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Abstract

Talent search is a cornerstone of modern re-
cruitment systems, yet existing approaches of-
ten struggle to capture nuanced job-specific
preferences, model recruiter behavior at a fine-
grained level, and mitigate noise from subjec-
tive human judgments. We present a novel
framework that enhances talent search effec-
tiveness and delivers substantial business value
through two key innovations: (i) leveraging
LLMs to extract fine-grained recruitment sig-
nals from job descriptions and historical hiring
data, and (ii) employing a role-aware multi-gate
MOoE network to capture behavioral differences
across recruiter roles. To further reduce noise,
we introduce a multi-task learning module that
jointly optimizes click-through rate (CTR), con-
version rate (CVR), and resume matching rele-
vance. Experiments on real-world recruitment
data and online A/B testing show relative AUC
gains of 1.70% (CTR) and 5.97% (CVR), and
a 17.29% lift in click-through conversion rate.
These improvements reduce dependence on ex-
ternal sourcing channels, enabling an estimated
annual cost saving of millions of CNY.

1 Introduction

The rise of online recruitment platforms has revolu-
tionized how employers and jobseekers connect, en-
abling efficient matching between talents and open
positions (Kenthapadi et al., 2017; Geyik et al.,
2018b). A core component of these systems is
talent search, which allows recruiters to identify
qualified talents for specific job postings.

As shown in Figure 1, talent search plays a cen-
tral role in the recruitment process, where recruiters
interact with talent profiles by issuing queries and
browsing retrieved results. This stage involves
three key steps: (i) exposure, where talent profiles
are surfaced to the recruiter; (ii) click, where the
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Figure 1: Recruitment process of our online system.

recruiter views a specific profile; and (iii) applica-
tion initiation, where the recruiter initiates a hiring
evaluation for the candidate. These interactions
generate behavioral signals such as click-through
rate (CTR) and conversion rate (CVR), which are
central to assessing and optimizing search effective-
ness. A detailed workflow of our deployed talent
search system is provided in Appendix A.

Recent advancements in talent search have im-
proved ranking quality through better text model-
ing and personalization. Those techniques include
extracting skill signals from recruiter queries and
resumes (Manad et al., 2018), using deep models
for learning-to-rank (Ramanath et al., 2018), and
applying BERT-based keyword extraction (Devlin
et al., 2019; Wang et al., 2021). Incorporating his-
torical recruiter behavior and talent features has
further enhanced performance (Geyik et al., 2018a;
Ozcaglar et al., 2019; Yang et al., 2021).

Despite these advancements, several challenges
remain. (i) Insufficient modeling of recruitment
preferences: Existing methods often fail to accu-
rately capture the nuanced requirements of individ-
ual job postings, limiting the relevance of retrieved
talents. (ii) Lack of role-aware personalization:
Existing methods typically treat all recruiters uni-
formly, ignoring role-specific behavioral patterns.
This omission limits personalization and leads to
mismatches between recruiter intent and retrieved
talents. As shown in Table 1, sourcing assistants
(SA) generate nearly 50% of page views, yet their



Table 1: Differences in page view (PV) rates, AUC, and
resume evaluation pass rates across various recruiter
roles. Due to confidentiality reasons, we cannot show
the actual values of the pass rate of resume evaluation.

Role PV Rate AUC Pass Rate
SA 49.40% 0.554 2/3P
SG 11.66% 0.694 P

TL 3891% 0.693 P

AUC and resume pass rates are much lower than
those of sourcing generalists (SG) and team lead-
ers (TL). (iii) Noisy behavioral signals: Subjective
judgments and recruiter expertise gaps introduce
role-dependent noise into interaction data. With-
out accounting for this, models struggle to learn
reliable predictors, reducing matching accuracy.
To address these challenges, we propose a novel
framework that enhances talent search along three
dimensions. First, we use large language mod-
els (LLMs) with chain-of-thought (CoT) prompt-
ing (Wei et al., 2022) to extract fine-grained recruit-
ment preferences from job descriptions and histori-
cal hiring records. Second, we design a role-aware
multi-gate mixture-of-experts (MMOoE) network to
model behavioral differences across recruiter roles
and personalize talent ranking. Third, we introduce
a multi-task learning module that jointly models
CTR, CVR, and resume relevance to mitigate be-
havioral noise and improve prediction robustness.
Our main contributions are as follows:

1. We introduce a novel LL.M-guided job repre-
sentation framework that extracts fine-grained
recruitment preferences by jointly analyzing
job descriptions and historical hiring records.
This enables capturing implicit signals beyond
surface-level keywords, significantly improv-
ing job-talent alignment.

2. We design a role-aware MMOE architecture
that models recruiter behavioral heterogeneity
across different organizational roles. By lever-
aging role-specific gating and expert routing,
our framework adapts ranking strategies to
recruiter intent with high fidelity.

