(cf. Line 11) that is used for updating M (cf. Line 12). On
the other hand, the poorly-performing configuration will be
terminated early at fidelity ¢ with its result being added di-
rectly to D (cf. Lines 10, 11). Finally, the post-processing
stage promotes the most promising configurations to their
saturation points and finds the best-founded configuration
A* and its performance y* (cf. Line 14).

Generalizing FastBO to single-fidelity methods. The core
of FastBO is to tackle the key challenge of deciding an ap-
propriate fidelity for each configuration to fit the surrogate
model by adaptively identifying its efficient point. This
strategy of using the efficient point performances for sur-
rogate model fitting also provides a simple but effective
way to bridge the gap between single- and multi-fidelity
methods. While it is primarily described in the context of
model-based methods, the strategy can be generalized to
various single-fidelity methods. For example, when evalu-
ating configurations within the population for an evolution-
ary algorithm-based HPO method, we can similarly evalu-
ate the efficient point performances instead of the final per-
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Figure 1. Performance of average validation accuracy on the LCBench benchmark.
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Figure 2. Performance of (a) average validation error on NAS-Bench-201 and (b) average validation loss on FCNet.

formances of these configurations and integrate the perfor-
mances in the subsequent processes, such as selection and
variation. Relying on the efficient point rather than the final
fidelity or all fidelities available simplifies the extension of
the single-fidelity methods to the multi-fidelity setting. The
rationale behind this adaptive fidelity identification strategy
is discussed in Remark 1. We also demonstrate in our ex-
periments the efficacy of this strategy in extending a range
of single-fidelity methods to the multi-fidelity setting.

5. Experiments

We empirically evaluate the performance of FastBO and
compare it with the random search baseline (RS) and 9
competitive baselines from 3 related categories, includ-
ing (i) model-based methods: standard Gaussian Process-
based BO [37]; (ii) multi-fidelity methods: ASHA [23],
Hyperband [22], PASHA [4]; and (iii) model-based multi-
fidelity methods: A-BOHB [19], A-CQR [34], BOHB [10],
DyHPO [45], Hyper-Tune [24]. RS and BO are single-
fidelity baselines, while the others are multi-fidelity ones.
Our experiments are conducted on 10 datasets from 3
popular benchmarks LCBench [48], NAS-Bench-201 [8]
and FCNet [18]. Detailed information on the benchmarks
is provided in Supp. 13.1. All the experiments are evalu-
ated with four parallel workers and 10 random seeds. We
allocate 20% total budget for warm-up, i.e., W = Tpin +
0.2 ("maz — min ). Ratio « is set to 0.1; thresholds §; and

o are set to 0.001 and 0.0005 '. We set k based on the num-
ber of workers #w and the number of started configurations
#c: k= max{[#c/10], #w}. We provide more experi-
ments and discussions on the hyperparameters in Supp. 12.
We use implementations of the baselines in Syne Tune [33].
Details of the baseline settings are in Supp. 13.2.

5.1. Anytime Performance

To evaluate the anytime performance, we compare FastBO
against the baselines on wall-clock time. For fair compar-
isons, all the baselines, even single-fidelity BO and RS, are
extended to consider intermediate results at all the fidelities
when identifying the configuration, akin to FastBO as dis-
cussed in § 4.3. Consequently, all the baselines are able to
achieve their best possible anytime performance.

The results on the LCBench, NAS-Bench-201, and FC-
Net benchmarks are shown in Figs. 1 and 2. We report
the validation accuracy, error, and loss over wall-clock time
for the three benchmarks, as provided by the benchmarks.
We also provide the results on the NAS-Bench-301 bench-
mark [36] in Supp. 11.1. Overall, FastBO can handle vari-
ous performance metrics and shows strong anytime perfor-
mance. We can observe that FastBO gains an advantage
earlier than other methods, rapidly converging to the global
optimum after the initial phase.

Parameters §1 and J2 given here are derived after standardizing met-
rics to a uniform scale from O to 1.



Table 2. Comparison of relative efficiency on configuration identification. FastBO is set as the baseline with a relative efficiency of 1.00.
Wall-clock time (abbr. WC time) reports the elapsed time spent for each method on finding configurations with similar performance
metrics, i.e., validation error (x 10~2) for Covertype and ImageNet16-120 and validation loss (x 10~°) for Slice.

Metric Method
FastBO BO PASHA A-BOHB A-CQR BOHB DyHPO Hyper-Tune
Dataset
Val. error 22.9:&0'2 23-0:t0.3 25.1:&2'5 23-5:t1.1 31.6i1_9 32.5:&048 23.0:|:0_3 23-O:|:0.2
Covertype WC time (h) 0.7403 29407 39410 20410 39402 25410 1.7406 1.8407
Rel. efficiency 1.00 0.25 0.18 0.37 0.19 0.29 0.41 0.40
ImaceNet Val. error 55.3:|:()_2 57.4:‘:1.2 55.7:|:()_3 55.8:‘:1.(, 55.5:|:0_g 55.5:‘:1.1 55.5:|:1_() 55-3:|:2.0
16?120 WCtime (h) 22407  6.6009 25412 59411 60413 32407 43410 34410
Rel. efficiency 1.00 0.34 0.90 0.38 0.37 0.68 0.51 0.67
Val. loss 26-3i2.6 26.4i4,4 26.8i9,5 26.3i(,,3 27'1i4.2 26.815.6 27'4i2.3 28.7i1.3
Slice WC time (h) 0-4:t0.1 3.1:|:().7 1.2:‘:09 2.1:|:().7 2.5:|:0A7 2.2:|:()_9 2.5:|:0A5 1.8:|:0_6
Rel. efficiency 1.00 0.13 0.35 0.20 0.17 0.19 0.17 0.24

