
Efficient Second-Order Optimization for Neural Networks with
Kernel Machines

Yawen Chen

South China University of Technology

Guangzhou, China

ywchenscut@gmail.com

Yile Chen

South China University of Technology

Guangzhou, China

jireh.x6@gmail.com

Jian Chen

South China University of Technology

Guangzhou, China

ellachen@scut.edu.cn

Zeyi Wen
∗

Hong Kong University of Science and

Technology (Guangzhou); Hong Kong

University of Science and Technology

Guangzhou & Hong Kong SAR, China

wenzeyi@ust.hk

Jin Huang

South China Normal University

Guangzhou, China

huangjin@m.scnu.edu.cn

ABSTRACT
Second-order optimization has been recently explored in neural net-

work training. However, the recomputation of the Hessian matrix in

the second-order optimization posts much extra computation and

memory burden in the training. There have been some attempts to

address this issue by approximation on the Hessian matrix, which

unfortunately degrades the performance of the neural models. In

order to tackle this issue, we propose Kernel Stochastic Gradient

Descent (Kernel SGD) which solves the optimization problem in

a space transformed by the Hessian matrix of the kernel machine.

Kernel SGD eliminates the Hessian matrix recomputation in the

training and requires a much smaller memory cost which can be

controlled via the mini-batch size. We show that Kernel SGD opti-

mization is theoretically guaranteed to converge. Our experimental

results on tabular, image and text data confirm that Kernel SGD

converges up to 30 times faster than the existing second-order op-

timization techniques, and achieves the highest test accuracy on

all the tasks tested. Kernel SGD even outperforms the first-order

optimization baselines in some problems tested in our experiments.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Kernelmeth-
ods; • Theory of computation→ Preconditioning.

KEYWORDS
neural networks, kernel machines, second-order optimization

ACM Reference Format:
Yawen Chen, Yile Chen, Jian Chen, Zeyi Wen, and Jin Huang. 2022. Efficient

Second-Order Optimization for Neural Networks with Kernel Machines. In

∗
Correspondence to Zeyi Wen at wenzeyi@ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557307

Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557307

1 INTRODUCTION
A recent trend in training neural networks is to exploit the second-

order information which helps escape the ill-conditioned loss re-

gion and boosts the convergence [6, 31, 32]. Such methods use the

second-order derivatives on the weights (i.e., edges or connections)

of neural networks, and all the second-order derivatives together

form a Hessian matrix for each layer. The repeated computation of

the Hessian matrix posts much extra computation and memory bur-

den in the training, as the Hessian matrix which is computed based

on the neural network weights needs to be updated in each train-

ing iteration. The computation and memory burden become huge

for large networks, as the size of the Hessian matrix is quadratic

in the number of weights. Researchers attempted to improve the

efficiency and memory cost of the second-order optimization with

approximation such as quasi-Newton [15], Fisher information [19]

and diagonalization [6]. Nonetheless, the approximation may lead

to the degradation on the model performance such as the predictive

accuracy [31].

Kernel machines have achieved comparable performance with

neural networks when solving some machine learning problems.

For example, a recent study [29] on a popular sentiment analy-

sis problem shows that SVM based solutions can achieve compet-

itive predictive accuracy to the deep neural network based ap-

proaches [7]. Belkin et al. [1] demonstrated that kernel machines

can fit the problem with random labels easily and produce robust

generalization comparable to neural networks. As kernel machines

take advantage of convexity and have used second-order optimiza-

tion in the training [9], incorporation of the second-order infor-

mation from convex kernel machine problems into deep learning

problems may better guide the optimization. Based on this inspira-

tion, we exploit the second-order information from kernel machines

and propose an efficient second-order optimization method–Kernel

Stochastic Gradient Descent (hereafter “Kernel SGD”) for neural

network training.

Kernel SGD solves the neural network optimization problem in

a space transformed by the Hessian matrix of the kernel machine,

https://orcid.org/0000-0001-5109-3700
https://doi.org/10.1145/3511808.3557307
https://doi.org/10.1145/3511808.3557307

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yawen Chen et al.

where the training may converge to a better solution. The Hessian

matrix in Kernel SGD is proportional to the size of the mini-batch of

training instances, rather than the number of weights. As a result,

the size of the Hessian matrix in Kernel SGD can be controlled by

setting the size of the mini-batch. Another important property of

Kernel SGD is that the Hessian matrix does not need to be updated

in each iteration, because it is computed based on the training

instances which are unchanged during backward and forward prop-

agation. To summarize, our main contributions in this paper are

listed as follows.

• We propose Kernel SGD which incorporates the second-order

information of kernel machines into the training of neural net-

works. Kernel SGD exploits the Hessian matrix of the kernel

machine which is proportional to the size of mini-batch, and the

size of which is controllable by practitioners. The recomputation

of Hessian matrix is eliminated benefiting from the unchanged

information in the Hessian matrix.

• We theoretically prove that the optimization using Kernel SGD

is guaranteed to converge and our theoretical analysis indicates

that Kernel SGD is more likely to converge to a better solution.

• We conduct extensive experiments on tabular, image and text

data to investigate the behaviours of Kernel SGD. Our experi-

mental results confirm that Kernel SGD converges up to 30 times

faster, in comparison with the existing second-order optimization.

Kernel SGD can achieve the highest test accuracy on all the tasks

evaluated. Especially on imdb data set, Kernel SGD improves the

test accuracy by around 13%. The memory cost for Kernel SGD is

much smaller especially with larger neural networks. As a sanity

check, we also compare Kernel SGD with the first-order optimiza-

tion. Our results show that Kernel SGD even outperforms the

first-order optimization in terms of accuracy and convergence

time in some problems tested.

2 PRELIMINARIES ON KERNEL MACHINES
A kernel machine projects a non-linear problem into a feature

space where the problem may be linearly separable [11, 13]. For-

mally, suppose we have a training data set {𝑋,𝒚}. The data set

consists of 𝑛 training instances where {𝑋 ∈ R𝑛×𝑑 ,𝒚 ∈ R𝑛} =

{(𝒙1, 𝑦1), (𝒙2, 𝑦2), ..., (𝒙𝑛, 𝑦𝑛)}, and (𝒙𝑖 , 𝑦𝑖) denotes the instance

𝒙𝑖 ∈ R𝑑 with its label𝑦𝑖 . The objective of kernel machine training is

to find an optimal weight vector 𝝎 which minimizes the structural

risk as follows.

min𝐿(𝝎) = 1

𝑛

𝑛∑
𝑖=1

𝑙 (𝑓 (𝝎, 𝒙𝑖), 𝑦𝑖) +
𝜆

2

| |𝝎 | |2, (1)

where 𝜆 denotes the regularization constant. The decision function

𝑓 (𝝎, 𝒙𝑖) is computed as 𝑓 (𝝎, 𝒙𝑖) = ⟨𝝎, 𝜙 (𝒙𝑖)⟩ where 𝝎 is defined

on the reproducing kernel Hilbert space (RKHS) and ⟨·, ·⟩ is the inner
product on RKHS. The function 𝜙 (·) maps the instances from their

original data space to a higher dimensional feature space induced

by the kernel function. Assume the loss 𝑙 (·, ·) is an affine function

of 𝝎 as the affine loss function is widely used in kernel machines

(e.g., SVMs) and is robust to the outliers [3]. Since Problem (1) is an

instance of the representer theorem [25], we can derive that a mini-

mizer of Problem (1) is𝝎 =
∑𝑛
𝑗=1 𝛼 𝑗𝜙 (𝒙 𝑗). Based on the reproducing

property [27], we have 𝑓 (𝝎, 𝒙𝑖) =
∑𝑛
𝑗=1 𝛼 𝑗𝑘 (𝒙𝑖 , 𝒙 𝑗) where𝑘 (𝒙𝑖 , 𝒙 𝑗)

is a positive-definite kernel and 𝑘 (𝒙𝑖 , 𝒙 𝑗) = ⟨𝜙 (𝒙𝑖), 𝜙 (𝒙 𝑗)⟩. By sub-

stituting the expressions of 𝑓 (𝝎, 𝒙𝑖) and 𝝎 into Problem (1), we

rewrite the objective with respect to 𝜶 below.

min𝐿 (𝜶) = 1

𝑛

𝑛∑
𝑖=1

𝑙 (
𝑛∑
𝑗=1

𝛼 𝑗𝑘 (𝒙𝑖 , 𝒙 𝑗), 𝑦𝑖) +
𝜆

2

| |
𝑛∑
𝑗=1

𝛼 𝑗𝜙 (𝒙 𝑗) | |2, (2)

where 𝜶 = [𝛼1 . . . 𝛼𝑛]𝑇 is an 𝑛-dimension vector, each dimension

of which corresponds to the contribution of a training instance to

the kernel machine.

