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Abstract
Local Interpretable Model-Agnostic Explanations (LIME) is a widely
adopted framework for interpreting opaque models due to its sim-
plicity and intuitiveness. However, LIME suffers from unreliability
rooted in two core issues: (i) low fidelity, where the surrogate model
fails to accurately approximate the target model’s behavior, and
(ii) instability, where the generated explanations vary significantly
across runs. While prior work has proposed techniques to enhance
LIME, they remain fundamentally limited by the expressiveness
of linear surrogate models, which cannot adequately capture com-
plex decision boundaries. In this work, we introduce Tilia, a novel
method that employs shallow decision tree regressors as the sur-
rogate model, leveraging its structured and deterministic nature
to improve both fidelity and stability. Tilia also provides insight
into the interplay between surrogate models and sampling strate-
gies, revealing new directions for enhancing explanation reliability.
Across extensive experiments on tabular and textual datasets, Tilia
outperforms LIME and recent variants on both fidelity and stabil-
ity, achieving up to 100% approximation of the opaque model and
entirely consistent explanations (i.e., 0 Jacard distance). Tilia main-
tains practical efficiency, completing explanations in seconds even
for datasets with over 100 features. These results position Tilia as
a robust alternative for model-agnostic explanations. The code is
available at https://github.com/neur1n/tilia.

CCS Concepts
• Computing methodologies→Machine learning.

Keywords
Explainable AI; Model-Agnostic Explanations; LIME; Decision Trees
ACM Reference Format:
Jihang Li, Jiacheng Qiu, Yin-Ping Zhao, and Zeyi Wen. 2025. Tilia: Enhanc-
ing LIME with Decision Tree Surrogates. In Proceedings of the 34th ACM
International Conference on Information and Knowledge Management (CIKM
’25), November 10–14, 2025, Seoul, Republic of Korea. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3746252.3761130

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761130

1 Introduction
Explainable Artificial Intelligence (XAI) has become a promising
research area, driven by increasing demands for transparency, ac-
countability, and trust in machine learning models. As these models
are increasingly deployed in high-stakes domains such as health-
care and finance, the ability to interpret and justify predictions is
essential [2, 38, 43]. Among existing explanation techniques, Local
Interpretable Model-Agnostic Explanations (LIME) [27] remains
widely used [26] as both a foundational method [20, 40] and a
standard comparative baseline [5, 15, 17, 37, 45].

LIME explains predictions by generating perturbed samples
around a target instance and fitting a simple, interpretable sur-
rogate model–typically a linear regressor–to approximate the com-
plex model’s local behavior. Despite its conceptual simplicity, LIME
often suffers from two key limitations [3, 21, 28, 36]: (i) low fidelity,
where the surrogate poorly approximates the underlying model,
and (ii) instability, where explanations vary largely across runs.

While numerous variants aim to mitigate instability [12, 18, 22,
29, 30, 33, 46, 47, 49], primarily by refining LIME’s sampling pro-
cess, they often leave fidelity unaddressed. Instability arises from
both the stochastic nature of perturbation and the sensitivity of
linear regression to small input changes. Meanwhile, linear surro-
gates inherently struggle to capture complex, nonlinear decision
boundaries, further undermining fidelity. In critical applications,
such fragility can lead to misleading or unjustified decisions.

To address these issues, we propose Tilia, an extension of LIME
that directly addresses both low fidelity and instability. Tilia re-
places the linear surrogate with a shallow decision tree regressor,
leveraging the structured, nonlinear, and deterministic nature of
decision trees. This offers two main advantages: (i) improved fi-
delity by better capturing complex local decision boundaries, and
(ii) reduced sensitivity to perturbations, enhancing stability. Inte-
grating trees, however, introduces challenges such as balancing
interpretability and reliability with tree depth, reconciling feature
preprocessing, aligning feature importance computation, and han-
dling Gini importance’s inability to express directional contribu-
tions. Tilia resolves these issues to preserve interpretability while
more accurately modeling local behavior.

We evaluate Tilia on diverse tabular and textual datasets against
LIME and recent variants, including S-LIME [49], BayLIME [47],
CALIME [12], and DLIME [46]. The results demonstrate that Tilia
consistently improves fidelity and stability, often achieving perfect
fidelity and fully consistent explanations across runs, while main-
taining practical runtime efficiency. These results position Tilia as
a robust alternative for model-agnostic explanations.
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By offering a simple yet effective modification to the LIME frame-
work, Tilia provides a pragmatic path toward more trustworthy
and interpretable model-agnostic explanations. Its balance of ro-
bustness, fidelity, and efficiency makes it a compelling tool for
real-world applications where reliable explanations are essential.

Our main contributions are summarized as follows:
(1) We perform a systematic analysis of the sources of low fi-

delity and instability in the LIME framework, providing in-
sights into their root causes.

(2) We propose Tilia, a decision tree–based surrogate approach
that significantly improves the reliability and faithfulness of
LIME’s local explanations.

(3) We validate ourmethod through comprehensive experiments,
demonstrating consistent and substantial improvements over
baseline and state-of-the-artmethods acrossmultiple datasets
and modalities.

2 Related Works
Explainable AI methods can be classified along several axes: in-
trinsic vs. post-hoc, global vs. local, and model-specific vs. model-
agnostic [7]. Intrinsic methods, such as decision trees or linear
models, are inherently interpretable by design, with transparent
decision processes [24]. Post-hoc methods instead interpret trained
opaque models without altering their structure [19]. Global explana-
tions describe a model’s overall logic [44], while local explanations
focus on individual predictions [10]. Model-specific methods tar-
get particular model types, whereas model-agnostic methods work
across models without requiring internal access [1].

Among these, post-hoc, local, model-agnostic methods such as
LIME [27] are popular for their flexibility and intuitive appeal. To
contextualize our work, we review prior efforts aimed at improving
the reliability of LIME-based explanations, which can be grouped
into: (1) refining the sampling strategy, (2) incorporating clustering,
(3) generating dependency-aware perturbations, and (4) modifying
the weighting function or surrogate. While these methods have
demonstrated varying degrees of success, most retain the use of a
linear surrogate, which inherently limits fidelity.