The superiority can be attributed to two main factors.
Firstly, FastBO maintains, and in some cases even sur-
passes, the sample efficiency of vanilla BO, thanks to our
techniques that enable quick and precise identification of
the fidelities for configurations to update the surrogate
model. We provide more explanations and conduct more
experiments on sample efficiency in Supp. 11.2. Secondly,
the multi-fidelity extension speeds up configuration eval-
uations, contributing to its overall efficiency. In contrast,
the single-fidelity baselines tend to waste more time on
the full evaluations. While the multi-fidelity baselines ef-
ficiently explore numerous configurations, they limit their
evaluations to only constrained fidelities for some time, thus
struggling to provide relatively high performance in a short
time. This issue in multi-fidelity methods is particularly
pronounced in PASHA when applied to NAS-Bench-201
and FCNet, as shown in Fig. 2. In Supp. 11.3, we fur-
ther provide the ranks of all methods and statistically show
FastBO’s superiorty on an early stage. It is worth noting that
all the additional overhead introduced by FastBO is taken
into account in the wall-clock time.

Regarding the final performance, most methods are able
to converge to satisfactory solutions, with negligible differ-
ences among them in most cases. Although our goal is not
to offer the best final performance as we limit the evalua-
tions to at most the saturation point even for those we con-
sider most promising, FastBO still achieves top-2 final per-
formance on 8 out of 10 datasets. In contrast, model-free
methods sometimes cannot obtain a satisfactory final per-
formance because they randomly select the configurations.
For example, on the “Covertype” dataset, only 3 out of 2000
configurations yield a validation accuracy exceeding 75%.
As a result, all the model-free methods face challenges in
converging to a satisfactory final performance.

5.2. Efficiency on Configuration Identification

One explanation for PASHA’s suboptimal anytime perfor-
mance (cf. Fig. 2) lies in its primary goal [4]: the goal of
PASHA is not high accuracy but to identify the best config-
uration more quickly. To ensure equitable comparisons, we
report the time spent for each method on identifying a sat-
isfactory configuration, consistent with the experiments de-
scribed in PASHA [4]. Results on three expensive datasets
“Covertype”?, “ImageNet16-120”, and “Slice” of the three
benchmarks are shown in Tab. 2. Similar results on addi-
tional datasets can be found in Supp. 11.4. Besides PASHA,
results of other model-free multi-fidelity methods are not in-
cluded, as PASHA demonstrates its superiority over them.

Tab. 2 shows that FastBO saves 10% to 87% wall-clock
time over other methods when achieving up to 9.6% better
performance values. It can be observed from the “rel. effi-
ciency” rows, where we set FastBO as the baseline with a
relative efficiency of 1.00 and report the efficiency of other
methods relative to ours. When compared with vanilla BO,
FastBO significantly shortens the time in identifying a good
configuration by a factor of 3 to 8, because FastBO pauses
a configuration earlier at an appropriate fidelity and fits the
surrogate model to guide the next configuration search. This
advantage creates opportunities to efficiently explore more
configurations. Another observation is that PASHA always
gets a relatively high variance in wall-clock time. This is
due to the fact that different random seeds can have a larger
impact on such model-free methods.

5.3. Effectiveness of Adaptive Fidelity Identification

As discussed in § 4.1, FastBO is able to adaptively identify
the efficient point e; for each configuration A; and serves

2We convert the accuracy of “Covertype” into error for readability.
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Figure 3. Performance comparison: (a) Performance of FastBO that adaptively sets r; = e; with the schemes that use fixed r; for all
configurations. (b) Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.

e; as its fidelity r; for surrogate model fitting. To investi-
gate the effectiveness of the adaptive fidelity identification
strategy, we conduct an ablation study to compare the per-
formance achieved with and without applying this strategy.
Specifically, we compare FastBO, where r; is adaptively set
to e;, with the partial evaluation schemes that employ fixed
predefined values as the fidelity for all the configurations
to fit the surrogate model. We consider three representative
fixed fidelities, including 25%, 50%, and 75% of the total
resource budget. In addition, we include a comparison with
vanilla BO that can be viewed as using 100% resource bud-
get as the fixed fidelity for all configurations.

We provide the results on three representative datasets
in Fig. 3(a), with more results available in Supp. 11.5. We
have three main observations. Firstly, FastBO always out-
performs the partial evaluation baselines that use a fixed fi-
delity, indicating the effectiveness of the adaptive strategy.
Secondly, FastBO shows stronger performance than vanilla
BO. The limitation of vanilla BO lies in the additional time
required for full evaluations. Secondly, compared to the
vanilla BO, partial evaluation schemes with fixed r; con-
verge faster in the initial stage due to their ability to evaluate
more configurations promptly, but this advantage is gradu-
ally offset over time because they fail to find appropriate
fidelities to create an accurate surrogate model. This causes
a suboptimal final performance compared to vanilla BO, as
shown in the first two figures in Figs. 3(a). In the case of the
last one, we can observe a noticeable upward trend exhib-
ited by the vanilla BO towards the end of the evaluation, in-
dicating its potential to improve the final performance given
abundant time. The comparison between the partial evalua-
tion baselines and vanilla BO also demonstrates the impor-
tance of our adaptive strategy, which ensures that the fideli-
ties align optimally with each configuration.