3. We validate our framework through extensive
offline experiments and online A/B testing on
a production-scale platform, achieving rela-
tive AUC gains of 1.70% (CTR) and 5.97%
(CVR), and boosting click-through conversion

rate (CTCVR) by 17.29%. These improve-
ments translate into an estimated cost reduc-
tion of millions of CNY annually.

2 Methodology

This section presents our framework to enhanc-
ing talent search via personalized modeling and
preference-aware ranking, starting with the prob-
lem statement and followed by method details.

2.1 Problem Statement

Given a recruiter-issued search query or job de-
scription (JD), talent search can be viewed as an
information retrieval task: retrieving a relevant sub-
set of talents and ranking them by match quality. To
personalize this process, we incorporate recruiter-
specific information such as recruiter ID and role
type to capture behavioral differences.

Our framework outputs three scores for each pro-
file: (i) click-through rate (CTR) that measures the
likelihood that an exposed profile is clicked; (ii)
conversion rate (CVR) that measures the likelihood
that a clicked profile leads to application initiation;
and (iii) resume matching relevance. The final rank-
ing score is computed as the product of CTR and
CVR, capturing both recruiter engagement and can-
didate fit. This aligns with our business-to-business
(B2B) platform’s objectives, where CTR and CVR
are key performance metrics. Therefore, we treat
CTR and CVR prediction as primary tasks, and
resume relevance as an auxiliary task to enhance
the overall quality.

2.2 Method Overview

An overview of our framework architecture is
shown in Figure 2, which consists of three major
components: (i) an encoding module that trans-
forms the inputs into embeddings, (ii) a person-
alized MMoE module that models diverse re-
cruiter behaviors and preferences by leveraging
role-specific embeddings, and (iii) a multi-task
learning module that jointly predicts click score,
application initiate score, and resume matching rel-
evance score to calibrate predictions and reduce
behavioral noise. To model job-specific recruit-
ment preferences, we introduce a fine-grained JD
encoding component that leverages LLMs and his-
torical recruitment data. The outputs of all modules
are integrated to produce ranking scores tailored to
recruiter intent and talent suitability.
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Figure 2: Overview of proposed framework.

2.3 Encoding Module

We construct a vocabulary of recruiter, query, and
talent IDs. As most queries are short (e.g., single
keywords), we encode only the query ID rather than
raw text. Embedding matrices are randomly initial-
ized and trained end-to-end, with recruiter, query,
and talent embeddings retrieved via ID lookups.

To capture nuanced recruitment preferences, we
introduce a fine-grained JD encoding module (right
side of Figure 2). Job postings often imply implicit
preferences—e.g., a backend role may favor can-
didates with a computer science background. To
extract such signals, we use an LLM to summarize
preferences from JD text and resumes of historical
matches. If the JD is unavailable, we instead syn-
thesize a candidate profile from historical data (e.g.,
education and work experience). Two CoT prompts
guide this process (see Appendix B). The generated
summaries are encoded using a fine-tuned BGE
model (Chen et al., 2024), alongside the current
talent’s resume. We apply a Gated Cross Network
(GCN) (Wang et al., 2023) to model interactions
between JD and resume embeddings:

c=co® (W xcog+b) (W9 x )+ co,

where ¢ is the concatenation of the JD and resume
embeddings produced by the BGE encoder, W
(cross matrix) and W (9) (gate matrix) are learnable
weight matrices, b is a bias term, and o(+) is the
activation function.

To incorporate recruiter behavior history, we ap-
ply multi-head attention (Vaswani, 2017) between
the current talent and previously interacted ones.
Using the history as Key/Value and the current em-
bedding e() as Query, the final JD embedding is

formed by concatenating the GCN output ¢ with
the attention result.

2.4 Personalized MMoE Module

Our talent search platform serves multiple recruiter
roles, including sourcing assistants (SA), sourcing
generalists (SG), and team leaders (TL), each ex-
hibiting distinct behavioral patterns. For example
in Table 1, SA users account for nearly 50% of
page views, yet their AUC and resume pass rates
are significantly lower than those of SG and TL.

To effectively model this role-based heterogene-
ity, we adopt an MMoE module (Ma et al., 2018a),
which enables dynamic feature routing based on
recruiter role. Specifically, given an input vec-
tor x (Equation (1)) formed by concatenating the
recruiter embedding e("), query embedding e(®,
candidate embedding e(*), and JD embedding e(7),
the model processes x through multiple expert net-
works f;. Each expert consists of a three-layer
feedforward network with ReLU activations as il-
lustrated in Figure 2c.

A role-aware gating network, as illustrated in
Figure 2d, takes the recruiter role embedding
as input and produces a softmax distribution
{91,92,...,9n}, Where g; represents the weight
for expert f; and ). g; = 1. The final represen-
tation & is computed as a weighted sum of expert
outputs (Equation (2)).

z = [eM;el@; e®; 0] (1)
= gifilx) )
=1

As outlined in Section 2.1, our framework pre-
dicts three outputs. To support this, we deploy three



independent gating networks, each feeding into a
task-specific tower. Additionally, a fourth gating
network is introduced to learn shared representa-
tions across tasks, enabling the model to capture
inter-task dependencies. In total, the MMoE mod-
ule maintains four gating networks tailored for both
task separation and shared behavior modeling.