Sampling-Focused Methods. A large body of work aims to im-
prove the quality and relevance of perturbed samples. LS-LIME [22]
targets the decision boundary to capture regions most informative
for understanding model behavior. MPS-LIME [35] modifies the per-
turbed sampling operation by considering feature correlations and
thereby produces more realistic samples. S-LIME [49] uses Least An-
gle Regression (LARS) to optimize the number of perturbed samples,
reducing variance in explanation. LEMON [13] samples uniformly
within an 𝑁 -ball, improving local approximation. GLIME [39] em-
ploys a local unbiased sampling distribution for higher fidelity.
US-LIME [29] introduces a two-step uncertainty-based filtering
that emphasizes samples near both the decision boundary and tar-
get instance. While these improve robustness, reliance on linear
surrogates still limits modeling of nonlinear decision regions.

Clustering-Based Methods. Another line of work introduces clus-
tering techniques to guide LIME’s sampling or aggregate expla-
nations by partitioning data into meaningful regions in order to
obtain a more coherent understanding of the model’s behavior.

For instance, DLIME [46] applies Agglomerative Hierarchical Clus-
tering (AHC) and K-Nearest Neighbor (KNN) sampling to select
relevant data regions. KLIME [18] partitions training data using
K-means and fits a separate generalized linear model (GLM) within
each cluster. ILIME [14] additionally identifies the most influential
features in each explanation and clusters multiple explanations
using a dendrogram to derive the most representative one. These
clustering-based methods enhance the interpretability and stability
of LIME explanations by focusing on localized regions of the data
space. However, they introduce additional complexity and still rely
on linear surrogates, which may not capture complex, nonlinear
decision boundaries precisely.

Dependency-Aware Methods. Dependency-aware methods have
emerged to address LIME’s assumption of feature independence,
which can lead to unrealistic or implausible explanations. FLIME [30]
uses Conditional Tabular GANs (CTGANs) to generate synthetic
samples that better reflect real data distributions. CALIME [12] inte-
grates causal knowledge into the explanation process by replacing
LIME’s random sampling with GENCDA [11], a causal dependency-
aware generator that encodes structural relationships between fea-
tures. This approach ensures that the generated samples adhere to
the underlying causal structure of the data. Kernel-based LIME with
feature dependency sampling (KLFDS) [34] incorporates feature de-
pendency sampling into the LIME framework. Similarly, CHILLI [4]
introduces a contextually enhanced perturbation method that con-
siders domain-specific constraints and feature dependencies during
the perturbation process. By generating perturbations that are both
representative of the training data and local to the instance being
explained, CHILLI aims to produce more accurate and contextually
relevant explanations. While these methods improve stability, they
often require complex data generation pipelines.

Alternative Weighting and Surrogates. Beyond sampling, several
works explore improvements to LIME’s weighting function and
surrogate model. ALIME [33] replaces Euclidean distances in input
space with latent-space distances computed using autoencoders,
yielding more semantically meaningful weights. BayLIME [47] uses
Bayesian Ridge regression surrogate to incorporate prior knowl-
edge and quantifies uncertainty, offering more robust explanations
under noisy conditions. However, these approaches still assume a
linear relationship between features and predictions. EBLIME [48]
extends BayLIME to produce a distribution of feature importance.
This approach offers a more comprehensive understanding of the
uncertainty associated with each feature’s contribution to the pre-
diction. QLIME [8] considers a quadratic surrogate by integrating
linear relationships across multiple step points, offering improved
expressiveness over strictly linear models.

Despite these advancements, most methods retain the linear sur-
rogate model at the core of LIME. This limitation fundamentally
constrains fidelity, especially in regions where the model’s behavior
is highly nonlinear. In contrast, our proposed approach directly ad-
dresses this gap by replacing the surrogate with a shallow decision
tree regressor, which is more expressive yet remains interpretable.
This modification enables Tilia to improve both fidelity and stability
simultaneously, and we demonstrate that it integrates seamlessly
with a wide range of sampling strategies.
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3 Methodology
In this section, we begin by analyzing both empirically and theo-
retically the key sources of low fidelity and instability in the LIME
framework, providing a foundation for understanding its limitations
in producing reliable local explanations. Based on this analysis, we
introduce our proposed solution, Tilia, which improves both fidelity
and stability by incorporating a structured and shallow decision tree
regressor. We also discuss the practical challenges associated with
integrating decision trees into the LIME framework, particularly
with respect to maintaining interpretability and robustness.

3.1 Low Fidelity and Instability in LIME
Fidelity is a critical property for explanation methods, reflecting
how well the surrogate model approximates the local behavior
of the original, opaque model. Even if explanations appear stable
across runs, they may still be untrustworthy if the surrogate fails
to capture the true decision logic. To systematically assess fidelity,
we trained a default-configured Random Forest classifier on each
dataset ten times and selected the model with the highest predictive
performance to serve as the opaque model. For each dataset, up to
30 test samples were selected for explanation.

We then applied LIME using its default configuration, initial-
izing the surrogate model–typically a Ridge regressor–with fixed
random seeds (3, 11, 23, 37, and 42). Fidelity was quantified using
the 𝑅2 score [42], which measures the degree to which the surro-
gate model’s predictions align with those of the opaque model on
perturbed samples. As shown in Figure 1, our results reveal that
LIME’s linear surrogate consistently exhibits low fidelity across
all evaluated datasets, underscoring its limitations in accurately
modeling complex, nonlinear decision boundaries.
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Figure 1: Fidelity achieved by the default surrogate in LIME.