Next we compute the Hessian matrix of Problem (2). We discuss

two situations where Problem (2) is solved with or without con-

straints. As it is easy to compute the Hessian matrix of Problem (2)

without any constraints, we concentrate on the constrained problem

in the following. The Hessian matrix of unconstrained Problem (2)

is equal to the one of constrained Problem (2). Problem (2) with

constraints can be written as follows.

min𝐿 (𝜶) = 1

𝑛

𝑛∑
𝑖=1

𝑙 (
𝑛∑
𝑗=1

𝛼 𝑗𝑘 (𝒙𝑖 , 𝒙 𝑗), 𝑦𝑖) +
𝜆

2

| |
𝑛∑
𝑗=1

𝛼 𝑗𝜙 (𝒙 𝑗) | |2,

subject to 𝜆 > 0, (3)

ℎ𝑖 (𝑋,𝜶 ,Θ) = 0, ∀𝑖 ∈ {1, . . . , 𝑛ℎ },
𝑔𝑗 (𝑋,𝜶 ,Θ) ≤ 0, ∀𝑗 ∈ {1, . . . , 𝑛𝑔 },

where Θ is the set of hyper-parameters in kernel machines (i.e.,

Θ = {𝜆, 𝜃1, 𝜃2, . . .}). The number of equality constraints in the set

H = {ℎ𝑖 (·, ·, ·) |∀𝑖 ∈ {1, . . . , 𝑛ℎ}} and the number of inequality

constraints in the set G = {gj (·, ·, ·) |∀j ∈ {1, . . . , ng}} are denoted
by 𝑛ℎ and 𝑛𝑔 , respectively. The constraints inH and G are affine

functions, and constraints in G are convex and continuously dif-

ferentiable, which are common in kernel machines such as SVMs.

In order to solve the optimization problem as presented in Equa-

tion (3), we transform the Problem (3) to the following form with

Lagrangian multipliers.

𝐿 (𝜶 , 𝜷, 𝝁) = 1

𝑛

𝑛∑
𝑖=1

𝑙 (
𝑛∑
𝑗=1

𝛼 𝑗𝑘 (𝒙𝑖 , 𝒙 𝑗), 𝑦𝑖) +
𝜆

2

| |
𝑛∑
𝑗=1

𝛼 𝑗𝜙 (𝒙 𝑗) | |2

+
𝑛ℎ∑
𝑖=1

𝛽𝑖ℎ𝑖 (𝑋,𝜶 ,Θ) +
𝑛𝑔∑
𝑗=1

𝜇 𝑗𝑔𝑗 (𝑋,𝜶 ,Θ) . (4)

The transformation is inspired by the proof of Lemma 4 in the

paper [13]. Lagrangian multipliers 𝛽𝑖 and 𝜇𝑖 denote the 𝑖-th element

of 𝜷 and 𝝁 respectively where 𝜷 ∈ R𝑛ℎ and 𝝁 ∈ R𝑛𝑔 . Then, we have
the Karush-Kuhn-Tucker (KKT) conditions [13] for the Problem (3)

below.

𝜕𝐿 (𝜶 , 𝜷, 𝝁)
𝜕𝛼𝑝

=
1

𝑛

𝑛∑
𝑖=1

∇𝛼𝑝 𝑙 (
𝑛∑
𝑗=1

𝛼 𝑗𝑘 (𝒙𝑖 , 𝒙 𝑗), 𝑦𝑖) + 𝜆𝜶𝑇𝐾𝑝

+ 𝜷𝑇 𝜕𝒉(𝑋,𝜶 ,Θ)
𝜕𝛼𝑝

+ 𝝁𝑇 𝜕𝒈 (𝑋,𝜶 ,Θ)
𝜕𝛼𝑝

= 0,

subject to ℎ𝑖 (𝑋,𝜶 ,Θ) = 0, 𝜇 𝑗𝑔𝑗 (𝑋,𝜶 ,Θ) = 0,

𝑔𝑗 (𝑋,𝜶 ,Θ) ≤ 0, 𝜇 𝑗 ≥ 0,

∀𝑖 ∈ {1, . . . , 𝑛ℎ }, ∀𝑗 ∈ {1, . . . , 𝑛𝑔 }.

(5)

The 𝑛ℎ dimensional vector function 𝒉(𝑋,𝜶 ,Θ) treats the constraint
ℎ𝑖 (𝑋,𝜶 ,Θ) as its 𝑖-th dimension; similarly, the vector function

𝒈(𝑋,𝜶 ,Θ) is formed by gj (X ,𝜶 ,Θ) of all 𝑗 in the set {1, . . . , 𝑛𝑔 }.
Let 𝐾𝑝 denote the 𝑝-th column in the kernel matrix 𝐾 ∈ R𝑛×𝑛 . The
elements in the 𝑖-th row and 𝑗-th column of matrix 𝐾 is defined

as 𝐾𝑖 𝑗 = 𝑘 (𝒙𝑖 , 𝒙 𝑗). Based on the assumptions made earlier, all the

terms in the first derivative of the objective 𝐿(𝜶 , 𝜷, 𝝁) (i.e., the first

Efficient Second-Order Optimization for Neural Networks with Kernel Machines CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

two lines in Equation (5)) except for 𝜆𝜶𝑇𝐾𝑝 can be written as a

constant with respect to 𝛼𝑝 . If we take the second-order derivative

of 𝐿(𝜶 , 𝜷, 𝝁) with respect to 𝛼 , we can obtain that
𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼𝑝𝜕𝛼𝑞

= 𝐾𝑝𝑞

for all 𝑝 and 𝑞 in the set {1, . . . , 𝑛}. Hence we have the Hessian
matrix 𝐻 = [𝐻𝑖 𝑗]𝑛×𝑛 of objective function (5) equal to the kernel

matrix 𝐾 as follows.

𝐻 =

𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼1𝜕𝛼1

𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼1𝜕𝛼2

· · · 𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼1𝜕𝛼𝑛

.

.

.
.
.
.

. . .
.
.
.

𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼𝑛𝜕𝛼1

𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼𝑛𝜕𝛼2

· · · 𝜕𝐿 (𝜶 ,𝜷,𝝁)
𝜕𝛼𝑛𝜕𝛼𝑛

=

𝐾11 𝐾12 · · · 𝐾1𝑛
.
.
.

.

.

.
. . .

.

.

.

𝐾𝑛1 𝐾𝑛2 · · · 𝐾𝑛𝑛

 = 𝐾.
The element in the 𝑖-th row and 𝑗-th column of the matrix 𝐻 is

𝐻𝑖 𝑗 = 𝐾𝑖 𝑗 = 𝑘 (𝒙𝑖 , 𝒙 𝑗). For clarity, we use kernel matrix𝐻 to denote

the Hessian matrix of the kernel machine in the rest of the paper.

3 OUR PROPOSED KERNEL SGD
OPTIMIZATION

In this section, we elaborate our techniques to improve the effi-

ciency of the second-order optimization in neural network training.

Exploiting second-order information is non-trivial and needs to

address two key challenges. First, the memory and computation

cost of second-order optimization is considerably high, due to the

large size of the weight matrix and the frequent update of the Hes-

sian matrix in neural network training. Second, simple methods

like approximation on the Hessian matrix, although show improve-

ments on memory and computation, may lead to the deficiency in

the model performance such as the predictive accuracy.

In order to tackle these challenges, we take advantages of ker-

nel machines and propose an optimization method named “Kernel

Stochastic Gradient Descent” (hereafter “Kernel SGD”). Our key

inspiration is that kernel machines have achieved remarkable per-

formance as neural networks in some applications [1, 29], while

performing convex optimization. Our method integrates the second-

order information of kernel machines into the neural network op-

timization. Benefiting from the unchanged Hessian matrix of the

kernel machine, our method shows advantages in computation and

space efficiency. Next, we provide technical details in Kernel SGD

with theoretical analysis.