2.5 Multi-task Learning Module

In addition to modeling role-specific behaviors, we
also account for noise in click and application ini-
tiation behaviors due to the variations in expertise
and subjective judgment. This behavioral noise can
reduce the accuracy of CTR and CVR predictions.

To address this, we adopt a multi-task learning
approach to jointly learn CTR, CVR, and resume
matching relevance. The first two are primary pre-
diction tasks, while the third serves as an auxiliary
task to improve overall task quality. All tasks are
formulated as binary classification. Inspired by
STEM (Su et al., 2024), we introduce a shared ex-
pert to capture common features and correlations
between CTR and CVR tasks, whose output is de-
noted as os. Each task k£ € {ctr,cvr,relv} also
has a dedicated DNN tower hj for learning task-
specific features. To enhance task interactions, we
inject the resume matching relevance output into
the input of the CTR and CVR towers:

Octr = [jjctr; Orelv] + hctr([i'ctr; trelv]),
Ocvr = [i'cvr; Orelv] + hcvr([i'cvd trelv})y

Orelv = hrelv (i'relv)-

Final predictions are computed by applying a linear
projection [(-) followed by softmax:

Yerr = softmax ({([oct; 0s))),
Yovr = softmax (I([ocvr; 05])),

Yrely = softmax({(orely))-

During training, we minimize the total loss defined
as a weighted sum of cross-entropy losses £ =
> & MeLr, where Ay is the loss weight and Ly, is
the loss for task k. This design allows the auxiliary
task to directly inform the primary objectives while
enabling robust and noise-tolerant learning.

3 Experiments

3.1 Experiment Settings

Datasets To the best of our knowledge, no public
dataset matches the characteristics of our talent

search scenario, which involves both short keyword
queries and long job descriptions. As a result, we
collect data from our proprietary online recruitment
system. The training set spans approximately two
months of interaction logs, including search clicks
and application actions. It contains around 495,000
samples from roughly 1,000 recruiters, covering
200,000 talent profiles and 500 job postings. The
test set comprises about 257,000 samples collected
over a subsequent three-week period.

Baselines We compare our proposed framework
against both single-task and multi-task learning
models commonly used in recommendation sys-
tems. GDCN (Wang et al., 2023) is a single-
task model that captures high-order feature inter-
actions using a gated mechanism to retain infor-
mative signals. For multi-task baselines, we in-
clude ESSM (Ma et al., 2018b), MMoE (Ma et al.,
2018a), PLE (Tang et al., 2020), and STEM (Su
et al., 2024), the current state-of-the-art in multi-
task recommendation. These models are further
described in Appendix C.

Metrics We evaluate performance on click-
through rate (CTR) and conversion rate (CVR) pre-
diction tasks using three standard metrics: AUC,
mean reciprocal rank at 10 (MRR@10), and av-
erage precision (AP). For the online evaluation,
we leverage the click-through conversion rate
(CTCVR) metric. Definitions of CTR, CVR, and
CTCVR are as follows:

OTR — Nclicks

9y
N; impressions

Napolicati

CV R = —2ppications
Nclicks

CTCV R — Napplications

impressions

where Nk denotes the number of clicked talent
resumes, Nimpressions denotes the number of ex-
posed talents, and Nypplications denotes the number
of clicked resumes that lead to application initi-
ations. Intuitively, CTR measures the likelihood
that an exposed talent resume is clicked and thus
reflects recruiter engagement at the profile-viewing
stage. CVR captures the probability that a clicked
resume leads to an application initiation, indicat-
ing how well the clicked candidates meet recruiter
requirements. CTCVR is an end-to-end efficiency
metric, measuring the fraction of all exposed re-
sumes that result in applications. Higher CTCVR



Table 2: Performance comparison among different methods. The best results are in bold.

Method CTR CVR
AUC MRR@10 AP AUC MRR@I10 AP

Single-task Learning GDCN  0.6456  0.0131  0.2816 | 0.6389  0.0155  0.0484

ESMM 0.7067  0.0134  0.2988 | 0.7005  0.0163  0.0633

MMoE 0.7106  0.0130  0.3010 | 0.7108  0.0152  0.0644
Multi-task Learning  PLE 0.6959  0.0132  0.2974 | 0.6884  0.0144  0.0624

STEM  0.7091 0.0132  0.3038 | 0.7154  0.0152  0.0613

Ours 0.7227  0.0136  0.3139 | 0.7581  0.0192  0.0680

signifies that recruiters are finding suitable can-
didates more quickly, reducing reliance on exter-
nal sourcing channels. In our production system,
CTR and CVR are treated as primary optimization
objectives, while CTCVR serves as an aggregate
business indicator for recruitment efficiency.