While low fidelity undermines the accuracy of LIME’s explana-
tions, instability affects their reproducibility. Even when applied to
the same instance, LIME may produce different explanations across
runs due to randomness in its components. To better understand
this phenomenon, we examine the formulation of LIME:

𝜉 (𝑥) = argmin
𝑔∈𝐺

L(𝑓 , 𝑔, 𝜋𝑥 (𝑍 )) + Ω(𝑔)

where 𝜉 (𝑥) denotes the explanation for an input 𝑥 , 𝑓 is the opaque
model being explained, 𝑔 is the surrogate model selected from a
family of interpretable models 𝐺 , 𝑍 denotes the perturbed samples
around 𝑥 , 𝜋𝑥 is the locality-aware weighting function, and L is the
loss between the predictions of 𝑓 and 𝑔 on the perturbed samples.
Randomness can arise from three key components: the opaque
model 𝑓 , the surrogate model 𝑔, and the sampling process used

to generate 𝑍 . Each of these components may involve stochastic
elements or random seed initialization.

To isolate and verify the sources of instability, we conducted
controlled experiments on the Iris dataset [16] using a Random For-
est classifier as the opaque model 𝑓 . We configured LIME’s tabular
explainer with default parameters except for the discretization of
continuous features, which was disabled to preserve the full set
of features for explanation. As in standard LIME, a Ridge regres-
sor serves as the surrogate model 𝑔, and perturbed samples 𝑍 are
generated uniformly at random.

In the first experiment, we fixed the random seeds for all compo-
nents: the opaque model 𝑓 was initialized with seed 42, and both
the surrogate model 𝑔 and perturbed samples 𝑍 with seed 3. We
then ran the explanation process twice. As shown in Figure 2, the
resulting feature importance values remained identical across both
runs, and the pairwise Jaccard distances used to quantify stabil-
ity were effectively zero. This confirms that when randomness is
controlled, LIME produces stable explanations.
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(b) Second Run

Figure 2: Feature importance and stability across two runs
with the same random seeds using LIME. The x-axis repre-
sents the classification task’s classes, and the y-axis corre-
sponds to the features.

In contrast, in the second experiment, we removed the fixed
seed for the opaque model 𝑓 while retaining the same fixed seeds
for 𝑔 and 𝑍 as in the fidelity assessments. The results, illustrated
in Figure 3, reveal notable differences in feature importance values
both within and across runs. These inconsistencies indicate that
even slight variations in perturbed samples, brought by inconsistent
seedings, can lead to divergent surrogate models and, consequently,
to unstable explanations.

These findings suggest that the primary driver of instability
in LIME is the sampling process, which introduces uncontrolled
randomness when generating 𝑍 . Since the surrogate model 𝑔 is
fitted on these samples, any variability in 𝑍 can propagate through
the surrogate and distort the final explanation, even when other
components are held constant.
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Figure 3: Feature importance and stability across two runs
with different random seeds using LIME.

3.2 Theoretical Analysis
Besides our empirical findings, we can theoretically justify why a
shallow decision tree surrogate offers superior local fidelity and
stability compared to a linear model. Linear regressions (LR) and
decision trees (DT) can be expressed as:

𝑔LR (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 , 𝑔DT (𝑥) =
𝐽∑︁
𝑗=1

𝑐 𝑗 · 1{𝑥 ∈ 𝑅 𝑗 },

where 𝑛 is the number of features, {𝑅 𝑗 } are hyper regions parti-
tioning the feature space and 𝑐 𝑗 is the constant prediction within
leaf 𝑗 . Unlike a single hyperplane, this structure can approximate
nonlinear decision boundaries via axis-aligned tiles, reducing local
approximation bias and thus improving fidelity.

Let𝑊 denotes the LIME kernel weights, the weighted Ridge
estimator 𝛽 = (𝑍⊤𝑊𝑍 + 𝜆𝐼 )−1𝑍⊤𝑊𝑦, can fluctuate dramatically
when 𝑍⊤𝑊𝑍 is ill-conditioned, such as under feature collinearity
or excessive noise—resulting in unstable feature attributions across
runs. Decision trees select splits byminimizing an impuritymeasure
𝐺 (𝑄𝑚, 𝜃 ) (e.g., Gini, entropy, or MSE). Let 𝜃★ = argmin𝜃 𝐺 (𝑄𝑚, 𝜃 ) .
Under small perturbations of the sample distribution, the change
Δ𝐺 remains bounded due to the Lipschitz continuity of the impu-
rity functions in their underlying moments [9]. If the feature split
margin 𝛾𝑚 = min𝜃≠𝜃★

[
𝐺 (𝑄𝑚, 𝜃 ) −𝐺 (𝑄𝑚, 𝜃

★)
]
is larger than Δ𝐺 ,

the optimal split 𝜃★ remains invariant. This insensitivity cascades
recursively down the tree. Leaf predictions, being based on smooth
averages (means or proportions), further reinforce stability. The
result is a surrogate whose structure and attributions are resilient
to random sampling noise, unlike linear regression’s fragility.

3.3 Proposed Method
LIME’s limitations in fidelity and stability highlight the need for
a more robust surrogate. We propose Tilia, a LIME variant that
replaces the linear surrogate with a shallow decision tree regressor.
This structured, deterministic model is more resilient to sampling
noise and better at capturing nonlinear decision boundaries.

However, integrating a decision tree regressor into LIME is not
straightforward. This change introduces several new challenges,
both in terms of maintaining interpretability and ensuring compat-
ibility with LIME’s design. Specifically, we identify four key issues
that must be addressed:

(1) Interpretability vs. Reliability: Although decision trees
are considered interpretable models, their interpretability
diminishes with increasing depth. Deeper trees are more
expressive but can overfit the perturbed data, resulting in
unreliable or overly complex explanations [9].

(2) Feature Space Inconsistency: LIME scales continuous fea-
tures to the range [0, 1] when using linear surrogates to
prevent bias toward features with larger numeric ranges. In
contrast, decision trees operate directly on the raw feature
values. This inconsistency in preprocessing can hinder the
surrogate’s ability to produce intuitive and meaningful splits
unless properly addressed.