3.1 Problem Projection and Update Rule
The key idea of Kernel SGD is to project the optimization problem

into another space with the Hessian matrix of kernel machines,

where a better solution may be found. Formally, let J (𝑊) be the
objective (e.g., cross entropy loss) of the original neural network

problem with respect to the weight matrix𝑊 ∈ R𝑑𝑟×𝑑𝑐 . We denote

the number of rows and columns in the weight matrix as 𝑑𝑟 and 𝑑𝑐 ,

separately. By introducing the projection matrix 𝑃 ∈ R𝑑𝑐×𝑑𝑐 , we
first project the weight matrix𝑊 to a new matrix called �̂� where

�̂� =𝑊𝑃
1

2 . The projection matrix, which is a symmetric matrix, is

used to project the optimization problem into another space. Thus

the problem after projection becomes optimizing the projected loss

ˆJ (�̂�) where J (𝑊) = J (�̂� 𝑃−
1

2) = ˆJ (�̂�). The standard SGD

updates the solution �̂� for the projected loss with the equation

below.

�̂� ′ = �̂� − 𝜂∇
�̂�

ˆJ (�̂�), (6)

where 𝜂 is the learning rate and ∇
�̂�

ˆJ (·) is the gradient of the

projected loss
ˆJ (·) with respect to the weight �̂� . The dimensions

of ∇
�̂�

ˆJ (·) are the same as the dimensions of �̂� .

In the original neural network problem, the weight matrix to up-

date is𝑊 . We expand Equation (6) with the expression of∇
�̂�

ˆJ (�̂�)
where ∇

�̂�
ˆJ (�̂�) = ∇𝑊 J (𝑊) (𝑃−

1

2)𝑇 and derive the following up-

date rule for the weight𝑊 .

𝑊 ′ =𝑊 − 𝜂∇𝑊 J (𝑊)𝑃−1, (7)

where ∇𝑊 J (𝑊) ∈ R𝑑𝑟×𝑑𝑐 is the gradient of loss J (·) with respect
to the weight𝑊 . Updating the weight�̂� of the projected problem in

the transformed space using Equation (6) is equivalent to updating

the weight𝑊 of the original problem using Equation (7) .

A good choice of projection matrix helps transform the problem

into a space where the optimization better converges. In Kernel

SGD, we choose the Hessian matrix 𝐻 of the kernel machine as

the projection matrix 𝑃 . The intuition is that kernel machines and

neural networks aim to learn the similar inference function through

similar mapping and combination processes, except that kernel ma-

chines solve convex problems. Specifically, the kernel machine and

neural network first learn a new representation for the instance

using mapping (e.g., the mapping with function 𝜙 (·) in kernel ma-

chines or the mapping performed by the hidden layers in neural

networks) and then the inference function is generated by com-

bining each dimension in the new representation with its weight

(e.g., the weight 𝝎 in kernel machines or the weights of the in-

ference layer in neural networks). The kernel matrix may guide

the optimization to a better direction in the transformed space, as

the kernel matrix contains the second-order information of the

convex objective. Hence Kernel SGD updates the weight𝑊 with

the following rule which corresponds to the update of weight �̂� in

the space transformed by the kernel matrix.

𝑊 ′ =𝑊 − 𝜂∇𝑊 J (𝑊)𝐻−1 . (8)

When the inverse of the kernel matrix 𝐻 does not exist, we use the

pseudoinverse. In the mini-batch setting, we may not have all the

training instances to construct the whole kernel matrix. Thus we

use a subset of the training data, for example, a mini-batch of𝑚

training instances, to approximate the kernel matrix where 𝐻 is

then an𝑚 ×𝑚 matrix.

Moreover, the matrix multiplication between the gradient of

loss and the inverse kernel matrix constrains that the number of

rows in kernel matrix 𝐻 should equal the number of columns in

the gradient ∇𝑊 J (𝑊). When the above multiplication constraint

is not satisfied, the inverse of kernel matrix is reshaped in the

following ways. First, if𝑚 is smaller than 𝑑𝑐 , we pad the inverse of

kernel matrix with elements of zeros so that the number of rows

of the kernel matrix satisfies the constraint; Second, if𝑚 is greater

than 𝑑𝑐 , we remove the last𝑚−𝑑𝑐 rows and columns of the inverse

of kernel matrix. In Section 3.3, we show that the reshaping of the

inverse kernel matrix still guarantees the training converged.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yawen Chen et al.

Algorithm 1: Kernel SGD
Input: Training instances 𝑋 , kernel function 𝑘 , learning rate 𝜂,

objective J, and weight𝑊 (𝑡)
in layer 𝑡

1 foreach training iteration do
2 𝐻 ∈ R𝑚×𝑚 ← kernel matrix for the current mini-batch

3 // 𝐻𝑖 𝑗 = 𝑘 (𝒙𝑖 , 𝒙 𝑗) where 𝒙𝑖 and 𝒙 𝑗 are from the current

mini-batch

4 𝐻−1 ∈ R𝑑𝑐×𝑑𝑐 ← the reshaped inverse of H

5 for 𝑡 ← T to 1 do // T is the total number of layers

6 if 𝑡 == T then
7 Update𝑊 (𝑡)

using Kernel SGD with Eq. (8)

8 else
9 Update𝑊 (𝑡)

using SGD

3.2 Kernel SGD in Neural Network Training
We show the pseudocode of Kernel SGD in Algorithm 1. Kernel

SGD first computes the kernel matrix 𝐻 for each mini-batch (Line

2). The kernel matrix is stored as an𝑚 ×𝑚 matrix for each mini-

batch and the whole kernel matrix for all the mini-batches is thus

an 𝑛 ×𝑚 matrix where 𝑛 and𝑚 are the number of instances and

the mini-batch size, respectively. Then we compute the inverse of

the kernel matrix for each mini-batch with reshaping if necessary

(Line 4). Next, in the backward propagation, Kernel SGD updates

the weights of the network from the end to the beginning using

Equation (8) with the corresponding inverse matrix. Moreover, the

output of the last hidden layer, which can be treated as the learned

representation of the input instance, corresponds to the represen-

tation 𝜙 (𝒙) in kernel machines. The output layer of the network

can be regarded as the inference layer which has a similar decision

function as general kernel machines. Thus, it is more natural to

apply Equation (8) only in the last layer, and the rest of the layers

are updated using the original SGD (Line 5-9). We also empirically

observed the difference between Kernel SGD applied in the last

layer and it applied in all the intermediate layers. The experimental

results which are shown in Table 1 further confirm that Kernel SGD

applied in the last layer is more computationally efficient and can

perform more accurate prediction. Hence the implementation of

Kernel SGD follows this manner. More experimental details can

be found in Section 4. Note that on cov-tw and imdb, our method

applied in all the layers converges faster due to that the training

converges earlier with fewer epochs at the cost of a higher loss.

Unlike the current second-order optimization [2, 32] and pre-

conditioned SGD [6] which all need to update the Hessian matrix

in each iteration, Kernel SGD uses fixed kernel matrix. Therefore,

the computation cost for kernel matrix is rather small compared

with the training of the whole network. We can further accelerate

Kernel SGD by computing the kernel matrix in parallel with the

training of neural networks. In comparison, updating the Hessian

matrix while training the networks is practically infeasible in most

second-order optimization, as the Hessian matrix depends on the

updated weights. Considering that the mini-batch size is much

smaller than the total number of training instances, the storage

cost for the kernel matrices of all the mini-batches is also smaller

which is linear in the number of instances, i.e., O(𝑛 ·𝑚).

Table 1: Comparison of Kernel SGD applied to the last layer
and Kernel SGD applied to all the layers. The second line
indicates the layers that Kernel SGD is applied to.

data set

test accuracy (%) convergence time (sec.)

the last layer all the layers the last layer all the layers

mnist 97.94±0.30 95.00 ± 0.39 272±230 1030 ± 839
usps 93.63±0.34 85.85 ± 0.30 30±16 34 ± 1
cifar10 83.30±0.22 83.16 ± 0.27 475±32 864 ± 239
s-cov 73.40±1.11 71.16 ± 1.98 64±3 66 ± 2
cov-tw 77.55±2.07 74.37 ± 3.61 325 ± 156 176±82
imdb 89.76±0.56 77.64 ± 9.48 5548 ± 1975 3908±1233

3.3 Convergence Analysis
We theoretically demonstrate the convergence guarantee of Kernel

SGD optimization. In a general neural network for classification,

the last layer (i.e., output layer) is commonly a fully connected (FC)

layer followed by a softmax function. We denote the weight matrix

of the last layer by𝑊 ∈ R𝑛𝑐×𝑑ℎ where 𝑑𝑟 equals 𝑛𝑐 which is the

number of classes and 𝑑𝑐 equals 𝑑ℎ which is the dimension of the

last hidden layer. The output of the last hidden layer is indicated as

𝐺 (𝒙) ∈ R𝑑ℎ and can be treated as the learned representation of 𝒙 .
Let 𝑓𝑖 be the 𝑖-th input to the last layer. The input 𝑓𝑖 is computed

with the formula 𝑓𝑖 =𝑊𝑖𝐺 (𝒙) where𝑊𝑖 is the 𝑖-th row in matrix𝑊 .