Other implementation details, including hyper-
parameters and training protocols, are provided in
Appendix D.

3.2 Offline Evaluation

The performance of all methods is reported in Ta-
ble 2. Our proposed framework consistently out-
performs both single-task and multi-task learning
baselines across all metrics. In terms of AUC, it
achieves absolute gains of 0.0121 (1.70% relative)
on the CTR task and 0.0427 (5.97% relative) on the
CVR task over the best-performing baselines (un-
derlined in the table). For additional metrics, our
framework also demonstrates strong performance.
On the CVR task, it improves MRR @10 by 0.0029
(17.79% relative) and AP by 0.0036 (5.59% rel-
ative) compared to the best baseline. These re-
sults highlight the effectiveness of our approach
in improving both ranking quality and predictive
accuracy. Moreover, we observe that all multi-
task learning methods outperform the single-task
baseline in most metrics, confirming the benefit
of multi-task learning for jointly modeling related
objectives such as CTR and CVR prediction.

3.3 Online A/B Test

In addition to our offline evaluations, we conducted
an online A/B test to assess the real-world effec-
tiveness of our framework. The results are shown
in Figure 3. We use GDCN as the online base-
line and deploy our framework on the person-
alized recommendation platform using Google’s
standard experimentation protocol. User traf-
fic was randomly split 1:1 between the experi-
mental group (ours) and the control group (base-

line). The test ran for nine consecutive working
days to ensure stability and statistical significance.
Compared to the base-
line, our framework ours
achieved a 17.29%
relative improvement
in click-through con-
version rate (CTCVR).
Importantly, the per-
formance gain is
statistically significant,
with a p-value of
0.01598 (< 0.05), validating the practical impact
of our approach in a production environment.
Furthermore, with the assistance of our framework,
we yield annual savings of millions of CNY.
Specifically, nearly 40% of hires already come
from our internal talent database, which incurs no
channel fees. By boosting conversions (CTCVR)
from this source, we further reduce reliance on
external channels, e.g., headhunting channels, thus
saving significant external channel fees.

mOom Baseline

CTCVR

Days

Figure 3: A/B test result.
Values are concealed due
to confidentiality.

3.4 Ablation Study

Impact of Model Components To evaluate the
contribution of key components in our framework,
we conduct an ablation study. Results are shown in
the upper part of Table 3, which reports AUC scores
for the CTR and CVR tasks. We define the follow-
ing model variants: (i) w/o JD enc. replaces our
fine-grained job description encoder with a simple
job ID embedding, (ii) w/o JD enc. & MTL fur-
ther removes multi-task learning by training CTR
and CVR predictors independently, and (iii) w/o
JD enc. & MTL & P-MMOoFE additionally replaces
our personalized MMoE module with a standard
MMOoE architecture. We observe that removing
any of these modules leads to a noticeable drop in
AUC for both CTR and CVR tasks. This confirms
the importance of fine-grained job representation,
multi-task learning, and personalized expert rout-



Table 3: Ablation study results (AUC score).

Model CTR CVR Avg.

Ours (full model) 0.7227 0.7581 0.7404
w/o JD enc. 0.7182 0.7543 0.7363
w/o JD enc. & MTL 0.7164 0.7264 0.7214
w/o JD enc. & MTL & P-MMoE 0.6970 0.7069 0.7020
Ours (w/ LLM in JD enc.) 0.7227 0.7581 0.7404
Ours (w/o LLM in JD enc.) 0.7282 0.7374 0.7328
MMOoE 0.7106 0.7108 0.7107
MMOoE + our LLM in JD enc. 0.7114 0.7384 0.7294

ing in improving model performance.

Impact of LLM-Based Recruitment Preference
Summarization We also evaluate the effective-
ness of using an LLLM to summarize key recruit-
ment preferences for job descriptions. Specifically,
we compare our framework with a variant that re-
moves the LLM and instead uses simple text con-
catenation. Results are shown in the middle part of
Table 3. Since CTR and CVR predictions are used
jointly for ranking, we report the average AUC to
assess overall ranking quality. The results indicate
that incorporating LLM-based summaries improves
model performance. To further validate this, we
integrate our LLM-based job description encoder
into one of the baselines (MMOoE). As shown in
the lower part of Table 3, this enhanced version
(MMOoE + LLM) yields consistent gains over the
vanilla MMoE model on both tasks, demonstrat-
ing the general effectiveness of using LLMs for
recruitment preference modeling.

Impact of the Number of Experts We further
analyze how the number of experts in the person-
alized MMoE module affects model performance,
as illustrated in Figure 4a. Since each expert is de-
signed to capture role-specific patterns, we expect
optimal performance when the number of experts
aligns with the number of recruiter roles in our sys-
tem (SA, SG, TL; see Table 1). Empirically, using
three experts yields the best performance. Increas-
ing the number of experts to five or ten results in
decreased performance, likely due to overfitting
and increased model complexity. Based on these
observations, we adopt three experts in our final
model, which provides both strong empirical re-
sults and a straightforward, interpretable mapping
to the three recruiter roles.