(3) Feature Importance Incompatibility: Linear models com-
pute feature importance via model coefficients, while de-
cision trees rely on Gini importance. These fundamentally
different measures complicate the direct comparison of ex-
planations across surrogate types and require additional
normalization strategies.

(4) Directional Contribution Limitation: Gini importance,
being non-negative by design, cannot express whether a fea-
ture contributes positively or negatively to a prediction [31].
To provide faithful local explanations, a mechanism for cap-
turing directionality in feature influence is necessary.

To address the first challenge, we limit the decision tree’s max-
imum depth and use cross-validation to balance interpretability
and prevent overfitting. A grid search over depths 2–10, informed
by empirical observations, identifies the optimal tree. Perturbed
samples are split 80% for training and 20% for testing, with K-fold
cross-validation applied to evaluate generalization. The tree achiev-
ing the best trade-off between performance and interpretability is
selected as the surrogate model for explanations.

For the second challenge, we preserve the original feature values
when using the decision tree surrogate. Unlike Ridge regression,
which requires scaled inputs to [0, 1] to mitigate coefficient bias,
decision trees split directly on actual feature values. Applying nor-
malization in this context can distort split thresholds and degrade
interpretability. Retaining the original feature scale ensures that
decision boundaries align with the data’s natural structure, thereby
improving both semantic coherence and surrogate fidelity.

On the output side, we normalize feature importance scores to
allow consistent comparison between Ridge regression and decision
tree surrogates. As detailed in Algorithm 1, we apply a binning-
based normalization method to standardize the representation of
feature attributions across models. To address the lack of direction-
ality in Gini importance, we introduce a sign correction strategy:
we invert the importance values for classes other than the predicted
class, treating them as indicative of negative contributions. As illus-
trated in Figure 5, only the class being explained (e.g.,𝐶1) is assigned
positive contributions, while the remaining classes are considered
oppositional, thereby enabling directional interpretation.
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Algorithm 1: Feature Importance Binning
Input: 𝐼
Output: 𝐼bin

1 begin
2 Let 𝐼+ ← [ ], 𝐼− ← [ ], 𝐼bin ← [ ] // Importance
3 for 𝑖 ∈ 𝐼 do
4 Append 𝑖 to (𝑖 > 0 ? 𝐼+ : 𝐼−)
5 𝑀+ ← Median(𝐼+), 𝑀− ← Median(𝐼−)
6 for 𝑖 ∈ 𝐼 do
7 if 𝑖 > 0 then
8 Append (𝑖 ≤ 𝑀+ ? 1 : 2) to 𝐼bin
9 else if 𝑖 < 0 then
10 Append (𝑖 ≥ 𝑀− ? − 1 : −2) to 𝐼bin
11 else
12 Append 0 to 𝐼bin

13 return 𝐼bin

These adaptations allow Tilia to retain decision tree strengths
while overcoming the integration challenges in LIME, yielding
higher fidelity and stability across all datasets (Figures 4 and 5).
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Figure 4: Fidelity achieved by decision tree regressor.
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Figure 5: Feature importance and stability across two runs
with different random seeds using proposed method.

4 Experiments
We conduct a comprehensive evaluation of our proposed method,
focusing on three keymetrics: fidelity, stability, and faithfulness.We
begin by assessing fidelity and stability, which reflect the surrogate
model’s accuracy and the consistency of explanations across runs,
respectively. Building on these results, we then evaluate faithfulness,
a higher-level criterion that measures how well the explanations
align with the decision-making behavior of the original model.
Unless otherwise specified, all experiments are implemented using
default configurations in scikit-learn [25].

4.1 Experiment Settings
To evaluate the effectiveness of our proposed method, we design
experiments covering a diverse set of datasets, models, and evalua-
tion metrics. This section outlines the configurations used in our
analysis, including the datasets, model choices, and the quantitative
metrics employed for assessing fidelity, stability, and faithfulness.

4.1.1 Datasets. For the evaluation of fidelity and stability, we use a
collection of publicly available tabular datasets from OpenML [41],
as summarized in Table 1. These datasets were selected for their
diversity in feature dimensionality and class distribution, ensuring
comprehensive coverage of varying complexity levels. To evaluate
faithfulness, we use the books dataset [6], a sentiment classification
benchmark containing 2,000 text instances. Features are extracted
using a standard bag-of-words representation, with stop words and
duplicates removed to minimize noise. All datasets are split into
80% training and 20% testing subsets using a fixed random seed (42)
to ensure consistency and reproducibility across experiments.

Table 1: Tabular datasets used in experiments.

Dataset ID Cls. Feat. Inst. Score

iris 61 3 4 150 1.00
phoneme 1489 2 5 5404 0.91
diabetes 37 2 8 768 0.74
glass 41 6 9 214 0.83
ionosphere 59 2 34 351 0.93
fri_c4 718 2 100 1000 0.86
tecator 851 2 124 240 0.88
clean1 40665 2 168 476 0.97

4.1.2 Models. For assessing fidelity and stability, we employ a Ran-
dom Forest classifier as the opaque model. The mean classification
accuracy on the test set is reported in the “Score” column of Ta-
ble 1, verifying the suitability of these models as reliable targets for
explanation. For the faithfulness evaluation, we follow the setup of
the original LIME paper and use two opaque models: a logistic re-
gression (LR) model with L2 regularization and a decision tree (DT)
classifier. This allows us to assess the consistency of explanation
methods across both linear and nonlinear decision surfaces.

4.1.3 Metrics. We evaluate three core explanation quality metrics:
fidelity, stability, and faithfulness. Fidelity measures how well the
surrogate model approximates the predictions of the opaque model
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on the perturbed samples. It is quantified using the 𝑅2 score [32], a
standard metric for regression performance.

Stability captures the consistency of explanations across multiple
runs. As shown in Equation (1), it is computed as the average
pairwise Jaccard distance among the binarized feature importance
vectors obtained from 𝑁 = 5 runs. A lower Jaccard distance implies
greater stability, indicating that the explanation method produces
consistent feature attributions across runs.