Suppose the instance 𝒙 belongs to the 𝑖-th class. The cross entropy

loss with respect to𝑊 can be defined as follows.

J (𝑊) = −𝑓𝑖 + ln
𝑛𝑐∑
𝑗=1

𝑒 𝑓𝑗 . (9)

Using the notations above, we give the convergence guarantee of

Kernel SGD optimization with the following Theorem.

Theorem 3.1. Suppose the last layer in the neural network is a
fully connected layer with a softmax activation function. Given the
weight matrix𝑊 of the last layer and the corresponding updated
weight matrix𝑊 ′ computed by Equation (8), the cross entropy loss
J (𝑊) and loss J (𝑊 ′) of the updated weight satisfy the following
inequality.

J (𝑊 ′) ≤ J (𝑊). (10)

According to Theorem 3.1, the loss decreases or stays unchanged

as the training progresses using Kernel SGD. Hencewe can conclude

that the optimization using Kernel SGD is guaranteed to converge

or be terminated if the loss stays unchanged. Next, we propose that

Kernel SGD tends to find a better solution in the transformed space.

Proposition 3.2. Let𝑊0 be the initial point in the original space
and𝑊 ∗ be the minimum of the original loss; Let �̂� ∗ be the minimum
of the loss projected by the projection matrix 𝐻 and �̂�0 be the initial
point in the projected space. Assume that the eigenvalues of kernel
matrix 𝐻 ∈ R𝑚×𝑚 are {𝜋1, . . . , 𝜋𝑚} and sup(∑m

i=1
𝜋i) = 1

nc

. Then
we have the following inequality holds.�����̂� ∗ −�̂�0

����
𝐹
≤
����𝑊 ∗ −𝑊0

����
𝐹
, (11)

where
���� · ����

𝐹
is the Frobenius norm for matrices.

The initial point�̂�0 in the transformed space can be treated to be

equivalent to𝑊0 in the original space. Proposition 3.2 indicates that

Efficient Second-Order Optimization for Neural Networks with Kernel Machines CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

w
0

0
3

6
9 w1−4

0
4

8

2.326

2.328

2.330

SGD

a

SGD+M
& ESGD

a

AdaH

a

L-BFGS

a

R-L-BFGS

a

ours

a

Loss

(a) Landscape of loss

0 3 6 9
w0

−6

−3

0

3

6

w
1

SGD
a

SGD+M
& ESGD

a

AdaH
a

L-BFGS
a

R-L-BFGS
a

ours a

2.329

2.327

2.327

2.326

2.328

2.325

(b) Contour lines of loss

Figure 1: Trajectories of loss decrease using different opti-
mization methods. The triangle marker indicates the start-
ing point and the cross markers indicate the ends of the op-
timization.

the optimum is closer to the initial point in the transformed space.

With the same learning rate, Kernel SGD is more likely to find a

better solution, thanks to the smaller gap between the optimum

and the starting point in the transformed space.

We can get some insight of Proposition 3.2 from observing the

trajectories of loss. We trained a shallow network on usps data
set using Kernel SGD and other optimization methods which are

AdaH [32], ESGD [6], L-BFGS [15], R-L-BFGS [2], SGD and SGD

with momentum (SGD+M) as introduced in Section 4.1. The net-

work has three linear hidden layers and an FC output layer with the

cross entropy loss. For ease of visualization, two randomly selected

weights 𝑤0, 𝑤1 were updated in optimization while others were

fixed. The loss decrease of trajectories using different optimization

methods is depicted in Figure 1. Starting from the same initial point,

the optimization using Kernel SGD descends at a better direction

and is more likely to converge to a better minimum than the exist-

ing methods. More experimental results can be found in Section 4

which further confirm our findings. The proof of Theorem 3.1 and

Proposition 3.2 is available in the Appendix.

4 EXPERIMENTAL STUDIES
In this section, we first study the overall performance of Kernel

SGD. Then we investigate the influence of different kernel functions

and batch sizes on Kernel SGD.

4.1 Data Sets and Experimental Setup
For a better understanding of Kernel SGD on different problems,

we conducted the experiments with three major data types: tabular,

image and text data. Table 2 shows the details of the data sets. The

tabular data sets which include mnist and usps were downloaded
from LIBSVM website

1
. The dimensions of mnist and usps are 780

and 256, respectively. For the image data, the cifar10 and SARS-CoV-
2 (s-cov) [28] data sets are used. The data set s-cov contains RGB

CT scans and is used to identify whether the patient is infected

by the virus. Each image in the two data sets was reshaped into

32 × 32 size. The text data sets used are IMDb and COVID-19-tweets

1
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 2: Data set information.

type data set #training instances #test instances #classes

tabular

mnist 60,000 10,000 10

usps 7,291 2,007 10

image

cifar10 50,000 10,000 10

s-cov 2,000 482 2

text

cov-tw 7,000 2,000 2

imdb 25,000 25,000 2

(cov-tw) [21]. The data set cov-tw collects the English Tweets about

COVID-19 and is labeled as informative or not. We took 20% of

the training data to serve as the validation set except for cov-tw. In
cov-tw set, 1000 validation instances are provided.

On the tabular data, our method was evaluated using a two-

linear-layer neural network which has 100 neurons in each hidden

layer. We use the ResNet-18 [10] network for the image classifi-

cation. To solve text classification problems, we adopt an LSTM

network with pre-trained word vectors [23]. The dimensions of

the last hidden layers in ResNet-18 and LSTM are 512 and 100

respectively which are the default settings in Pytorch.

Experimental setup: The experiments were conducted on a

machine with an Intel(R) Xeon(R) Silver 4210 CPU of 126GB main

memory and two GeForce RTX 3090 GPUs running on a Linux

OS. We compare our Kernel SGD with the following mainstream

second-order optimization methods: (i) ADAHESSIAN (AdaH) [32],

(ii) Equilibrated SGD (ESGD) [6], (iii) robust multi-batch L-BFGS (R-

L-BFGS) [2] and (iv) L-BFGS [15]. All the baselines and our method

are implemented using PyTorch [22]. In Kernel SGD, to compute

the kernel matrix, we use the radial basis function (RBF) kernel (i.e.,

𝑘 (𝒙𝑖 , 𝒙 𝑗) = exp(−𝛾 | |𝒙𝑖 − 𝒙 𝑗 | |2
2
)). The learning rate and the hyper-

parameter 𝛾 for the kernel are selected from {1× 10−1, 1× 10−2, 1×
10
−3, 1 × 10−4}. The size of history used in L-BFGS and R-L-BFGS

is set as 10 for the limited memory. The mini-batch size used is 64.

When the change of loss is less than 1×10−4 in 3 consecutive epochs
or the training reaches 500 epochs, we terminate the training as

the training has converged. The best model is selected according

to the best performance on the validation set. We repeated each

experiment several times to acquire average performance.

4.2 Comparison of Kernel SGD and
Second-Order Optimization Baselines

We compare our Kernel SGD with the second-order optimization

baseline methods in different aspects to demonstrate the superiority

of our method.

Observation on optimization behavior. To study the optimization

behavior of Kernel SGD and the second-order optimization base-

lines, we depict the training loss and validation accuracy varying

with epochs in Figure 2 and Figure 3, respectively. Compared with

ESGD, L-BFGS, and R-L-BFGS, our Kernel SGD produces the lowest

loss and highest validation accuracy. L-BFGS and R-L-BFGS get

stuck at the saddle points or local minimums in the early stage.

ESGD helps escape the saddle points but fails to converge to a

better loss on the tabular and text data. Kernel SGD reaches the

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yawen Chen et al.

0 50 100 150 200
0.0

0.2

0.4

0.6

T
ra

in
in

g
lo

ss

mnist

0 50 100 150 200
0.0

0.2

0.4

0.6
usps

0 50 100 150 200
0.0

0.3

0.6

0.9

1.2

1.5
cifar10

0 50 100 150 200

Epochs

0.0

0.2

0.4

0.6

T
ra

in
in

g
lo

ss

s-cov

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8
cov-tw

0 50 100 150 200

Epochs

0.0

0.2

0.4

0.6

0.8
imdb

ours AdaH ESGD L-BFGS R-L-BFGS

Figure 2: Variations of loss during the training with Kernel
SGD and the second-order optimization baselines.

stable point in a small number of epochs while achieving promi-

nent results in almost all the tasks. As for AdaH, the loss decreases

with significant vibrations. Our method converges more steadily

towards a smaller loss compared with AdaH except for the text

data. Kernel SGD does not show an advantage of loss over AdaH on

the two text data sets (i.e., cov-tw and imdb). However Kernel SGD
yields higher validation accuracy than AdaH. This shows the ability

of our method to avoid overfitting by finding a better minimum.