5.4. Generality of The Proposed Extension Method

The adaptive fidelity identification strategy provides a sim-
ple way to extend single-fidelity methods to the multi-
fidelity setting, as discussed in § 4.4. To examine the abil-
ity of our extension method, we conduct experiments using
three popular single-fidelity methods CQR [34], BORE [42]

and REA [32], extending them to the multi-fidelity variants
with our extension method, referred to as FastCQR, Fast-
BORE, and FastREA respectively. Similar to FastBO, all
the multi-fidelity extensions evaluate the configurations to
the adaptively identified efficient point and use the corre-
sponding performances for the subsequent operations. The
results on three datasets are illustrated in Fig. 3(b) and
similar results on other datasets are in Supp. 11.6. We
can clearly observe that the multi-fidelity variants with our
extension method always outperform their single-fidelity
counterparts. It is worth noting that REA is an evolu-
tionary algorithm-based HPO method and is also signifi-
cantly improved by our extension. The observation high-
lights the ability of the proposed adaptive strategy to extend
any single-fidelity method to the multi-fidelity setting. It
also suggests future opportunities to extend other advanced
single-fidelity techniques into the multi-fidelity setting.

6. Conclusion

In this paper, we propose a model-based multi-fidelity HPO
method FastBO, which adaptively identifies the appropriate
fidelity for each configuration to fit the surrogate model and
offers high-quality performance while ensuring efficient re-
source utilization. The advantages are achieved through
our concepts of efficient and saturation point, the proposed
techniques of learning curve modeling, and well-designed
warm-up and post-processing stages with judicious early-
termination detection and efficient saturation-level evalua-
tion. Moreover, the proposed adaptive fidelity identification
strategy provides a simple way to extend any single-fidelity
method to the multi-fidelity setting. Experiments demon-
strate the effectiveness and wide generality of our pro-
posed techniques. FastBO source code is freely available
athttps://github.com/jjiantong/FastRO.
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7. Notation

In Table 3, we provide a comprehensive summary of the
notations utilized throughout the paper, along with their de-
tailed definitions and explanations.

8. Proof of FastBO

HPO methods generally do not provide theoretical guaran-
tees or rely on strong assumptions. In § 4.1, we provide
formal definitions for the efficient point and propose to use
the efficient point e; of \; as its fidelity to fit the surrogate
model. While it is challenging to prove FastBO’s efficiency
in reaching the optimal configuration, we provide a proof
showing the superiority of FastBO over SHA-based meth-
ods (e.g., Hyperband, ASHA, PASHA, BOHB, A-BOHB,
A-CQR, Hyper-Tune). We show that fidelities in FastBO
more reliably indicate final fidelity performance than those
in SHA-based methods.

Proof. Given two learning curves Cy(r), Ca(r). Ca(r) de-
scends more rapidly initially, while C;(r) descends more
slowly initially but finally converges to a lower loss, as
shown in Figure 4. Let c be the crossing point.

SHA-based methods: they use a set of fixed fidelities
{r} for both C; (r) and Ca(r). If r < ¢, then C1(r) > Ca(r),
failing to indicate final performance.

FastBO: FastBO uses fidelities e; and ey for Cp(r),
Ca(r). Clearly, e; > es, leading to Ca(e1) < Ca(ez2). In
what follows, we discuss two cases.

Case 1: e; > c (including ¢ < ey < €1 and e <
¢ < ep): It follows that Cy(e1) < Ca(eq). Thus, we have
Cl(el) < 62(61) < 62(62). Then, C; (61) < 02(62) holds
true, aligning with the final performance.

Case 2: e < e; < c¢: Based on Definition 1, Cy(e1) —
Ci1(2e1) =~ 01, Ca(e2) — Co(2e2) =~ 1. Subtracting yields
Cl(el) — 02(62) = (261) — 02(262) + (5/1, where (5’1 is
a small threshold around 6;. As 2e; > c exists, it implies
C1(2e1) < C2(2e2) based on Case 1, s0 C1(e1) < Ca(ea).

Therefore, FastBO offers better fidelities that can more
reliably indicate final fidelity performance, including sce-
narios even when eq, es < c. O]

9. Illustration on Efficient Point and Satura-
tion Point

In § 4.1, we provide formal definitions for the efficient point
and saturation point. Here, we provide a more intuitive un-
derstanding of the concepts.

Ci(r)
Cy(r)
© --- Efficient point & performance
é === Saturation point & performance
£
S
"5 Crossing point
o
! =
_:E:::::::;.::::_-:? ________________________ .!
! ! ! i
Fmin €2 S2 €1 F|de||ty Si Fmax

Figure 4. Illustration of efficient point and saturation point associ-
ated with learning curves.