Stability =
1(𝑁
2
) ∑︁
1≤𝑖< 𝑗≤𝑁

(
1 −
|𝐼 𝑖bin ∩ 𝐼

𝑗

bin |

|𝐼 𝑖bin ∪ 𝐼
𝑗

bin |

)
. (1)

Faithfulness evaluates how accurately the local explanations
recover the truly influential features of the opaque model. It is
defined as the recall between the top-𝐾 features identified by the
explanation method and a gold feature set derived from the global
feature importance of the opaque model:

Faithfulness =
|𝑆gold ∩ 𝑆top |
|𝑆gold ∩ 𝑆all |

, (2)

where 𝑆gold represents the top ten globally important features, 𝑆top
contains the top-𝐾 locally attributed features, and 𝑆all is the com-
plete feature set for a given instance. Higher recall values indicate
that the explanation method is effectively identifying the model’s
true decision factors.

4.2 Fidelity and Stability Results
To evaluate the reliability of explanations generated by different
methods, we begin by analyzing fidelity and stability. We com-
pare our proposed method, Tilia, against the original LIME frame-
work and four prominent variants: BayLIME, CALIME, DLIME,
and S-LIME. This selection covers a broad spectrum of improve-
ment strategies, including sampling-based refinements, dependency
-aware generation, and alternative surrogates. Importantly, the
use of a decision tree regressor in Tilia is orthogonal to these
approaches, allowing for a fair comparison except in the case of
BayLIME, where Tilia replaces its core surrogate model. Moreover,
these methods offer publicly available and open-source implemen-
tations, facilitating reproducibility and ensuring a consistent evalu-
ation framework across experiments.

As shown in Table 2, replacing LIME’s linear surrogate with a
decision tree regressor leads to substantial improvements in fidelity.
Across 105 comparisons (spanning datasets, classes, and methods),
Tilia outperforms the baseline in 57 cases. The most consistent
improvements are observed with LIME and S-LIME, where fidelity
increases in all 42 comparisons. On average, fidelity improves by
0.32 (93.31%) for LIME and 0.35 (103.00%) for S-LIME, with the most
dramatic gain reaching 0.82 (482.35%) in both on the second class
of the iris dataset. BayLIME, which already modifies the surrogate
using Bayesian Ridge regression, still benefits from Tilia in 12 out
of 21 comparisons, though with more modest gains. Conversely,
CALIME and DLIME –both of which heavily structure the sampling

Table 2: Fidelity (↑). Underlined values highlight improvements, while bold values denote the best performance for each class.

Dataset LIME S-LIME BayLIME CALIME DLIME

Default Tilia Default Tilia Default Tilia Default Tilia Default Tilia

iris
.53 ± .10 1.00 ± .00 .54 ± .11 1.00 ± .00 .52 ± .11 .52 ± .11 .57 ± .28 .57 ± .27 .09 ± .05 .08 ± .03
.17 ± .09 .99 ± .00 .17 ± .09 .99 ± .00 .16 ± .09 .17 ± .09 .51 ± .27 .50 ± .26 .09 ± .05 .08 ± .03
.58 ± .11 .99 ± .00 .58 ± .11 1.00 ± .00 .60 ± .11 .59 ± .11 .62 ± .26 .62 ± .26 1.00 ± .00 1.00 ± .00

phoneme .21 ± .04 .78 ± .02 .21 ± .04 .89 ± .01 .19 ± .04 .21 ± .04 .61 ± .26 .58 ± .27 .00 ± .00 .00 ± .00
.21 ± .04 .78 ± .02 .21 ± .04 .89 ± .01 .19 ± .04 .21 ± .04 .61 ± .26 .58 ± .27 .00 ± .00 .00 ± .00

diabetes .73 ± .01 .80 ± .02 .72 ± .01 .89 ± .01 .73 ± .01 .71 ± .01 .94 ± .07 .76 ± .20 .02 ± .01 .02 ± .01
.73 ± .01 .80 ± .02 .72 ± .01 .89 ± .01 .73 ± .01 .71 ± .01 .94 ± .07 .76 ± .20 .02 ± .01 .02 ± .01

glass

.54 ± .02 .77 ± .02 .53 ± .01 .79 ± .04 .53 ± .02 .55 ± .01 .34 ± .39 .30 ± .39 .05 ± .02 .05 ± .02

.37 ± .02 .65 ± .03 .36 ± .02 .69 ± .06 .39 ± .02 .40 ± .02 .42 ± .40 .30 ± .39 .06 ± .02 .06 ± .02

.57 ± .01 .88 ± .01 .58 ± .01 .88 ± .04 .57 ± .01 .55 ± .01 .37 ± .40 .44 ± .42 .05 ± .02 .05 ± .02

.62 ± .01 .91 ± .01 .61 ± .01 .95 ± .02 .62 ± .01 .63 ± .01 .38 ± .38 .40 ± .42 .08 ± .03 .08 ± .03

.47 ± .01 .85 ± .02 .47 ± .01 .92 ± .03 .48 ± .01 .48 ± .01 .44 ± .38 .41 ± .40 .04 ± .02 .04 ± .01