Impact of Historical Sequence Length We ex-
amine how the length of the historical sequence
used in the JD encoding module influences model
performance. As shown in Figure 4b, this module
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Figure 4: Impact of the number of experts in the MMoE
module and the historical sequence length in the JD
encoding module on the final performance. The perfor-
mance is the average AUC result of the CTR prediction
task and the CVR prediction task.

incorporates both historically matched resumes and
previously interacted talents. We observe that a se-
quence length of 30 yields the best performance.
Shorter sequences may fail to provide sufficient
context for the LLM or the downstream model to
extract meaningful features. Conversely, longer
sequences (e.g., beyond 30) may introduce noise or
less relevant historical data, which can negatively
impact performance. These findings suggest that
using a well-balanced sequence length is important
for maximizing the utility of historical information
in JD encoding.

3.5 Case Study

To qualitatively evaluate the effectiveness of our
framework, we present a case study comparing tal-
ent search results from STEM and our approach for
a “Search Product Manager” position. The com-
parison is shown in Figure 5. The job description
emphasizes expertise in large-scale search systems,
data analysis, and industry trend monitoring.

Among the top-ranked candidates, the “Baidu
- Product Manager” (ranked 1st by ours and 2nd
by STEM) clearly matches the job requirements,
showing direct experience in web search diversity,
user behavior analysis, and team leadership. In con-
trast, STEM’s 3rd-ranked candidate lacks relevant
search experience. Our framework instead high-
lights two more contextually suitable candidates: a
data product leader (Rank 2) with strong analytical
skills for search optimization, and an e-commerce
tools expert (Rank 3) with transferable experience
in metric standardization. These results suggest
our framework offers a more refined ranking by
balancing domain expertise (Rank 1) with related
high-value skills (Ranks 2 and 3), while STEM
overlooks such nuances and ranks a less-qualified
candidate in the top three.



Job description (partial):

" search product c

1. Understand search products; candidates with experience in large-scale search products or knowledge of algorithms are preferred

2. Possess strong data analysis skills and a solid understanding of probability theory, statistics, and experimental design; able to continuously monitor changes in industry and user demands and make timely business decisions.

3. Able to comprehensively manage the design and implementation of user products in search, write professional product requirement documents, and collaborate with algorithm and engineering teams to drive product iteration.
i ties, and execute both short-term product designs and strategic direction choices for medium to long-term research.

4. Keep track of and continuously follow up on industry trends, analyze ¢
Rank 1

Talent search results (Top 3)

Better search results!

Rank 1

STEM
Meituan - User Growth Product Manager No experience in search products.

Boost - In-Store Business Transaction UV with Special Offer Group Buying
- Built Special Offer Group Buying & Daily Coupons & New Customer Marketing Field. Reconstructed and upgraded
the product selection platform, resulting in an increase of total transaction UV by xx+/day and GTV by xx W+/day.

- To address the issues of low application efficiency, low product quality, and low quantity in the current selection
system, the system was upgraded. This involved adopting a product-specific recruitment model, establishing a
product hosting and algorithmic pricing system, and developing a diagnostic tool for evaluating the pricing
competitiveness of selected products.

Baidu - Product Manager In line with the job requirements.

Served as the head of the web search product diversity direction, responsible for the strategy to meet the diversity
of entire web search results. The main work focused on user behavior data analysis, needs assessment, and
strategy design. Primarily responsible for product design, project advancement, and product operations, and led a
team of 7 to complete the project.

Rank 2

Rank 2

Baidu - Product Manager In line with the job requirements.
Served as the head of the web search product diversity direction, responsible for the strategy to meet the diversity
of entire web search results. The main work focused on user behavior data analysis, needs assessment, and
strategy design. Primarily responsible for product design, project advancement, and product operations, and led a
team of 7 to complete the project.

Rank 3

ByteDance - Douyin Life Services Data Product Team Leader sufficient data analysis skills.
- Linke Data Center: A data product aimed at external service providers, built from the ground up (0-1), with a
target user penetration rate of X+ and a satisfaction score of X.

- Data Infrastructure: Starting with order attribution, define all core metric standards for life services providers,
addressing the issue of service providers not knowing which standards to use for data viewing and assessment.

- After launch, feedback related to inaccurate data and unclear standards decreased by X+. By leveraging the
capabilities of Shengcaiyoushu, the construction of all transaction-related analysis products for service providers
was rapidly completed within six months, covering areas such as transactions, content, and supply.

Dewu - Product Manager

- Guided shopping refinement

- Upgrade of the purchase homepage

- Community Content - Product Special
Douyin - Product Manager
Responsible for the increase in the number of merchants and products in the overall market, adding over 500,000
merchants quarterly through non-targeted recruitment and targeting over 400,000 products.

No experience in search products.