Figure 4 shows an intuitive visualization of two learn-
ing curves Cy(r), C2(r), together with their respective ef-
ficient points e;, e, and saturation points s;, s3. We can
easily grasp that the saturation points signify that the per-
formance has nearly reached full convergence, while the ef-
ficient points, located at a relatively earlier stage, represent
a position where performance can be achieved with high ef-
ficiency. From Figure 4, we can see a significant difference
in the shapes of the two learning curves. Ca(r) experiences
rapid initial descent and quick convergence; while C; (1) ex-
periences a slower initial descent, but eventually converges
to a better performance than Ca(r). Due to this difference,
we can find a crossing point where the two curves meet.

Suppose that Cy(r) and Ca(r) correspond to configura-
tions A; and A, respectively, we can know A; outranks
A2 in terms of configuration performance ranking. Since
FastBO utilizes efficient points as the fidelities for fitting the
surrogate model, it is able to capture the distinctive trends in
the learning curves. This ensures that the observed perfor-
mance y;' surpasses y5°, i.e., consistent with the configu-
ration performance ranking. In contrast, existing successive
halving-based methods may fail to maintain ranking con-
sistency. Specifically, they are susceptible to erroneous ter-
mination of A if the decision is made before the crossing
point. Even with the aid of surrogate models, fitting before
the crossing point leads to an inaccurate surrogate model.

Furthermore, we can observe that there is often a gap
between the saturation point s; and the final fidelity 7,44,
which becomes more pronounced on curves that converge
rapidly, such as C,. FastBO utilizes the saturation point s,
and s as the approximation for the final fidelity 7,,,4,. In-
tuitively, A; and Ag can achieve performances y;' and y3?
that are very close to their performances at the final fidelity
while saving a considerable amount of computational cost.



Table 3. The notations used throughout the paper and the corresponding definitions.

Notation Definition

a Acquisition function.

¢;j(r|@;),C(r|¢p) One of, and the combined parametric learning curve model.

Ci(r) Empirical learning curve for ;.

D; Observation set that used to fit the surrogate model, containing ¢ pairs of data points.

€; The efficient point of ;.

TN, f(A7) Performance with configuration X in the single-fidelity and multi-fidelity settings.

k The number of configurations to be promoted.

M Surrogate model.

oy Early observation set of A; across different fidelities, with a maximum level w considered.
T, Tmazs Tmin Fidelity; the maximum and minimum fidelity.

S; The saturation point of A;.

w Warm-up point for all the configurations.

Yir YT Evaluation results of f(A;) and f(A;,r) in the single-fidelity and multi-fidelity settings.

Ymazxs Ymin
(6%

Best and worse possible evaluation performance.
Performance decrease ratio.

01, 02 Small thresholds used in identifying efficient points and saturation points.
0;,¢ Parameters in one of, and the combined parametric learning curve model.
Aiy A A hyperparameter and a hyperparameter configuration.

A A Domain of \; and search space of A.

wj The weight of a parametric learning curve model.

10. Discussion on Choice of Parametric Learn-
ing Curve Models

In § 4.2, we construct the parametric learning curve model
by combining three parametric models POW3, EXP3 and
LOG?2. Here, we provide detailed discussions on the choice.

Overall, POW3, EXP3 and LOG2, especially POW3,
have shown good fitting and predicting performance in pre-
vious empirical studies [26, 43]. In order to capture the di-
versity in learning curve shapes, we explore different fam-
ilies of parametric models, including the power law, ex-
ponential, and logarithmic families. However, parametric
models from the sigmoidal family, like MMF and Weibull,
are not being considered, since they tend to fit well if
enough observations are used for fitting; but in situations
like ours where observations are limited, their performance
is suboptimal [27]. Moreover, existing studies have dis-
cussed the underfitting of the power law and exponential
models with two parameters and the overfitting of those
with four or more parameters [20]. Therefore, we opt for
the POW3 and EXP3 (i.e., power law and exponential mod-
els with 3 parameters respectively).

Considering the goal of high efficiency in HPO, we sim-
plify the choice of the parametric learning curve model to
strike a balance between capturing general learning curve
shapes and prioritizing computational efficiency. We avoid
considering complex models, since the computational com-
plexity of the subsequent parameter estimation is propor-
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Figure 5. Performance of average validation accuracy on CIFAR-
10 of the NAS-Bench-301 benchmark.

tional to the number of parameters. The increase in the
number of parameters translates to an increase in the time
required for each hyperparameter configuration during the
optimization process, which runs counter to the fundamen-
tal objective of designing efficient HPO algorithms.

11. Extended Experiments

In this section, we provide additional experimental results
and discussions.

11.1. Extended Experiments on NAS-Bench-301

Besides the comparison on the LCBench, NAS-Bench-201
and FCNet benchmark in § 5.1, we compare the anytime
performance for the HPO methods on the NAS-Bench-301
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Figure 6. Performance of (a)-(e): average validation accuracy against the number of evaluated configurations on the LCBench benchmark.
(f)-(h): average validation error against the number of evaluated configurations on the NAS-Bench-201 benchmark and (i)-(j): average
validation loss against the number of evaluated configurations on the FCNet benchmark.

benchmark [36] that has up to 102! architectures on the
DARTS/FBNet search space. The results on the CIFAR-
10 dataset are shown in Figure 5. We can observe that
FastBO still shows strong anytime performance on NAS-
Bench-301, demonstrating the scalability of FastBO on
large search spaces.