Though it seems that AdaH needs fewer epochs than Kernel SGD

to converge on the text data, the convergence time of AdaH is, on

the contrary, much longer than Kernel SGD as listed in Table 3, for

the large computation cost in each epoch.

Analysis on generalization. We investigate the generalization per-

formance by considering the model accuracy. The training (train.)

and test accuracy which are achieved by the best model of each

optimizer are reported in the third and fourth columns of Table 3.

Our method shows a remarkable generalization performance and

can achieve the highest test accuracy on all the tasks. Especially

on imdb, Kernel SGD improves the test accuracy by around 13%.

Moreover, the smaller gaps between the test accuracy and training

accuracy, as well as the smaller variances, confirm that Kernel SGD

can mitigate overfitting and achieves a stable accuracy. For fair

comparison, we did not adopt pre-processing techniques on any

data sets such as random flipping on the tested images, and hence

the accuracy in Table 3 is slightly different from those shown in

other studies. We further evaluated cifar10 with pre-processing

using plain SGD and obtained 92.73% accuracy which is similar to

the averaging result.

Analysis on convergence speed. We recorded the convergence

(converg.) time in the fifth column of Table 3. Kernel SGD converges

up to 30 times faster than second-order optimization baselines. On

the tabular data, R-L-BFGS converges faster because it stops too

early with relatively large losses as shown in Figure 2 and Table 3.

0 50 100 150 200
70

80

90

100

V
al

id
at

io
n

ac
cu

ra
cy

(%
)

mnist

0 50 100 150 200
70

80

90

100
usps

0 40 80 120
40

50

60

70

80

90
cifar10

0 50 100 150 200

Epochs

70

80

90

100

V
al

id
at

io
n

ac
cu

ra
cy

(%
)

s-cov

0 100 200 300 400 500

Epochs

40

50

60

70

80

90
cov-tw

0 50 100 150 200

Epochs

40

50

60

70

80

90

100
imdb

ours AdaH ESGD L-BFGS R-L-BFGS

Figure 3: Variations of accuracy during the training with
Kernel SGD and the second-order optimization baselines.

Kernel SGD takes more epochs to converge to a better loss and thus

needs more convergence time than R-L-BFGS.

Analysis on memory cost. The memory for the Hessian matrix

is presented in the last column of Table 3. We show the size of the

whole kernel matrix in Kernel SGD which is an 𝑛-by-𝑚 matrix. In

other optimizers, the Hessian matrix of the neural network is not

explicitly computed. For L-BFGS and R-L-BFGS, we recorded the

storage for the historical information which is used to approximate

the Hessian. We computed the memory consumption for the Hes-

sian momentum of AdaH. In ESGD, we recorded the memory of

the preconditioning matrix which is equivalent to Hessian. Kernel

SGD uses much smaller memory to store the kernel matrix in larger

neural networks such as ResNet-18 and LSTM, as the computation

is based on training instances rather than the weights in networks.

4.3 Sanity check
Although our main aim in this paper is to improve the second-order

optimization methods, for a sanity check and for completeness, we

further compare Kernel SGD with first-order optimizers which are

mini-batch SGD and SGD with momentum (SGD+M). The momen-

tum hyper-parameter in SGD+M was 0.9 by default. The results

are shown in Table 4. Our method still outperforms the first-order

optimizers in terms of generality on most tasks (i.e., 5 out of 6 tasks

in total). Our method converges even faster than the first-order

optimizers in image classification problems.

4.4 Impact of Kernel Function on Kernel SGD
Except for RBF kernel, we evaluated Kernel SGD with the linear

kernel and polynomial kernel. The degree hyper-parameter in poly-

nomial kernel is selected from {1, 2, 3}. We also verified the effective-

ness of the kernel matrix by using a random positive semi-definite

(PSD) matrix as the projection matrix. From Figure 4, Kernel SGD

shows a robust performance over different kernel functions. For

Efficient Second-Order Optimization for Neural Networks with Kernel Machines CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Comparison of Kernel SGD and second-order opti-
mization methods in model accuracy (%), convergence time
(second) and Hessian matrix size (MB).

data set optimizer train. accuracy test accuracy converg. time Hessian

mnist

ours 99.92 ± 0.17 97.94±0.30 272±230 11.72

AdaH 99.48 ± 0.53 97.32 ± 0.14 285 ± 78 0.76

ESGD 93.90 ± 1.04 92.77 ± 0.52 8671 ± 9148 0.18
L-BFGS 87.70 ± 2.86 87.77 ± 2.82 555 ± 535 1.97

R-L-BFGS 98.29 ± 0.77 96.88 ± 0.42 103± 2 4.93

usps

ours 99.90 ± 0.09 93.63±0.34 30±16 1.42

AdaH 99.40 ± 0.64 93.46 ± 0.64 32 ± 27 0.36

ESGD 96.04 ± 0.91 91.72 ± 0.70 37 ± 27 0.18
L-BFGS 93.74 ± 0.81 89.15 ± 1.12 888 ± 838 1.97

R-L-BFGS 94.35 ± 0.54 89.67 ± 0.76 14±1 2.33

cifar10

ours 100.00 ± 0.00 83.30±0.22 475±32 9.77
AdaH 98.77 ± 0.46 82.11 ± 0.70 11942 ± 4694 48.00

ESGD 99.79 ± 0.20 67.73 ± 0.38 9758 ± 587 42.63

L-BFGS 59.53 ± 4.75 55.39 ± 4.13 3894 ± 467 468.92

R-L-BFGS 98.97 ± 0.81 74.98 ± 0.31 2605 ± 34 554.13

s-cov

ours 100.00 ± 0.00 73.40±1.11 64±3 0.39
AdaH 99.84 ± 0.33 71.66 ± 3.80 180 ± 60 48.00

ESGD 99.99 ± 1.42 72.03 ± 2.72 199 ± 270 42.63

L-BFGS 98.46 ± 0.75 70.00 ± 2.68 607 ± 376 468.92

R-L-BFGS 62.54 ± 0.01 52.28 ± 0.01 69 ± 1 554.13

cov-tw

ours 90.21 ± 5.21 77.55±2.07 325±156 1.71
AdaH 98.94 ± 1.81 77.33 ± 1.15 4722 ± 724 22.79

ESGD 79.68 ± 1.79 71.72 ± 0.78 2590 ± 51 11.40

L-BFGS 51.84 ± 1.27 52.68 ± 0.43 underfit 125.36

R-L-BFGS 52.90 ± 0.14 52.64 ± 0.32 underfit 148.14

imdb

ours 95.05 ± 2.75 89.76±0.56 5548±1975 4.88
AdaH 96.74 ± 1.83 76.28 ± 0.71 63669 ± 38685 22.79

ESGD 63.68 ± 1.60 61.69 ± 1.89 7116 ± 656 11.40

L-BFGS 50.99 ± 1.30 50.89 ± 1.25 underfit 125.36

R-L-BFGS 50.44 ± 0.71 50.48 ± 1.30 underfit 550.10

mnist usps cifar10 s-cov cov-tw imdb
Data set

40

60

80

100

T
es

t
ac

cu
ra

cy
(%

) RBF linear polynomial random PSD

Figure 4: Test accuracy of Kernel SGDwith different kernels.

example, Kernel SGD trained on cifar10 achieved 83.76% and 83.51%

test accuracy with linear and polynomial kernels separately, which

are similar to that achieved with RBF kernel. The optimization with

a random PSD matrix underfits the image data and text data which

has only about 50% to 60% accuracy.