Rank 3

Kuaishou - Internal Circulation (E-commerce) Service Platform Product Manager
- Responsible for the e-commerce operation dashboard tool module, establishing an internal circulation merchant
growth service tool system from scratch
i - B-side Order/Cross-border E- Products & Industry Products
- Designed the New Merchant Training Camp from three aspects: "Merchant Segmentation,"” "Task System,” and

"Incentive Rewards,” and conducted "Optimization of Reach.” No experience in searching products.

Figure 5: Case study of candidate ranking for a “Search Product Manager” position.

4 Related Works

Talent search aims to identify suitable candidates
based on recruiter queries. Early work, such as
Apatean et al. (2017), explored traditional machine
learning methods like KNN (Wu et al., 2008) and
LDA (Blei et al., 2003) to classify candidate at-
tributes such as education, programming, and lan-
guage skills, enabling structured search over pro-
files. Manad et al. (2018) extended this by ex-
tracting skills from both queries and resumes and
ranking candidates by skill proficiency.

Recent methods leverage deep learning. Ra-
manath et al. (2018) applied learning-to-rank tech-
niques using DNNs, while Wang et al. (2021) used
BERT (Devlin et al., 2019) to extract competency-
related keywords and compute weighted scores.
Their work also introduced a Competence Map
(CMAP) to model inter-skill relationships.

Another line of research leverages recruiter in-
teraction data to improve talent search quality. Ha-
Thuc et al. (2016, 2017) first explored this idea
using historical search logs. Geyik et al. (2018a)
further incorporated real-time recruiter feedback
to infer intent clusters and applied a multi-armed
bandit framework for ranking. Similarly, Ozcaglar
et al. (2019) introduced a two-level ranking sys-
tem that integrates structured candidate features
and uses recruiter actions as supervised signals.
Yang et al. (2021) proposed a cascaded architecture
combining DNN and BERT, where personalized
recruiter preferences are explicitly modeled in the
final ranking stage.

5 Conclusion

We present a novel talent search framework that
combines LLM-based recruitment preference mod-
eling, a role-aware MMOoE network for capturing
recruiter heterogeneity, and a multi-task learning
module to reduce behavioral noise. Experiments on
real-world data and an online A/B test demonstrate
significant relative performance gains of 1.70% and
5.97% in AUC for CTR and CVR, and a 17.29% lift
in click-through conversion rate (CTCVR). These
improvements translate into substantial business
value, enabling an estimated annual cost saving of
millions of CNY by reducing reliance on external
recruiting channels. Our results highlight the practi-
cal impact of integrating LLMs, role-specific mod-
eling, and multi-task optimization in real-world
talent search systems.

6 Limitations

Our system currently depends on sufficient histori-
cal interaction data to model recruiter behavior and
job preferences effectively. In cold-start scenarios
such as new job postings or first-time recruiters, the
framework’s effectiveness may be limited. Addi-
tionally, although our framework supports multiple
recruiter roles, it does not explicitly account for
temporal dynamics in recruiter behavior or job mar-
ket trends, which may evolve over time.

Acknowledgments

This work is supported by National Key R&D Pro-
gram of China under Grant No. 2024YFA1012700,
and by the Guangzhou Industrial Information



and Intelligent Key Laboratory Project (No.
2024A03J0628). It is also funded by the NSFC
Project (No. 62306256) and the Natural Sci-
ence Foundation of Guangdong Province (No.
2025A1515010261).

References

2025. OpenSearch. https://opensearch.org. [Ac-
cessed 04-07-2025].

Anca Apatean, Evelyn Szakacs, and Magnolia Tilca.
2017. Machine-learning based application for staff
recruiting. Acta Technica Napocensis, 58(4):16-21.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993-1022.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
arXiv preprint arXiv:2402.03216.

Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guo-
qing Bu, Yining Wang, and Enhong Chen. 2019. Co-
attentive multi-task learning for explainable recom-
mendation. In IJCAI, volume 2019, pages 2137-
2143.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 4171-4186.

Sahin Cem Geyik, Vijay Dialani, Meng Meng, and Ryan
Smith. 2018a. In-session personalization for talent
search. In Proceedings of the 27th ACM international
conference on information and knowledge manage-

ment, pages 2107-2115.

Sahin Cem Geyik, Qi Guo, Bo Hu, Cagri Ozcaglar,
Ketan Thakkar, Xianren Wu, and Krishnaram Ken-
thapadi. 2018b. Talent search and recommendation
systems at linkedin: Practical challenges and lessons
learned. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, pages 1353-1354.

Viet Ha-Thuc, Ye Xu, Satya Pradeep Kanduri, Xianren
Wu, Vijay Dialani, Yan Yan, Abhishek Gupta, and
Shakti Sinha. 2016. Search by ideal candidates: Next
generation of talent search at linkedin. In Proceed-
ings of the 25th International Conference Companion
on World Wide Web, pages 195-198.

