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Abstract
Large foundation models have demonstrated remarkable success

in natural language processing and computer vision. Applying the

large models to downstream tasks often requires fine-tuning, in

order to boost the predictive accuracy. However, the fine-tuning

process relies heavily on labeled data and extensive training. This

dependency makes fine-tuning impractical for niche applications,

such as rare object detection or specialized medical tasks. To over-

come these limitations, we propose KALE: Knowledge Aggregation

for Label-free model Enhancement, a label-free method for model

enhancement, leveraging knowledge aggregation via model fusion

and adaptive representation alignment. Our method is powered

by a carefully designed joint self-cooperative optimization func-

tion that considers (i) multi-granularity optimization (task-specific

and layer-specific), (ii) self and cooperative supervision integra-

tion, and (iii) mitigation of error accumulation caused by entropy

minimization. Additionally, we introduce a class cardinality-aware

sample filtering to ensure the stability of the fusion process. We

also design a lightweight representation alignment technique to

refine the fusion coefficient in a few shots for quality enhance-

ment. We evaluate our method on multiple image classification

datasets using ViT-B/32 and ViT-L/14 backbones. Experimental

results demonstrate that our label-free method consistently outper-

forms state-of-the-art unsupervised approaches, including TURTLE

and supervised full fine-tuning, in terms of average performance.

Specifically, compared to TURTLE, our method achieves average

improvements of 20.7% with ViT-B/32 and 19.5% with ViT-L/14.

Furthermore, on the challenging SUN397 dataset, our method sur-

passes supervised full fine-tuning by 4% and 2.3% with ViT-B/32

and ViT-L/14, respectively.
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1 Introduction
Foundation models in computer vision (CV) and natural language

processing (NLP) have seen rapid, transformative progress driven by

large-scale datasets and growing computational devices. Prominent

examples like BERT [5] in NLP and Vision Transformer (ViT) [6]

in CV demonstrate remarkable generalization across many tasks,

serving as foundational backbones for modern AI. Despite their

versatility, adapting these models to downstream tasks typically

relies on supervised fine-tuning, which demands extensive labeled

data and substantial computational resources. This dependence cre-

ates a major barrier to practical deployment, especially in scenarios

where high-quality annotations are scarce or prohibitively costly.

Fine-tuning is the dominant strategy for adapting foundation

models to specific tasks, relying heavily on learning from labeled
data. Full fine-tuning (FFT) updates all model parameters to fit

task-specific distributions, typically yielding strong performance.

Parameter-efficient fine-tuning (PEFT) methods like LoRA [13]

reduce trainable parameters via lightweight modules, but still re-

quire labels to guide updates. Despite improved efficiency, both FFT

and PEFT depend on annotations, limiting their use in domains

with scarce labels—such as medical imaging [19], low-resource lan-

guages [32], or rare object detection [29]. Label dependence remains

a major bottleneck, as high-quality annotation is often costly, or

infeasible [39], restricting scalability and generalization.

In light of the challenges of data dependency in supervised fine-

tuning, recent research has begun to explore the learning-from-
model [43] paradigm. Existing model-based approaches, such as

model fusion [16, 25], has emerged as an effective technique to

https://orcid.org/0009-0006-3119-5121
https://orcid.org/0000-0002-2705-2877
https://orcid.org/0009-0008-1852-7229
https://orcid.org/0000-0003-3370-6053
https://doi.org/10.1145/3746252.3761019
https://doi.org/10.1145/3746252.3761019


CIKM’25, Nov. 10-14, 2025, Seoul, Korea Yuebin Xu, Xuemei Peng, Zhiyi Chen, and Zeyi Wen

enable knowledge transferring. These methods aggregate knowl-

edge from multiple pretrained models, enabling the construction

of more powerful multi-task learning (MTL) models. Prior model

fusion methods primarily focus on building universal MTL mod-

els [9] that perform reasonably well across tasks; however, they

often suffer from significant performance degradation on individual

tasks [9, 16, 26, 28, 40], limiting their practical applicability where

task-specific accuracy is critical. Building upon these insights, our

key contribution lies in enhancing the existing model fusion meth-

ods to not only achieve effective knowledge aggregation but also

improve the performance of the fused model on single tasks.