11.2. Extended Experiments of Sample Efficiency

In § 5.1, we show the anytime performance of a wide range
of HPO methods. One reason for FastBO’s good anytime
performance is its good sample efficiency. Sample effi-
ciency refers to the ability of an algorithm to find the op-
timal solution with the minimum number of samples. In
the context of HPO, sample efficiency quantifies how effec-
tively the algorithm explores the hyperparameter space and
identifies promising configurations while minimizing the
number of evaluated configurations. Methods with higher
sample efficiency, such as BO, are capable of identifying
satisfactory configurations with fewer evaluations.

To investigate the sample efficiency of FastBO, we con-
duct experiments using the same settings as the experiments
in § 5.1 but plotting the achieved performance as a func-
tion of the number of evaluated configurations. Figure 6
shows the results obtained on the three benchmarks. We
can observe that FastBO is able to achieve comparable, and
in some cases, even superior performance to vanilla BO.
It is particularly noteworthy considering that FastBO only
performs partial evaluations of the configurations and is un-
sure about their performance at the final fidelity. The results
demonstrate that FastBO has the ability to identify the ap-

propriate fidelity for each configuration that can reliably in-
dicate its performance. This ability is achieved by our adap-
tive strategy that adaptively finds the efficient point for each
configuration as its fidelity r; for surrogate model fitting.

In order to facilitate a clearer comparison, we also incor-
porate the results on an additional baseline: a partial eval-
uation scheme that replaces the adaptive strategy with the
adoption of a fixed value as the fidelity for all the configu-
rations to fit the surrogate model. We set the fixed fidelity
to 20% of the total resource budget and present the results
in Figure 6. We can see that this partial evaluation base-
line consistently lags behind both FastBO and vanilla BO.
It underscores the challenge of using a fixed fidelity value
for all configurations in reflecting their final fidelity perfor-
mance, which highlights the importance of the adoption of
our adaptive strategy.

11.3. Extended Experiments of Anytime Perfor-
mance

In § 5.1, we compare the anytime performance for the HPO
methods. Here, we present the critical difference diagrams
to summarize the ranks of all methods and provide informa-
tion on the statistical difference.

Due to the potential inconsistencies in performance met-
ric differences among different datasets within the same
benchmark, which may affect the critical difference dia-
gram, we first employ normalized regret to standardize each
evaluation result y across datasets. The normalized regret
for each y is defined as (y — Ymin )/ (Ymaz — Ymin ), Wwhere
Ymaz and Ymin represents the best and worse possible eval-




Table 4. Configuration Evaluation Unit (CEU) of each dataset.

Benchmark Dataset CEU(second)
Airlines 1187
Albert 1297
LCBench Christine 1715
Covertype 1942
Fashion-MNIST 831
CIFAR-10 3879

NAS-Bench-201 CIFAR-100 3879
ImageNet16-120 11150
Protein 303
Slice 547

FCNet

uation performance can be found. Moreover, since different
datasets require varying time to evaluate a single configura-
tion, it is not fair or meaningful to use the evaluation results
at a fixed time for all the datasets for comparison. Consider-
ing the varying dataset workloads, we introduce one Config-
uration Evaluation Unit (CEU) as the average time required
to perform a complete evaluation of a single configuration
on a given dataset. The CEU of each dataset shown in Ta-
ble 4 is easy to obtain for the tabular benchmark.

With these ingredients, we provide the critical differ-
ence diagrams of LCBench, NAS-Bench-201 and FCNet
in Figure 7. The critical difference diagrams are based on
Wilcoxon-Holm post-hoc analysis. The results correspond
to the results at one CEU?, which represents relatively early
evaluated performances. We can observe that FastBO con-
sistently outperforms the baseline methods on all the bench-
marks at one CEU, showing its capacity for an early advan-
tage gain during the optimization process.

From Figure 7, we observe that the model-based multi-
fidelity HPO methods, including FastBO, A-BOHB, A-
CQR, BOHB, DyHPO and Hyper-Tune, outperform the
other methods in most cases, highlighting the promising di-
rection of integrating model-based approaches with multi-
fidelity techniques. Among them, DyHPO also considers
the learning curves of hyperparameter configurations. Both
FastBO and DyHPO are able to gain an advantage at a rel-
atively early stage, indicating the significant value of learn-
ing curve information in addressing HPO problems. How-
ever, we observe that DyHPO exhibits inferior performance
on the FCNet benchmark, suggesting a potential limitation
in dealing with the validation loss metric.
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Figure 7. Critical difference diagram for LCBench, NAS-Bench-
201 and FCNet at one CEU. The ranks indicate the sorted position
in terms of normalized regret (the lower the better). Connected
ranks indicate that differences are not statistically significant.

11.4. Extended Experiments of Efficiency on Con-
figuration Identification

In § 5.2, we compare the time spent for the HPO methods on
identifying a good configuration. Here, we report additional
results on the datasets from the LCBench, NAS-Bench-201
and FCNet benchmarks in Table 5. We conduct experiments
following the same settings as the experiments in § 5.2.

The experimental results shown in Table 5 are consistent
with those shown in § 5.2. FastBO saves considerable wall-
clock time over the baseline methods when achieving sim-
ilar or better performance values, demonstrating the high
efficiency of FastBO in identifying a good configuration.
The model-free PASHA method often gets a high variance
in wall-clock time because different random seeds can have
a larger impact on it. Results of other model-free methods
are not included in Table 5, since PASHA demonstrates its
superiority over them [4].