4.5 Impact of Batch Size on Kernel SGD
As the kernel matrix is correlated to the data in each mini-batch,

we varied the batch size and explore the impact of batch size on

Table 4: Comparison of Kernel SGD and first-order optimiza-
tion in test accuracy (%) and convergence time (second).

data set optimizer test accuracy (%) converg. time (sec.)

mnist

ours 97.94±0.30 272 ± 230
SGD 97.86 ± 0.07 130±61
SGD+M 97.85 ± 0.21 2832 ± 2849

usps

ours 93.63±0.34 30 ± 16
SGD 93.28 ± 0.20 27±15
SGD+M 94.17±0.29 35 ± 28

cifar10

ours 83.30±0.22 475±32
SGD 82.59 ± 0.78 644 ± 73
SGD+M 83.23 ± 0.33 582 ± 19

s-cov

ours 73.40±0.92 64±75
SGD 68.13 ± 1.86 71 ± 13
SGD+M 67.47 ± 3.24 74 ± 10

cov-tw

ours 77.55±2.07 325 ± 156
SGD 74.17 ± 0.18 190 ± 148
SGD+M 77.03 ± 3.58 151±98

imdb

ours 89.76±0.56 5548 ± 1975
SGD 88.26 ± 1.73 3404±2654
SGD+M 83.01 ± 9.89 3877 ± 3269

32 64 128 256 512
Batch size

mnist

usps

cifar10

s-c
ov

cov-tw

imdb

D
at

a
se

t

98.19 98.11 97.87 97.60 97.65

93.07 93.02 94.07 93.82 93.17

89.90 83.19 82.37 80.35 77.42

74.07 70.12 73.03 73.86 70.95

80.10 75.20 77.25 70.95 70.25

90.36 88.91 88.84 84.56 63.36

60 70 80 90 100

Test accuracy (%)

l l

32 64 128 256 512
Batch size

2.70 2.34 0.78 0.62 0.55

0.53 0.33 0.10 0.10 0.10

7.82 4.47 3.39 3.27 3.27

0.56 0.69 0.60 1.14 2.06

3.38 1.46 1.13 1.16 0.33

80.13 27.88 30.08 10.96 7.02

0 102

l
l

100 101

Convergence time (x100 sec.)

Figure 5: Kernel SGDperformance under various batch sizes.

Kernel SGD. The results are illustrated in Figure 5. The decrease

in batch size leads to a positive impact on the predictive accuracy

on the tested data sets. This indicates that with less memory con-

sumption for the kernel matrix, Kernel SGD can still achieve good

predictive accuracy. When the batch size decreases, the conver-

gence time increases for more vibrations in optimization with small

batches. On the contrary, the convergence time for s-cov increases

with the increasing batch size because of its small number of train-

ing instances. For a larger batch size, almost the whole s-cov data

set which constitutes a batch is used to update the network only

once. Therefore Kernel SGD needs more epochs and more time to

converge in the training with s-cov.

5 RELATEDWORK
We present the works that combine neural networks with kernel

machines and introduce the effort made to improve the second-

order optimization and preconditioned SGD in deep learning.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yawen Chen et al.

5.1 Neural Networks with Kernel Methods
Many studies take the advantages of both neural networks and

kernel methods to better solve the machine learning problems. An

arc-cosine kernel [5] was proposed to map the instances to the

feature space which is similar to those produced by neural net-

works, but needs less computation. The experiments show that

multi-layer kernel machines with arc-cosine kernels perform better

than SVMs with RBF kernels and the deep belief net (DBN). Based

on the observation that some match kernels over image patches

can be regarded as variants of orientation histograms (i.e., low-

level image features), Bo et al. [4] introduced three match kernels

which represent the gradient, color and shape features of images

to extract the patch-level features from the pixel features. Later,

a convolutional multi-layer kernel [17] was proposed which is a

generalization of kernel descriptors and a convolutional kernel net-

work (CKN) was designed to approximately compute the proposed

kernel. Mairal [16] improved the CKN with supervised learning

and corresponding backpropagation procedures. Graph kernels [20]

were proposed to measure the similarity between two graphs. Jacot

et al. [12] demonstrated that the neural network problem can be

solved following the gradient with respect to the proposed neural

tangent kernel (NTK). NTK is the Kronecker product of the gradi-

ent of the realization function with respect to the parameters in

ANN with itself. The computation of NTK needs to be repeated in

training iterations while our kernel SGD uses fixed kernel matrix.

5.2 Second-Order Optimization
Due to the high computation cost, second-order optimizations

have been extensively studied in solving the over-parameterized

deep learning problems. The quasi-Newton method including L-

BFGS [15], Gauss-Newton [26] and Kronecker-factored Approxi-

mate Curvature (K-FAC) [19] is a class of Newton methods which

computes an approximate Hessian matrix. Xu et al. [30] proposes to

compute the Hessian with sampled instances. Instead of computing

the inexact Hessian matrix, Hessian-free methods [18] compute the

Hessian-vector product in conjugate gradient without explicitly

computing the Hessian matrix. Zhou et al. [33] uses both the full

Hessian the semi-stochastic Hessian. ADAHESSIAN [32] integrates

the first-order and second-order momentum in optimization where

the second-order momentum is updated with the diagonal of Hes-

sian. Spatial averaging is applied to the Hessian diagonal to mitigate

the noise of Hessian. Nonetheless, the recomputation of derivatives

is inevitable in these methods.

5.3 Preconditioned SGD
Preconditioned SGD transforms the gradient with a preconditioner

to boost the optimization in ill-conditioned problems. Jacobi precon-

ditioner is one of the most popular preconditioners and is improved

by LeCun et al. [14] with Gauss-Newton matrix approximation.

Gupta et al. [8] designed the “Shampoo” algorithm which generates

a separate preconditioner for each dimension of a tensor. Some

preconditioning methods exploit the second-order information as

the preconditioner [24, 31]. Schaul et al. [24] use the Hessian matrix

to dynamically update the learning rate for SGD. Dauphin et al. [6]

proposed equilibrated SGD (ESGD) which applied an equilibration

preconditioner to SGD. ESGD computes the inverse of the absolute

Hessian matrix efficiently while keeping the ability to reduce the

condition number and escape the saddle points. Although approxi-

mation techniques are used, the frequent update of preconditioners

remains the main obstacle to making preconditioning practical.

6 CONCLUSION
To improve the second-order optimization in the neural network

training, we have proposed Kernel SGD which exploits the second-

order information from kernel machines. Kernel SGD prominently

reduces the computation and memory cost during the training of

neural networks with second-order optimization. We provided a

theoretical convergence guarantee for the training using Kernel

SGD. Our experimental results on tabular, image and text data have

shown that Kernel SGD achieves an overall superior performance

than other existing optimization methods, especially in general-

ization (e.g., 13% test accuracy improvement on the imdb) and
convergence speed. Our findings may encourage more research on

this direction of incorporating kernel methods with deep learning.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation of

Guangdong Province, China (Grant No. 2022A1515010148), the

National Natural Science Foundation of China (Grant No. 62177015

& No. 62072186), the Guangdong Basic and Applied Basic Research

Foundation (Grant No. 2019B1515130001), the Guangzhou Science

and Technology Planning Project (Grant No. 201904010197) and

the Opening Project of Guangdong Key Laboratory of Big Data

Analysis and Processing (No. 202002).

A PROOF OF THEOREM 3.1
Proof. Without loss of generality, we consider standard SGD

that feeds one instance into the network in each iteration. Recall

that the input instance 𝒙 belongs to the 𝑖-th class and thus the cross

entropy loss can be defined as J (𝑊) = −𝑦𝑖 ln𝑎𝑖 , where 𝑎𝑖 is the
𝑖-th output of the activation function. The loss J (𝑊) is a function
with respect to𝑊 and the weights of other layers can be treated

as constants. As we use a softmax function to be the activation

function where 𝑎𝑖 = 𝑒 𝑓𝑖 /∑𝑛𝑐
𝑗=1

𝑒 𝑓𝑗 , the cross entropy loss can be

rewritten in the from of Equation (9). Taking Equation (9) into the

Inequality (10), we rewrite Inequality (10) as follows.

−𝑓 ′𝑖 + ln
𝑛𝑐∑
𝑗

𝑒
𝑓 ′𝑗 ≤ −𝑓𝑖 + ln

𝑛𝑐∑
𝑗

𝑒 𝑓𝑗 .

where 𝑓 ′
𝑖
is the 𝑖-th input to the last layer with the updated weight

𝑊 ′
𝑖
and is derived as 𝑓 ′

𝑖
=𝑊 ′

𝑖
𝐺 (𝒙). The weight𝑊 ′

𝑖
is the 𝑖-th row

of the updated weight𝑊 ′ which can be computed using𝑊 ′
𝑖
=𝑊𝑖 −

𝜂∇𝑊𝑖
J (𝑊)𝐻−1 according to Equation (8). With the expressions

of 𝑓 ′
𝑖
and𝑊 ′

𝑖
, the Inequality (10) can be expanded as follows.