Viet Ha-Thuc, Yan Yan, Xianren Wu, Vijay Dialani, Ab-
hishek Gupta, and Shakti Sinha. 2017. From query-
by-keyword to query-by-example: Linkedin talent
search approach. In Proceedings of the 2017 ACM

on Conference on Information and Knowledge Man-
agement, pages 1737-1745.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-

edge Management, pages 2333-2338.

Krishnaram Kenthapadi, Benjamin Le, and Ganesh
Venkataraman. 2017. Personalized job recommen-
dation system at linkedin: Practical challenges and
lessons learned. In Proceedings of the eleventh ACM
conference on recommender systems, pages 346-347.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan
Hong, and Ed H Chi. 2018a. Modeling task relation-
ships in multi-task learning with multi-gate mixture-
of-experts. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 1930-1939.

Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin
Hu, Xiaoqiang Zhu, and Kun Gai. 2018b. Entire
space multi-task model: An effective approach for
estimating post-click conversion rate. In The 41st
International ACM SIGIR Conference on Research &
Development in Information Retrieval, pages 1137—
1140.

Otman Manad, Mehdi Bentounsi, and Patrice Darmon.
2018. Enhancing talent search by integrating and
querying big hr data. In 2018 IEEE International
Conference on Big Data (Big Data), pages 4095—
4100. IEEE.

Cagri Ozcaglar, Sahin Geyik, Brian Schmitz, Prakhar
Sharma, Alex Shelkovnykov, Yiming Ma, and Erik
Buchanan. 2019. Entity personalized talent search
models with tree interaction features. In The World
Wide Web Conference, pages 3116-3122.

Rohan Ramanath, Hakan Inan, Gungor Polatkan, Bo Hu,
Qi Guo, Cagri Ozcaglar, Xianren Wu, Krishnaram
Kenthapadi, and Sahin Cem Geyik. 2018. Towards
deep and representation learning for talent search
at linkedin. In Proceedings of the 27th ACM inter-
national conference on information and knowledge
management, pages 2253-2261.

Liangcai Su, Junwei Pan, Ximei Wang, Xi Xiao, Shi-
jie Quan, Xihua Chen, and Jie Jiang. 2024. Stem:
unleashing the power of embeddings for multi-task
recommendation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
9002-9010.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong
Gong. 2020. Progressive layered extraction (ple): A
novel multi-task learning (mtl) model for personal-
ized recommendations. In Proceedings of the 14th
ACM conference on recommender systems, pages
269-278.


https://opensearch.org

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018.
Multi-pointer co-attention networks for recommen-
dation. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery &

data mining, pages 2309-2318.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Fangye Wang, Hansu Gu, Dongsheng Li, Tun Lu, Peng
Zhang, and Ning Gu. 2023. Towards deeper, lighter
and interpretable cross network for ctr prediction.
In Proceedings of the 32nd ACM international con-
ference on information and knowledge management,
pages 2523-2533.

Yan Wang, Yacine Allouache, and Christian Joubert.
2021. Analysing cv corpus for finding suitable can-
didates using knowledge graph and bert. In DBKDA
2021, the thirteenth international conference on ad-
vances in databases, knowledge, and data applica-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In An-
nual Conference on Neural Information Processing
Systems (NeurlPS).

Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J
McLachlan, Angus Ng, Bing Liu, Philip S Yu, and
1 others. 2008. Top 10 algorithms in data mining.
Knowledge and information systems, 14:1-37.

Zimeng Yang, Song Yan, Abhimanyu Lad, Xiaowei
Liu, and Weiwei Guo. 2021. Cascaded deep neural
ranking models in linkedin people search. In Pro-
ceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages
4312-4320.

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh
Nath, Shawn Andrews, Aditee Kumthekar, Mah-
eswaran Sathiamoorthy, Xinyang Yi, and Ed Chi.
2019. Recommending what video to watch next: a
multitask ranking system. In Proceedings of the 13th
ACM conference on recommender systems, pages 43—
51.

A System Workflow

As illustrated in Figure 6, our talent search system
consists of two main components: online serving
and offline training/inference. The online serving
side handles real-time recruiter queries by parsing
context, retrieving candidate profiles through the
OpenSearch'™ engine (ope, 2025), and re-ranking
results using the proposed Talent Re-Ranking Ser-
vice. The offline module supports training and
inference, where behavioral data is logged, pro-
cessed, and used to train models on a distributed

platform. Our framework enhances this pipeline
by integrating LLMs for recruitment preference
extraction and generating augmented summaries,
which are then encoded by the proposed Encoder.
These representations are uploaded to the online
system for re-ranking, enabling personalized and
context-aware talent recommendations.

Online Serving Offline Training/Inference

Personalization Platform Computation Platform

\ s \

Feedback Logging

Behavioral Data
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Figure 6: Workflow of our talent search system.