.43 ± .01 .70 ± .04 .42 ± .01 .69 ± .07 .45 ± .01 .41 ± .01 .42 ± .43 .35 ± .42 .05 ± .02 06 ± .02

ionosphere .49 ± .02 .70 ± .02 .49 ± .02 .79 ± .02 .49 ± .02 .51 ± .02 .32 ± .21 .26 ± .27 .25 ± .08 .24 ± .08
.49 ± .02 .70 ± .02 .49 ± .02 .79 ± .02 .49 ± .02 .51 ± .02 .32 ± .21 .26 ± .27 .25 ± .08 .24 ± .08

fri_c4 .38 ± .01 .75 ± .02 .40 ± .01 .80 ± .01 .40 ± .01 .41 ± .01 .89 ± .08 .84 ± .15 .13 ± .03 .13 ± .03
.38 ± .01 .75 ± .02 .40 ± .01 .80 ± .01 .40 ± .01 .41 ± .01 .89 ± .08 .84 ± .15 .13 ± .03 .13 ± .03

tecator .69 ± .00 .82 ± .01 .69 ± .01 .79 ± .01 .69 ± .00 .71 ± .01 .84 ± .07 .64 ± .14 .89 ± .05 .89 ± .04
.69 ± .00 .82 ± .01 .69 ± .01 .79 ± .01 .69 ± .00 .71 ± .01 .84 ± .07 .64 ± .14 .89 ± .05 .89 ± .04

clean1 .67 ± .01 .92 ± .00 .67 ± .01 .90 ± .00 .67 ± .00 .67 ± .00 1.00 ± .00 1.00 ± .00 .54 ± .03 .54 ± .03
.67 ± .01 .92 ± .00 .67 ± .01 .90 ± .00 .67 ± .00 .67 ± .00 1.00 ± .00 1.00 ± .00 .54 ± .03 .54 ± .03
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space–show negligible improvements, with only three instances of
fidelity increase. These results suggest that Tilia’s impact is most
pronounced in methods where the surrogate plays a central role in
modeling the local decision boundary.

Moreover, Tilia achieves the highest overall fidelity scores in all
21 evaluated classes, as indicated by the bold entries in each row
of Table 2. This further demonstrates its effectiveness in capturing
complex model behavior in a faithful and interpretable manner.

Additionally, Tilia significantly enhances stability, especially in
methods affected by perturbation randomness. As reported in Ta-
ble 3, Tilia reduces the Jaccard distance in 11 out of 20 comparisons
for LIME, 13 out of 20 comparisons for BayLIME, and 11 out of 20
comparisons for S-LIME, indicating improved explanation consis-
tency. These reductions correspond to mean Jaccard improvements
of -0.02 (-8.21%) for LIME, -0.05 (-21.16%) for BayLIME, and a slight
increase of 0.03 (10.78%) for S-LIME, suggestingmoderate variability
in certain conditions. On the other hand, CALIME shows improve-
ments in only 6 cases, while DLIME achieves the smallest average
gain at -0.02 (-3.20%), despite improvements in 17 comparisons.

Notably, the benefits of Tilia are especially pronounced in high-
dimensional datasets (i.e., fri_c4, tecator, clean1), where linear sur-
rogates struggle to generalize. In these datasets, stability improve-
ments are consistent across all methods, with the maximum Jaccard
reduction of -0.35 (-74.47%) observed for CALIME on the tecator

dataset. On average, Tilia achieves a Jaccard reduction of -0.11
(-21.66%) in these high-dimensional settings.

4.3 Fidelity and Stability Analysis
A closer examination of the experimental results reveals that the
proposed modification, using decision tree surrogates, is particu-
larly effective in improving both fidelity and stability for methods
that rely on random sampling. Specifically, Tilia delivers substantial
gains for LIME and S-LIME, with more moderate improvements ob-
served in BayLIME. In contrast, its impact on CALIME and DLIME
is minimal. This variation underscores the important interplay be-
tween sampling strategies and surrogate model expressiveness,
which we analyze in detail below.

Fidelity Analysis. For LIME and S-LIME, the decision tree sur-
rogate is better aligned with the feature space and local decision
structures of the opaque models, enabling it to more effectively
capture nonlinear boundaries and improve surrogate fidelity. This
compatibility explains the significant fidelity gains observed in
these methods. BayLIME, on the other hand, incorporates Bayesian
priors into the surrogate model, which may partially constrain the
benefits of switching to a decision tree. The prior knowledge em-
bedded in Bayesian Ridge regression can dominate the surrogate
behavior, reducing the relative contribution of the new surrogate’s
expressiveness. In contrast, CALIME and DLIME utilize structured

Table 3: Stability (↓). Underlined values highlight improvements, while bold values denote the best performance for each class.

Dataset LIME S-LIME BayLIME CALIME DLIME

Default Tilia Default Tilia Default Tilia Default Tilia Default Tilia

iris
.01 ± .02 .00 ± .00 .22 ± .11 .00 ± .00 .22 ± .12 .00 ± .00 .06 ± .07 .64 ± .12 .51 ± .06 .52 ± .10
.13 ± .05 .00 ± .00 .08 ± .10 .00 ± .00 .12 ± .10 .00 ± .00 .14 ± .09 .54 ± .16 .56 ± .04 .62 ± .07
.09 ± .11 .00 ± .00 .09 ± .08 .00 ± .00 .08 ± .08 .00 ± .00 .12 ± .07 .62 ± .13 .51 ± .06 .61 ± .09

phoneme .00 ± .01 .01 ± .02 .00 ± .00 .04 ± .07 .01 ± .03 .00 ± .00 .02 ± .04 .39 ± .12 .67 ± .10 .60 ± .15
.05 ± .08 .10 ± .15 .00 ± .01 .05 ± .07 .07 ± .10 .02 ± .03 .11 ± .15 .36 ± .16 .66 ± .09 .63 ± .12

diabetes .00 ± .00 .00 ± .00 .01 ± .01 .00 ± .00 .00 ± .00 .00 ± .00 .02 ± .03 .29 ± .17 .69 ± .07 .66 ± .08
.06 ± .07 .00 ± .00 .00 ± .00 .00 ± .00 .02 ± .03 .00 ± .00 .08 ± .10 .31 ± .14 .68 ± .07 .62 ± .12

glass

.16 ± .03 .16 ± .06 .10 ± .02 .34 ± .08 .18 ± .04 .22 ± .07 .13 ± .02 .55 ± .10 .69 ± .02 .64 ± .05

.14 ± .02 .19 ± .06 .10 ± .04 .31 ± .11 .18 ± .04 .22 ± .07 .14 ± .04 .60 ± .09 .69 ± .02 .65 ± .06

.20 ± .01 .14 ± .05 .22 ± .05 .39 ± .04 .14 ± .03 .18 ± .03 .20 ± .03 .49 ± .10 .68 ± .02 .63 ± .05