𝜂∇𝑊𝑖
J (𝑊)𝐻−1𝐺 (𝒙) + ln

𝑛𝑐∑
𝑗

𝑒
𝑓 ′𝑗 ≤ ln

𝑛𝑐∑
𝑗

𝑒 𝑓𝑗 . (12)

We take the natural exponential function on both sides and obtain

𝑛𝑐∑
𝑗

exp(𝑓 ′𝑗 + 𝜂∇𝑊𝑖
J (𝑊)𝐻−1𝐺 (𝒙)) ≤

𝑛𝑐∑
𝑗

exp(𝑓𝑗) . (13)

Efficient Second-Order Optimization for Neural Networks with Kernel Machines CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

In Inequality (13), if each term in the summation on the left side is

less than or equal to the corresponding term on the right side, then

Inequality (13) holds. Thus we take the 𝑗-th term on each side and

prove that for all 𝑗 in {1, . . . , 𝑛𝑐 }, we have 𝐸 𝑗 ≤ 0, where

𝐸 𝑗 = 𝜂 [∇𝑊𝑖
J (𝑊) − ∇𝑊𝑗

J (𝑊)]𝐻−1𝐺 (𝒙) . (14)

Based on the definition of J (𝑊), we can compute the gradient of

loss J (𝑊) with respect to𝑊𝑗 as follows.

∇𝑊𝑗
J(𝑊) = [∇𝑊𝑗1

J(𝑊) ∇𝑊𝑗2
J(𝑊) . . . ∇𝑊𝑗𝑑ℎ

J(𝑊)]

= (𝑎 𝑗 − 𝑦 𝑗)𝐺 (𝒙)𝑇 , (15)

where ∇𝑊𝑗
J (𝑊) ∈ R𝑑ℎ is a row vector. Substituting ∇𝑊𝑗

J (𝑊)
in Equation (14) with the result of Equation (15), we have

𝐸 𝑗 = 𝜂 (𝑎𝑖 − 𝑎 𝑗 − 𝑦𝑖 + 𝑦 𝑗)𝐺 (𝒙)𝑇𝐻−1𝐺 (𝒙) .

Since 𝑎𝑖 is the value of a softmax function, we have that 0 ≤ 𝑎𝑖 ≤ 1

and can derive the following formulas.

𝑎𝑖 − 𝑎 𝑗 − 𝑦𝑖 + 𝑦 𝑗 =
{
0 𝑖 = 𝑗,

𝑎𝑖 − 𝑎 𝑗 − 1 ≤ 0 𝑖 ≠ 𝑗,

which can be integrated as (𝑎𝑖 − 𝑎 𝑗 − 𝑦𝑖 + 𝑦 𝑗) ≤ 0. Since the

learning rate 𝜂 is greater than or equal to zero, we can derive that

𝜂 (𝑎𝑖 − 𝑎 𝑗 − 𝑦𝑖 + 𝑦 𝑗) ≤ 0 always holds. Then the last term in 𝐸 𝑗

to determine is 𝐺 (𝒙)𝑇𝐻−1𝐺 (𝒙). From the definition of positive

semi-definite matrix, we can prove that 𝐻−1 and the reshaped 𝐻−1

are both positive semi-definite. Therefore, for any vector 𝐺 (𝒙), we
always have 𝐺 (𝒙)𝑇𝐻−1𝐺 (𝒙) ≥ 0. Hence 𝐸 𝑗 ≤ 0 is proved.

We summarize from the bottom up. As 𝐸 𝑗 is less than or equal

to 0, Inequality (13) and Inequality (12) are satisfied. Hence we can

prove that the loss decreases or stays unchanged as the training

progresses when using Kernel SGD. □

B PROOF OF PROPOSITION 3.2
Proof. First, we compute the second derivative of the loss. Let 𝐹

be the first derivative which is ∇𝑊 J (𝑊) ∈ R𝑛𝑐×𝑑ℎ and 𝐹 denotes

∇
�̂�

ˆJ (�̂�) ∈ R𝑛𝑐×𝑑ℎ . Then we represent the second derivative as

∇2
𝑊
J (𝑊) where ∇2

𝑊
J (𝑊) = 𝜕𝐹

𝜕𝑊
. Based on the relation between

the derivatives (i.e.,
𝜕𝐹
𝜕𝑊

) and differentials (i.e., 𝑑𝐹 and 𝑑𝑊), we have

vec(𝑑𝐹) = 𝜕𝐹

𝜕𝑊

𝑇

vec(𝑑𝑊), (16)

where vec(𝑊) = [𝑊11, . . . ,𝑊𝑛𝑐1, . . . , 𝑊1𝑑ℎ , . . . ,𝑊𝑛𝑐𝑑ℎ]
𝑇
. For dif-

ferentials, we have

𝑑𝐹 = (𝑑∇
�̂�

ˆJ (�̂�))𝐻
1

2 + ∇
�̂�

ˆJ (�̂�) (𝑑𝐻
1

2) = (𝑑𝐹)𝐻
1

2 ,

𝑑𝑊 = (𝑑�̂�)𝐻−
1

2 + �̂�𝑑𝐻−
1

2 = (𝑑�̂�)𝐻−
1

2 ,

where 𝑑𝐻
1

2 = 0 and 𝑑𝐻−
1

2 = 0. Suppose 𝐻 is a 𝑑ℎ-by-𝑑ℎ matrix

where 𝑚 is equal to 𝑑ℎ . Then we we have the vectorization of

differentials 𝑑𝐹 and 𝑑𝑊 as follows.

vec(𝑑𝐹) = vec((𝑑𝐹)𝐻
1

2) = (𝐻
1

2 ⊗ 𝐼)vec(𝑑𝐹), (17)

vec(𝑑𝑊) = vec(𝑑 (�̂�)𝐻−
1

2) = (𝐻−
1

2 ⊗ 𝐼)vec(𝑑�̂�), (18)

where ⊗ is the Kronecker product and 𝐼 is an 𝑛𝑐 × 𝑛𝑐 identity

matrix. Using the definition in Equation (17) and Equation (18), we

can rewrite Equation (16) as follows.

(𝐻
1

2 ⊗𝐼)vec(𝑑𝐹) = 𝜕𝐹

𝜕𝑊

𝑇

(𝐻−
1

2 ⊗ 𝐼)vec(𝑑�̂�) .

⇒ vec(𝑑𝐹) = (𝐻−
1

2 ⊗ 𝐼) 𝜕𝐹
𝜕𝑊

𝑇

(𝐻−
1

2 ⊗ 𝐼)vec(𝑑�̂�). (19)

Since we already have that vec(𝑑𝐹) = 𝜕𝐹

𝜕�̂�

𝑇
vec(𝑑�̂�), combining

with Equation (19) and we have

𝜕𝐹

𝜕�̂�
= (𝐻−

1

2 ⊗ 𝐼) 𝜕𝐹
𝜕𝑊
(𝐻−

1

2 ⊗ 𝐼) . (20)

Equation (20) shows the relation between the second derivative of

the transformed loss and second derivative of the original loss.

Then we compute the first-order Taylor expansion of the pro-

jected loss near the point �̂�0 and the original loss near the point

𝑊0, respectively. We take derivatives on both sides of the expanded

equations. Since �̂� ∗ and𝑊 ∗ are the minimums of the projected

and original loss, respectively, we derive that

vec(Δ�̂�) = vec(�̂� ∗ −�̂�0) = −∇2
�̂�

ˆJ(�̂�0)
−1
vec(∇

�̂�
ˆJ(�̂�0)), (21)

vec(Δ𝑊) = vec(𝑊 ∗ −𝑊0) = −∇2𝑊 J(𝑊0)
−1
vec(∇𝑊 J(𝑊0)) . (22)

According to the definition in Equation (20), we can rewrite Equa-

tion (21) below.

vec(Δ�̂�) = −(𝜕𝐹0
𝜕�̂�
)−1vec(∇

�̂�
ˆJ(�̂�0))

= −(𝐻
1

2 ⊗ 𝐼) ∇2𝑊 J(𝑊0)
−1 (𝐻−

1

2 ⊗ 𝐼)−1vec(∇
�̂�

ˆJ(�̂�0)),
(23)

where
𝜕𝐹0

𝜕�̂�
= ∇2

�̂�
ˆJ (�̂�0) and 𝜕𝐹0

𝜕𝑊
= ∇2

𝑊
J (𝑊0). With the fact that

vec(∇
�̂�

ˆJ (�̂�0)) = (𝐻−
1

2 ⊗ 𝐼)vec(∇𝑊 J (𝑊0)), Equation (23) can

be written as follows.

vec(Δ�̂�) = (𝐻
1

2 ⊗ 𝐼)vec(Δ𝑊) . (24)