11.5. Extended Experiments of Effectiveness of
Adaptive Fidelity Identification

In § 5.3, we examine the effectiveness of the proposed adap-
tive fidelity identification strategy. Here, we provide addi-
tional results on more datasets.

We show the results on LCBench, NAS-Bench-201 and

3Note that the CEU is measured under one sequential worker, while
FastBO and the baselines are evaluated under 4 parallel workers.



Table 5. Comparison of relative efficiency for configuration identification. Wall-clock time (abbr. WC time) reports the elapsed time spent
for each method on finding configurations with similar performance metrics, i.e., validation error (x 1072) and validation loss (x1072).
Regarding relative efficiency, FastBO is set as the baseline with a relative efficiency of 1.00.

Metric Method
FastBO BO PASHA A-BOHB A-CQR BOHB DyHPO Hyper-Tune
Dataset
Val. error 36.2i0,1 36.3i0,5 36.2i0,1 36.3i0,3 38.9i0,5 38.5i0,] 36.3i0,] 36.2i0,1
Airlines WC time (h) 0.5:‘:0.3 2.4:‘:13 1.1:‘:()‘7 1.1:‘:06 2~7:t0.6 2.2:‘:()‘4 1.3:‘:03 1.1:‘:06
Rel. efficiency 1.00 0.23 0.51 0.50 0.20 0.25 0.38 0.48
Val. error 33-9i0.1 34'Oi0.1 34'3i0.1 34'Oi0.0 34.8i0,7 34'7i0.2 33-9i0.2 34'Oi0.3
Albert WC time (h) 0-5i0.3 1~0i0.7 I.Zio,g 1.6i1,0 3‘2i0.4 1~9i1.4 1~0i0.4 I.Zil,,
Rel. efficiency 1.00 0.48 0.39 0.28 0.14 0.24 0.49 0.39
Val. error 25.3:|:0'1 25.5:|:0_1 25.6:|:0_1 25.5:|:0_1 26.7:|:0_0 26.8:|:0_2 25.5:|:0_1 25.4:|:0_0
Christine  WC time (h) 0.8i0‘3 2-4i1.3 2-4i2.2 2-1i1.2 1.6i2_1 I.Sio_g ]-6i0.6 2-9i0.8
Rel. efficiency 1.00 0.33 0.33 0.37 0.48 0.54 0.47 0.27
Fashion- Val. error 10.7:|:0.1 10.7:|:0.1 10.7:|:0.1 10.7:|:()_1 1 1.6:|:0_3 1 1.4:|:0_2 10.7:|:0.1 10.7:|:()_1
MNIST WCtime (h) 0.2497 0.8407 1.8414 05+02  25+11 32408 0.6402 0.6404
Rel. efficiency 1.00 0.21 0.10 0.34 0.07 0.19 0.28 0.27
Val. error 6.2i0‘4 6.5i0,4 6.4i0,7 6.2i()‘2 6.3i0,4 6.3i0,2 6.3i0,4 6.2i()‘2
CIFAR-10 WCtime (h) 0.6104 39120 13406 23+11  2.6000 2.1ios 25108 1.640s

Rel. efficiency 1.00 0.16 0.49

0.27 0.25 0.31 0.26 0.39

Val. error 28.7i1_3 29.6i1,4 32.8i3,9 28.7i1_2 28.8i1,5 28.8i0,7 28.8i1,1 29~4i1.1
CIFAR-100 WCtime (h) 12499 24416 1.6414 28412 28413 17404 23410 1.7405
Rel. efficiency 1.00 0.50 0.73 0.43 0.42 0.72 0.52 0.72
Val. loss 22.6:|:0.4 22.9:|:()_7 23.6:|:()_9 22.6:|:0.3 22.7:|:()_5 23.2:|:()_4 22.8:|:()_7 22.7:|:()_7
Protein WC time (h) 03101 12407 074106 0.8405 0.6403 13407 12404 1.1405

Rel. efficiency 1.00 0.23 0.38

0.32 0.42 0.21 0.23 0.25

FCNet in Figure 8. FastBO with the adaptive fidelity identi-
fication strategy sets the efficient point e; for each configu-
ration A; as its fidelity r; to fit the surrogate model. In con-
trast, the vanilla BO is a full evaluation scheme that uses
100% of the total resource budget as ;. The other three
baselines are also partial evaluation schemes like FastBO
but they replace the adaptive choice of r; = e; with a fixed
fidelity, including 25%, 50%, and 75% of the total resource
budget, for all the configurations to fit the surrogate model.

The results shown in Figures 8 are consistent with those
shown in § 5.3. We have two main observations. Firstly,
FastBO outperforms the other partial evaluation schemes
that remove the adaptive fidelity identification strategy,
showing the effectiveness of the proposed adaptive strat-
egy. Secondly, although the partial evaluation schemes with
fixed r; are able to converge faster than the full evalua-
tion counterpart (i.e., the vanilla BO) in the initial stage,
this early advantage diminishes progressively over time. Fi-
nally, these partial evaluation baselines show significant dif-

ferences in their final performance on 4 out of 7 datasets
when compared to vanilla BO. The main reason is that these
partial evaluation schemes naively use a fixed r; for all the
configurations and thus fail to create an accurate surrogate
model to identify more promising configurations. This ob-
servation also highlights the importance of the adoption of
our adaptive fidelity identification strategy.