.17 ± .01 .18 ± .05 .31 ± .05 .30 ± .07 .17 ± .03 .16 ± .06 .11 ± .03 .61 ± .06 .66 ± .02 .64 ± .04
– – – – – – – – – –

.14 ± .03 .19 ± .07 .10 ± .04 .23 ± .04 .18 ± .06 .26 ± .05 .14 ± .03 .54 ± .06 .68 ± .02 .64 ± .04

ionosphere .28 ± .05 .41 ± .04 .23 ± .06 .44 ± .11 .25 ± .05 .40 ± .05 .25 ± .04 .37 ± .16 .68 ± .03 .67 ± .01
.28 ± .03 .41 ± .04 .16 ± .03 .36 ± .12 .25 ± .03 .40 ± .05 .25 ± .02 .32 ± .15 .68 ± .03 .67 ± .00

fri_c4 .55 ± .02 .51 ± .05 .56 ± .03 .53 ± .05 .56 ± .02 .42 ± .05 .53 ± .02 .32 ± .20 .68 ± .02 .65 ± .00
.55 ± .02 .51 ± .05 .56 ± .03 .53 ± .06 .55 ± .02 .39 ± .03 .53 ± .02 .38 ± .20 .68 ± .02 .65 ± .00

tecator .45 ± .02 .36 ± .05 .43 ± .03 .40 ± .06 .42 ± .02 .22 ± .05 .47 ± .01 .14 ± .14 .68 ± .01 .65 ± .01
.45 ± .01 .34 ± .07 .42 ± .02 .40 ± .05 .42 ± .01 .22 ± .07 .47 ± .01 .12 ± .15 .68 ± .01 .65 ± .01

clean1 .58 ± .01 .48 ± .06 .58 ± .02 .46 ± .02 .60 ± .01 .42 ± .04 .54 ± .01 .43 ± .19 .68 ± .01 .65 ± .00
.58 ± .01 .48 ± .06 .56 ± .02 .46 ± .03 .59 ± .01 .42 ± .05 .54 ± .01 .39 ± .16 .68 ± .01 .65 ± .00

–: No sample available after splitting.
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or dependency-aware sampling techniques to carefully select train-
ing data for the surrogate model. While these methods enhance
the quality of the sampled neighborhood, they may inadvertently
restrict the diversity or complexity of the local data distribution,
thus limiting the ability of more expressive surrogates to realize
their full potential. This constraint diminishes the added value of
the surrogate change, resulting in marginal fidelity improvements.

Stability Analysis. Stability improvements follow a similar trend.
Decision tree surrogates generally increase stability in LIME, Bay-
LIME, and S-LIME, where stochastic perturbation is a major source
of variation across runs. However, the surrogate model is only one
contributor to overall explanation stability. Our results show that
Tilia achieves the highest stability in 11 out of 20 classes, suggest-
ing that other factors, such as the structure of the feature space
or the nature of the opaque model, can also influence consistency.
Importantly, datasets with high-dimensional feature spaces show
consistently larger stability gains. These results support the hy-
pothesis that decision tree surrogates are particularly effective in
high-dimensional settings, where linear models often fail to ade-
quately capture intricate decision boundaries. In such cases, Tilia
is better able to deliver consistent and reliable explanations despite
the inherent variability of random sampling.

4.4 Faithfulness Results and Analysis
In addition to fidelity and stability, we evaluate faithfulness, a
higher-level metric that assesses whether local explanations truly
reflect the decision-making of the opaque model. To evaluate faith-
fulness, we follow the experimental setup from the original LIME
paper. We compare Tilia with LIME and SHAP [23], as well as an
enhanced version of our method, Tilia+, which aggregates expla-
nations across multiple runs by ranking feature importances and
selecting the most frequent features. Experiments are conducted
across sample sizes of 5, 10, 200, and 400, with each method tested
over 5 runs to compute average recall. For Tilia+, additional experi-
ments with 10 and 15 runs are performed to analyze the impact of
aggregation. To ensure reliable explanations, we first assessed the
fidelity of each method using the 𝑅2 score (Table 4).

Table 4: Fidelity (↑) achieved by different methods on books.

Opaque LIME5 SHAP5 Tilia5 Tilia+5 Tilia+10 Tilia+15
LR@5 91.32 82.56 99.89 99.89 99.89 99.91
DT@5 48.97 47.95 99.79 99.80 99.81 99.79

LR@10 92.41 88.00 99.91 99.91 99.91 99.91
DT@10 52.92 46.74 99.89 99.89 99.90 99.89

LR@200 92.46 82.68 99.92 99.92 99.92 99.92
DT@200 60.62 54.76 99.87 99.86 99.88 99.87

LR@400 92.25 82.73 99.92 99.92 99.92 99.92
DT@400 59.29 54.87 99.86 99.86 99.87 98.87

In Table 4, the “@” symbol denotes the sample size, while sub-
scripts next to method names indicate the number of runs con-
ducted. Values represent percentages, with the percent symbol
omitted for brevity. As the fidelity results show, Tilia and Tilia+

consistently achieve near-perfect fidelity scores (≥ 99.8%) across
all configurations, indicating that they closely approximate the
predictions of the opaque model.

With Tilia’s high fidelity established, we proceed to evaluate its
faithfulness, with results presented in Figure 6. Across all sample
sizes, Tilia+ consistently achieves the highest faithfulness scores,
demonstrating the robustness of explanation quality when aggre-
gating across multiple runs. For the LR model, the highest faithful-
ness score is achieved by Tilia+ with 15 runs and 400 samples. For
the DT model, the top score is shared between LIME (5 runs) and
Tilia+ (10 runs), both at a sample size of 10. These results highlight
Tilia+’s ability to deliver consistently high-quality explanations
across varying settings.
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96.67 96.67

72.22 72.22
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Figure 6: Faithfulness (↑) achieved by different methods.
Numbers above the bars represent the highest scores within
the same sample size group with respect to LR and DT, while
shaded values in ellipses and squares denote the overall
highest scores regarding LR and DT respectively. The blue
and purple lines represent fidelity regarding LR and DT.