B LLM Prompting

We illustrate the prompt used for the LLM in Fig-
ure 7 and Figure 8. The prompt frames the LLM as
an experienced HR specialist, introduces the task
context, and outlines specific requirements and con-
straints to guide step-by-step analysis. To ensure
consistency and structure, we also include a pre-
defined output format and example inputs. This
prompt design helps reduce hallucinations and en-
hances the quality of the generated recruitment
preference summaries.

C Multi-task Learning Models

We review recent multi-task learning (MTL) mod-
els in recommendation systems, focusing on those
built upon the widely adopted Embedding-Tower
architecture (Huang et al., 2013), where inputs are
embedded and passed through task-specific towers.

ESSM (Ma et al., 2018b) enhances CVR pre-
diction by introducing auxiliary CTR and CTCVR
tasks and sharing embedding parameters between
CVR and CTR. Chen et al. (2019) employ hierar-
chical multi-pointer co-attention (Tay et al., 2018)
to model task correlations, improving performance
in both recommendation and explanation tasks.



You are a seasoned HR expert specializing in analyzing recruitment
data and talent needs. You are now required to analyze and summarize
the actual hiring preferences for the position based on its job
description and historical recruitment behavior.

Please conduct the analysis from the following aspects:
1.Core skills required for the position

2.Industry domain preferences

3.Experience background tendencies

4.Educational background requirements

5.Potential unstated but behaviorally evident preferences

Please follow these steps for the analysis:

Step 1: Comprehensive analysis of explicit requirements in the JD text
- Necessary skill requirements

- Educational and experience requirements

- Explicit industry background requirements

Step 2: Analyze historical job application initiation behavior

- Preference for various attributes of resumes initiating applications
- Differences from JD requirements

- Implicit talent attribute information and preferences

Step 3: Analyze successful matching cases

- Typical characteristics of successful resumes
- Differences from original JD requirements

- Actual hiring tendencies

Constraints:

1.Focus on high-frequency, common characteristics, and avoid
overemphasis on individual cases
2.Distinguish  between explicit
tendencies

3.0utput results should be objective, specific, and quantifiable
4.Please adhere strictly to the provided contextual information and do
not fabricate answers

requirements and preferential

Figure 7: LLM Prompt: System Instruction

Please output the analysis results in the following format:

Core Skill Requirements:
- Essential Skills: [List of key skills separated by commas]
- Preferred Skills: [List of priority skills separated by commas]

Industry Experience Preferences:
- Target Industry: [Industries prioritized]
- Related Industry: [Acceptable related industry backgrounds]

Educational Background Requirements:
- Education Level: [Minimum education requirement]
- Preferred Majors: [Preferred academic backgrounds]

Experience Background Tendencies:
- Years of Experience: [Specific range of years]
- Experience Characteristics: [Description of key experience]

Implicit Preferences:

- Skill Inclination: [Skill preferences discovered through behavioral data]
- Background Inclination: [Background preferences discovered through
behavioral data]

- Special Preferences: [Other significant preferences discovered]

Figure 8: LLM Prompt: Output

MMoE (Ma et al., 2018a), adopted in large-
scale systems such as YouTube’s video recom-
mender (Zhao et al., 2019), introduces a set of
shared expert networks whose outputs are routed
via task-specific gating mechanisms. This design
allows tasks to selectively leverage shared knowl-
edge while preserving their unique modeling needs.

Despite their success, MTL often face challenges
such as negative transfer and the seesaw effect,

where improving one task may degrade another.
To address this, PLE (Tang et al., 2020) separates
shared and task-specific experts and introduces pro-
gressive routing to better manage task interference
and disentangle shared from private knowledge.
More recently, STEM (Su et al., 2024) presents a
unified embedding paradigm with an All-Forward,
Task-Specific Backward gating mechanism, which
strengthens task-specific representations while sup-
porting knowledge sharing, achieving strong results
across multi-task recommendation benchmarks.

D Implementation Details

This section outlines the key implementation de-
tails of our experiments.

Embedding Dimensions The ID embeddings for
recruiters, queries, and talents are all set to 32 di-
mensions. The query and job description text em-
beddings are both 1024-dimensional. The concate-
nated vector ¢y has a dimensionality of 2048, and
the hidden sizes of W(©) and W) are both 2048.
For the multi-head attention module, the number
of attention heads is set to 1.

MMOoE Configuration The number of experts in
the MMOoE module is 3. The hidden sizes are 128,
64 and 32 for the expert networks, and 32 and 16
for the gating networks.

Multi-task Learning Module We use two DNN
towers for task-specific modeling: (i) the first tower
has three layers with hidden sizes of 512, 256, and
128, and (ii) the second tower has three layers with
hidden sizes of 256, 128, and 64. All loss weights
A1, A2, Ag are set to 1.0.

Training Setup The model is trained with a batch
size of 1024, learning rate of 1 x 1075, dropout
rate of 0.2, and for approximately 20,000 steps.

Baseline Configuration For all baseline models,
we perform hyperparameter tuning to ensure each
achieves its optimal performance on our dataset.
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