Then we take Euclidean norm | | · | |2 on both sides and obtain

| |vec(Δ�̂�) | |2 = | | (𝐻
1

2 ⊗ 𝐼)vec(Δ𝑊) | |2

≤ ||𝐻
1

2 ⊗ 𝐼 | |𝐹 | |vec(Δ𝑊) | |2

=
√
𝑛𝑐 | |𝐻

1

2 | |𝐹 | |vec(Δ𝑊) | |2, (25)

where | | · | |𝐹 is the Frobenius norm. The inequality in Formula (25)

is derived from the property that the Frobenius norm of a matrix

is compatible with the Euclidean norm of a vector (i.e., | |𝐴𝒗 | |2 ≤
||𝐴| |𝐹 | |𝒗 | |2 where𝐴 ∈ R𝑛×𝑛 and 𝒗 ∈ R𝑛).We use eigen-decomposition

on𝐻 to derive that𝐻
1

2 = 𝑄Λ
1

2𝑄𝑇 where Λ is the eigenvalue matrix

of 𝐻 . With the last result of Formula (25), we have����
vec(Δ�̂�)

����
2
≤ √𝑛𝑐

����𝑄Λ
1

2𝑄𝑇
����
𝐹

����
vec(Δ𝑊)

����
2

=
√
𝑛𝑐

����Λ 1

2

����
𝐹

����
vec(Δ𝑊)

����
2

=

√√
𝑛𝑐 ·

𝑚∑
𝑖=1

(𝜋
1

2

𝑖
)2

����
vec(Δ𝑊)

����
2
,

(26)

where 𝜋𝑖 is the 𝑖-th eigenvalue of matrix 𝐻 . If the assumption

is satisfied where

∑𝑚
𝑖=1 𝜋𝑖 ≤

1

𝑛𝑐
, we have | |vec(�̂� ∗ − �̂�) | |2 ≤

||vec(𝑊 ∗ −𝑊) | |2 (i.e., | |�̂� ∗ − �̂� | |𝐹 ≤ ||𝑊 ∗ −𝑊 | |𝐹). If 𝑚 is not

equal to 𝑑ℎ , we compute the pseudo inverse of 𝐻−
1

2 and can obtain

the same conclusion with similar process of proof. □

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yawen Chen et al.

REFERENCES
[1] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. 2018. To understand deep

learning we need to understand kernel learning. arXiv preprint arXiv:1802.01396
(2018).

[2] Albert S. Berahas, Jorge Nocedal, and Martin Takáč. 2016. A Multi-Batch L-BFGS

Method for Machine Learning. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (Barcelona, Spain). 1063–1071.

[3] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[4] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. 2010. Kernel descriptors for visual

recognition. In Advances in neural information processing systems (NeurIPS). 244–
252.

[5] Youngmin Cho and Lawrence K Saul. 2009. Kernel methods for deep learning. In

Advances in neural information processing systems (NeurIPS). 342–350.
[6] Yann Dauphin, Harm De Vries, and Yoshua Bengio. 2015. Equilibrated adaptive

learning rates for non-convex optimization. In Advances in neural information
processing systems (NeurIPS). 1504–1512.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv preprint arXiv:1810.04805 (2018).
[8] Vineet Gupta, Tomer Koren, and Yoram Singer. 2018. Shampoo: Preconditioned

stochastic tensor optimization. In International conference on machine learning
(ICML). PMLR, 1842–1850.

[9] Yilong Hao, Kanishka Tyagi, Rohit Rawat, and Michael Manry. 2016. Second

order design of multiclass kernel machines. In 2016 International joint conference
on neural networks (IJCNN). IEEE, 3233–3240.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). 770–778.

[11] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. 2008. Kernel

methods in machine learning. The annals of statistics 36, 3 (2008), 1171–1220.
[12] Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural tangent

kernel: Convergence and generalization in neural networks. arXiv preprint
arXiv:1806.07572 (2018).

[13] S Sathiya Keerthi and Chih-Jen Lin. 2003. Asymptotic behaviors of support vector

machines with Gaussian kernel. Neural computation 15, 7 (2003), 1667–1689.

[14] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. 2012.

Efficient backprop. In Neural networks: Tricks of the trade. Springer, 9–48.
[15] Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for

large scale optimization. Mathematical programming 45, 1-3 (1989), 503–528.

[16] Julien Mairal. 2016. End-to-end kernel learning with supervised convolutional

kernel networks. In Advances in neural information processing systems (NeurIPS).
1399–1407.

[17] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. 2014. Convo-

lutional kernel networks. In Advances in neural information processing systems
(NeurIPS). 2627–2635.

[18] James Martens. 2010. Deep learning via hessian-free optimization.. In Interna-
tional conference on machine learning (ICML), Vol. 27. 735–742.

[19] James Martens and Roger Grosse. 2015. Optimizing neural networks with

kronecker-factored approximate curvature. In International conference on machine
learning (ICML). 2408–2417.

[20] Nicolò Navarin, Dinh V Tran, and Alessandro Sperduti. 2018. Pre-training graph

neural networks with kernels. arXiv preprint arXiv:1811.06930 (2018).
[21] Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi, Mai Hoang Dao, Linh The Nguyen,

and Long Doan. 2020. WNUT-2020 Task 2: Identification of Informative COVID-

19 English Tweets. In Proceedings of the 6th workshop on noisy user-generated text
(W-NUT). 314–318. https://www.aclweb.org/anthology/2020.wnut-1.41

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. 2019. Pytorch: An imperative style, high-performance deep learning li-

brary. In Advances in neural information processing systems (NeurIPS). 8026–
8037. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

[23] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical methods in natural language
processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-1162

[24] Tom Schaul, Sixin Zhang, and Yann LeCun. 2013. No more pesky learning rates.

In International conference on machine learning (ICML). 343–351.
[25] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. 2001. A generalized rep-

resenter theorem. In International conference on computational learning theory.
Springer, 416–426.

[26] Nicol N Schraudolph. 2002. Fast curvature matrix-vector products for second-

order gradient descent. Neural computation 14, 7 (2002), 1723–1738.

[27] Alex J Smola and Bernhard Schölkopf. 1998. Learning with kernels. Vol. 4. Citeseer.
[28] Eduardo Soares, Plamen Angelov, Sarah Biaso, Michele Higa Froes, and Daniel

Kanda Abe. 2020. SARS-CoV-2 CT-scan dataset: A large dataset of real patients

CT scans for SARS-CoV-2 identification. medRxiv (2020). https://doi.org/10.1101/
2020.04.24.20078584

[29] Zeyi Wen, Zhishang Zhou, Hanfeng Liu, Bingsheng He, Xia Li, and Jian Chen.

2021. Enhancing SVMs with Problem Context Aware Pipeline. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
1821–1829.

[30] Peng Xu, Fred Roosta, and Michael W Mahoney. 2020. Newton-type methods

for non-convex optimization under inexact hessian information. Mathematical
Programming 184, 1 (2020), 35–70.

[31] Zhewei Yao, Amir Gholami, Daiyaan Arfeen, Richard Liaw, Joseph Gonzalez,

Kurt Keutzer, and Michael Mahoney. 2018. Large batch size training of neural

networks with adversarial training and second-order information. arXiv preprint
arXiv:1810.01021 (2018).

[32] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and

Michael Mahoney. 2021. ADAHESSIAN: An Adaptive Second Order Optimizer

for Machine Learning. Proceedings of the AAAI Conference on Artificial Intelligence
35, 12 (2021), 10665–10673.

[33] Dongruo Zhou, Pan Xu, and Quanquan Gu. 2019. Stochastic Variance-Reduced

Cubic Regularization Methods. J. Mach. Learn. Res. 20, 134 (2019), 1–47.

https://www.aclweb.org/anthology/2020.wnut-1.41
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1101/2020.04.24.20078584
https://doi.org/10.1101/2020.04.24.20078584

	Abstract
	1 Introduction
	2 Preliminaries on Kernel Machines
	3 Our Proposed Kernel SGD Optimization
	3.1 Problem Projection and Update Rule
	3.2 Kernel SGD in Neural Network Training
	3.3 Convergence Analysis

	4 Experimental Studies
	4.1 Data Sets and Experimental Setup
	4.2 Comparison of Kernel SGD and Second-Order Optimization Baselines
	4.3 Sanity check
	4.4 Impact of Kernel Function on Kernel SGD
	4.5 Impact of Batch Size on Kernel SGD

	5 Related Work
	5.1 Neural Networks with Kernel Methods
	5.2 Second-Order Optimization
	5.3 Preconditioned SGD

	6 Conclusion
	Acknowledgments
	A Proof of Theorem 3.1
	B Proof of Proposition 3.2
	References