We also observe an interesting trend related to the choice of
opaque model: when using smaller sample sizes (5 and 10), DT
tends to yield higher faithfulness scores than LR. However, this
pattern reverses at larger sample sizes (200 and 400), where LR
begins to outperform DT–except in the case of SHAP, where DT
continues to show lower faithfulness scores. This behavior likely
stems from LR’s sensitivity to small, noisy samples, which can lead
to unstable decision boundaries and misaligned local explanations.
In contrast, decision tree surrogates offer more stable behavior in
these low-sample regimes.

Another important insight from our experiments is the strong
correlation between fidelity and faithfulness. This is more apparent
when the results are grouped bymethods, as shown in Figure 7. This
trend is particularly evident in the comparison between Tilia and
LIME/SHAP, where the improved fidelity of decision tree surrogates
translates directly into more faithful explanations. These findings
highlight the importance of a high-fidelity surrogate model for
generating faithful explanations. Furthermore, we also observe
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Figure 7: Faithfulness trends of each method. The x-axis rep-
resents the sample size. The blue and purple lines represent
fidelity regarding LR and DT, respectively.

that Tilia+ shows slight Tilia+ improves slightly as the number
of aggregations increases, though the improvement is marginal.
This further highlights Tilia’s stability across runs and its ability to
achieve high faithfulness without aggregation.

Another key insight from our experiments is the strong correla-
tion between fidelity and faithfulness. This is more apparent when
the results are grouped by methods, as shown in Figure 7. Tilia,
which consistently achieves higher fidelity, also produces more
faithful explanations compared to LIME and SHAP. This finding
reinforces the importance of using a high-fidelity surrogate model
to generate reliable, semantically meaningful local explanations.

Lastly, we observe that Tilia+ shows a slight improvement in
faithfulness as the number of aggregated runs increases, although
the gains are relatively marginal. This suggests that Tilia already
provides stable explanations, and the aggregation in Tilia+ mainly
serves to refine results rather than correct instability. This further
emphasizes Tilia’s inherent robustness and reliability, even without
ensemble-based aggregation.

4.5 Runtime Analysis
In addition to interpretability quality, the computational efficiency
of explanationmethods is an important consideration for real-world
applications. In this section, we compare the runtime performance
of Tilia against LIME and its notable variants used in previous
experiments, including S-LIME, BayLIME, CALIME, and DLIME.

4.5.1 Complexity Analysis. Tilia introduces additional computa-
tional cost due to decision tree training and grid search–based
depth selection. Specifically, the training complexity of Tilia is
O(𝑛𝑓 log𝑛 · 𝑝), where 𝑛 is the number of perturbed samples, 𝑓 is
the number of input features, and 𝑝 is the number of hyperparam-
eter configurations evaluated during cross-validation. Prediction
using the decision tree surrogate requires O(𝑑) time, where 𝑑 is the
depth of the selected tree. In comparison, LIME’s linear surrogate
has a training complexity of O(𝑛𝑓 2 + 𝑓 3), with prediction at O(𝑓 ).

4.5.2 Empirical Runtime Evaluation. To empirically assess run-
time, we measured the average per-instance explanation time by
timing the core LIME routines, i.e., LimeTabularExplainer and
explain_instance, for each method on the tabular datasets de-
scribed in Section 4.1.1. As shown in Table 5, Tilia is consistently

slower than LIME and other sampling-based methods, reflecting the
additional cost of surrogate model selection and training. However,
it remains within a practical runtime range, producing explanations
in under 6 seconds per instance even on the largest dataset (clean1).
Notably, Tilia is also faster than CALIME, despite the latter using
a linear surrogate, due to the overhead introduced by CALIME’s
complex dependency-aware sample generation.

Table 5: Average per-instance runtime (s) on tabular datasets.

Dataset Tilia LIME S-LIME BayLIME CALIME DLIME

iris 0.37 0.06 0.06 0.07 5.86 0.05
phoneme 0.32 0.09 0.16 0.09 5.21 0.06
diabetes 0.37 0.04 0.10 0.07 5.31 0.01
glass 1.10 0.04 0.14 0.14 5.46 0.02
ionosphere 1.26 0.04 0.23 0.23 5.52 0.01
fri_c4 3.25 0.09 0.51 1.19 5.64 0.02
tecator 3.89 0.10 0.73 1.38 5.57 0.06
clean1 5.40 0.23 1.32 1.19 5.87 0.13

These results indicate that while Tilia introduces moderate com-
putational overhead, it offers a favorable trade-off between runtime
and the significant improvements in fidelity, stability, and faithful-
ness achieved across evaluation settings.

5 Conclusion
This paper introduces Tilia, a novel approach that improves the
fidelity and stability of LIME explanations by leveraging the ro-
bustness and interpretability of decision trees as surrogate models.
Extensive experiments demonstrate that Tilia consistently achieves
substantial gains in fidelity and faithfulness, particularly excelling
in methods that rely on random sampling strategies. Tilia’s abil-
ity to deliver the highest faithfulness scores across different con-
figurations, as well as its stability across multiple runs without
aggregation, underscores its effectiveness in reducing sensitivity
to perturbation randomness and enhancing explanation reliability.
In addition to explanation quality, Tilia offers practical runtime
performance, completing explanations in seconds and remaining
faster than more complex methods such as CALIME, despite using
a more expressive surrogate model. These results position Tilia
as a powerful and efficient tool for addressing key limitations in
existing LIME-based approaches.

While Tilia shows strong performance, especially for sampling-
based methods, its limited improvements on structured sampling
variants point to future directions. Investigating the interaction
between sampling strategies and surrogate models, as well as ex-
ploring hybrid or adaptive surrogates, may further enhance the
reliability and applicability of model-agnostic explanationmethods.
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