11.6. Extended Experiments of Generality of The
Proposed Extension Method

In § 5.4, we investigate the ability of our proposed exten-
sion method. Here, we provide additional results in Fig-
ure 9. We run three well-known single-fidelity methods
CQR [34], BORE [42], and REA [32], and extend them
to the multi-fidelity setting using our extension method, de-
noted as FastCQR, FastBORE, and FastREA respectively.
More specifically, all the multi-fidelity variants evaluate the
configurations to their efficient points and use the corre-
sponding performances for the subsequent operations, i.e.,
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Figure 9. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants FastCQR, FastBORE, FastREA using
our extension method: average validation accuracy on the LCBench benchmark ((a)-(d)), average validation error on the NAS-Bench-201
benchmark ((e)-(f)), and average validation loss on the FCNet benchmark ((g)).

fitting the surrogate model for FastCQR and FastBORE, se-
lection and variation for FastREA.

From Figures 9, we can clearly observe that the multi-
fidelity variants with our extension method always outper-
form their single-fidelity counterparts. For the relatively

simple task presented by the “Christine” dataset, the distinc-
tions are not as pronounced as they are in the case of other
datasets. However, it is still evident that the multi-fidelity
methods are able to converge towards a higher accuracy
more rapidly. Moreover, the evolutionary algorithm REA
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Figure 10. Performance of vanilla BO and the schemes with different w. The default setting of w in FastBO is 20% of the total resource

budget (abbr. w = 0.2).

can also be enhanced by our extension method. The re-
sults are consistent with the observations shown in § 5.4 and
highlight the wide applicability of the proposed adaptive
strategy to extend any single-fidelity method to the multi-
fidelity setting.

12. FastBO Hyperparameter Setting, Experi-
ments, and Discussions

Here, we present the hyperparameter settings in FastBO,
and provide experimental results and discussions on the hy-
perparameter settings.

12.1. Hyperparameter Setting

FastBO uses a Matérn g kernel with automatic relevance
determination parameters and the expected improvement
acquisition function. We allocate 20% total resource bud-
get for the warm-up stage, i.e, w = 7Tmin + 0.2 -
(Pmaz — Tmin). Ratio « is set to 0.1; thresholds §; and
do are set to 0.001 and 0.0005 *. We set k& based on
the number of parallel workers #workers and the num-
ber of started configurations #configurations: k =
max{ [#con figurations/10], #workers}.

12.2. Experiments of Hyperparameter Setting

We compare the anytime performance of FastBO with dif-
ferent values of w, the warm-up point for all the configura-
tions. We set w to 10%, 20%, 30%, 40%, and 50% of the to-
tal resource budget and examine their performances, where

4Parameters 61 and §2 given here are derived after standardizing met-
rics to a uniform scale from O to 1.

20% one is the default setting of FastBO. In addition, we
include a comparison with vanilla BO. In this section, we
simply use w = 0.1, ..., 0.5 for abbreviation.

The results are shown in Figure 10. Overall, the default
setting works quite well across different datasets. The re-
sults show that FastBO is not highly sensitive to the values
of w, particularly within a reasonable range of 0.1 to 0.4,
showing the robustness of our method.

Specifically, setting w to 0.2 and 0.3 always performs
better on all the datasets. For w = 0.5, we can often ob-
serve a delayed performance improvement, as it requires
more time to obtain additional evaluation observations for
each configuration. Although this setting has the possibility
of modeling more accurate learning curves, it wastes much
time on expensive evaluations. The suitable values for w
vary slightly across different benchmarks. For LCBench,
the datasets have a relatively small maximum fidelity level
of 50. Setting w = 0.1 cannot perform well, since there
are only 5 observations for each configuration that can be
used to fit its learning curve. While for NAS-Bench-201
and FCNet that have larger maximum fidelity levels, we can
often see a delayed performance improvement when setting
w = 0.4.

12.3. Discussion on Hyperparameter Setting

In order to avoid introducing extra efforts on tuning hyper-
parameters in FastBO, we intentionally set the hyperparam-
eters in a simple way. We encourage the practitioners to
directly use our default setting. Fine-tuning them is also a
possibility and, if explored, may lead to further optimiza-
tion on performance.




Table 6. Detailed information of LCBench, NAS-Bench-201 and FCNet benchmarks.

Benchmark #Evaluations #Hyperparameters #Fidelities
LCBench 2,000 7 50
NAS-Bench-201 15,625 6 200
FCNet 62,208 9 100

Table 7. Hyperparameters and configuration spaces for benchmarks.

Benchmark Hyperparameter Configuration space
num_layers [1, 5]
max_units [64, 512]
batch_size [16, 512]

LCBench learning_rate [le-4, 1e-1]
weight_decay [le-5,0.1]
momentum [0.1, 0.99]
max_dropout [0.0, 1.0]

x0

[avg_pool _3x3,

nor_conv_3x3, skip_connect, nor_conv_1x1, none]

x1 [avg_pool_3x3, nor_conv_3x3, skip_connect, nor_conv_1x1, none]
NAS-Bench-201 x2 [avg_pool_3x3, nor_conv_3x3, sk%p,connect, nor_conv_1x1, none]
x4 [avg_pool_3x3, nor_conv_3x3, skip_connect, nor_conv_1x1, none]
x3 [avg_pool_3x3, nor_conv_3x3, skip_connect, nor_conv_1x1, none]
x5 [avg_pool_3x3, nor_conv_3x3, skip_connect, nor_conv_1x1, none]

activation_1
activation_2

[tanh, relu]
[tanh, relu]

batch_size [8, 16, 32, 64]
dropout_1 [0.0, 0.3, 0.6]
FCNet dropout_2 [0.0, 0.3, 0.6]
init_Ir [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]
Ir_schedule [cosine, const]
n_units_1 [16, 32, 64, 128, 256, 512]
n_units_2 [16, 32, 64, 128, 256, 512]

13. Experimental Setup

Here we provide more details on the experimental setup,
including details of the used benchmarks and choice of pa-
rameters on the baseline methods.

13.1. Benchmark Details

In our experiments, we use 3 well-known tabular bench-
marks: LCBench [48], NAS-Bench-201 [8], and FC-
Net [18]. We conclude detailed information on these bench-
marks in Tables 6, including the number of provided evalu-
ations, the number of hyperparameters, and the number of
fidelities. Table 7 provides information on the hyperparam-
eters in the benchmarks and their corresponding configura-
tion spaces.

LCBench. LCBench is a neural network benchmark that
consists of 2000 hyperparameter configurations. LCBench
features a search space of 7 numerical hyperparameters of

neural networks, including the number of layers, the max-
imum number of units per layer, batch size, learning rate,
weight decay, momentum, and dropout. The fidelity refers
to the number of epochs in LCBench and each hyperparam-
eter configuration is trained for 50 epochs. LCBench con-
tains 35 datasets and we run the 5 most expensive ones.
NAS-Bench-201. NAS-Bench-201 is a benchmark that
consists of 15625 hyperparameter configurations. NAS-
Bench-201 features a search space of 6 categorical hyper-
parameters that correspond to 6 operations within the macro
architecture cell. The fidelity refers to the number of epochs
in NAS-Bench-201 and each hyperparameter configuration,
which represents a network architecture, is trained for 200
epochs. NAS-Bench-201 contains the image classification
datasets cifar-10, cifar-100 and ImageNet16-120.

FCNet. FCNet is a benchmark that consists of 62208 hy-
perparameter configurations. FCNet features a search space
of 4 architectural choices (i.e., the number of units and acti-



vation functions for two layers) and 5 hyperparameters (i.e.,
dropout rates per layer, batch size, initial learning rate and
learning rate schedule). The fidelity refers to the number of
epochs in FCNet and each hyperparameter configuration is
trained for 100 epochs. FCNet uses 4 popular UCI datasets
for regression and we run the 2 most expensive ones.

13.2. Choice of Parameters on Baseline Methods

We use implementations of all the baseline HPO methods

provided in Syne Tune [33]. We here list the parameters

used for running the baselines in our experiments. In gen-
eral, we follow the default settings in Syne Tune which are
also recommended in the previous work.

e Vanilla Bayesian Optimization (BO) [37] uses a Matérn
g kernel with automatic relevance determination parame-
ters and the expected improvement (EI) acquisition func-
tion.

e ASHA [23], Hyperband [22] and PASHA [4] follow the
successive halving (SHA) [16] framework and sample
new configurations at random. We use the reduction fac-
tor 17 of 3 in all of them. In other words, the evaluations
are stopped after 1, 3, 9, 27, ... resource levels.

* A-BOHB [19] follows the SHA framework with p = 3. It
uses a stopping variant asynchronous scheduling, which
is different from the promotion variant asynchronous
scheduling used in ASHA. New configurations are se-
lected as in the vanilla BO.

* A-CQR [34] follows the SHA framework with = 3 and
uses the promotion variant asynchronous scheduling as
ASHA. It uses BO to select the configuration and uses the
last observed values from the SHA framework to fit the
surrogate model. It uses a conformal quantile regression-
based surrogate model.

e BOHB [10] follows the SHA framework with 7 = 3 and
uses synchronous scheduling. It uses BO with a multi-
variate kernel density estimator (KDE) to select new hy-
perparameter configurations.

* DyHPO [45] uses the introduced deep kernel Gaussian
Process surrogate and multi-fidelity EI. It uses an RBF
kernel and the dense layers of the transformation function
have 128 and 256 units. It uses a convolutional layer with
a kernel size of three and four filters.

* Hyper-Tune [24] follows the SHA framework with = 3
and uses the promotion variant asynchronous scheduling
as ASHA. It fits independent Gaussian process models at
different fidelities.

The experiments in § 5.4 and Supplementary Mate-
rial 11.6 contain three HPO methods and we use implemen-
tations of them provided in Syne Tune. We also provide the
parameter settings of the three methods as follows.

* CQR [34] uses BO with a conformal quantile regression-
based surrogate model to select new configurations.

e BORE [42] is evaluated with XGBoost [6] as the classifier

with its default setting. We set v = 1/4, consistent with
BORE’s default hyperparameter setting.

* REA [32] is an evolutionary algorithm that uses a pop-
ulation size of 10, and 5 samples are drawn to select a
mutation from.
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