Motivated by the advantages and limitations of model fusion,

we propose KALE (Knowledge Aggregation for Label-free model

Enhancement). On one hand, model fusion enables label-free knowl-

edge aggregation by combining multiple pretrained models, offer-

ing a promising alternative to data-dependent fine-tuning. On the

other hand, existing fusion methods often suffer from performance

degradation on individual tasks, limiting their practical use where

task-specific accuracy is critical. KALE is designed to harness the

benefits of model fusion while addressing its shortcomings by ex-

plicitly optimizing the fusion process to maintain and improve

task-specific performance. Additionally, KALE supports efficient

downstream specialization without requiring labeled data or full

parameter updates, effectively balancing multi-task knowledge in-

tegration with task-focused refinement.

KALE operates in two stages. In the first stage, KALE performs

model fusion to aggregate diverse knowledge from multiple pre-

trained models. To ensure effective integration, we introduce a prin-

cipled fusion optimization strategy called Joint Self-Cooperative

Optimization, which captures knowledge at both task-specific and

layer-specific granularities. This approach effectively mitigates the

common issue of error accumulation found in entropy-based meth-

ods [23]. To further enhance the adaptation stability, we propose a

class cardinality-aware sample filtering technique that selectively

removes high-uncertainty samples according to class cardinality, en-

suring robust and balanced performance across tasks. In the second

stage, KALE specializes the fused model for a target task through

adaptive representation alignment. This unsupervised adaptation

enables the fused model to retain its aggregated knowledge while

improving task-specific performance.

We conduct extensive experiments on diverse image classifica-

tion benchmarks with varying numbers of classes using Vision

Transformer models. We compare the unsupervised classification

performance of our approach against a wide range of baselines built

on ViT models. As illustrated in Figure (1), KALE consistently out-

performs the state-of-the-art unsupervisedmethod TURTLE in both

of its variants, and even surpasses supervised full fine-tuning—all

without relying on any labeled data. Our main contributions are

summarized as follows:

• We propose KALE, a fully label-free method that improves model

performance by combining knowledge aggregation throughmodel

fusion and adaptive representation alignment.

• We design a new unsupervised optimization function tailored to

fusion optimization, incorporating both task-specific and layer-

specific granularity, and introduce a class cardinality-aware fil-

tering technique to stabilize and accelerate the fusion process.
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Figure 1: Comparison of unsupervised classification perfor-
mance across multiple image classification tasks using CLIP
ViT-B/32.

• We conduct extensive experiments on diverse image classifica-

tion benchmarks. Results show that KALE outperforms full fine-

tuning, the state-of-the-art unsupervised methods, demonstrat-

ing strong generalization and efficiency.

2 Related Work
2.1 (Weakly) Unsupervised Learning
Unsupervised and weakly supervised learning methods focus on ex-

tracting effective representations from data with limited or no anno-

tations. TURTLE [8] enables state-of-the-art unsupervised transfer

by optimizing margin-based classifiers in foundation model repre-

sentations. Self-supervised learning (SSL) [14] learns generalizable

features via pretext tasks, such as contrastive learning [35] that

distinguishes similar and dissimilar samples, and masked autoen-

coding [11] that reconstructs masked inputs. Furthermore, deep

clustering techniques [7] jointly optimize feature representations

and cluster assignments to group data based on semantic similarity.

The effectiveness of learned representations is typically assessed

via linear probing [1], which trains simple classifiers with minimal

supervision on downstream tasks. While these approaches avoid

labeled data, they often underperform compared to supervised

fine-tuning on individual tasks. Our work addresses this critical

gap by leveraging model fusion for robust knowledge transfer and

aggregation, enabling improved performance.

2.2 Label-Free Model Enhancement
Label-free methods aim to enhance model performance without re-

lying on annotated data. Classic approaches include self-supervised

learning [10], which learns representations via pretext tasks like

contrastive or masked modeling, and unsupervised domain adap-

tation [24], which aligns distributions across domains using ad-

versarial or discrepancy-based techniques. Pseudo-labeling [2] and

consistency-based training [17] generate synthetic labels or enforce

prediction stability to leverage unlabeled data.While effective, these

methods often rely on carefully designed augmentations, or access

to source data. More recent trends explore extracting knowledge
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Figure 2: Overview of KALE. Two stages are included. (1) Knowledge aggregation via model fusion; (2) Adaptive representation
alignment with few-shots adaptation.

directly from pretrained models [16, 28, 43], bypassing the need

for additional training. In contrast, our method, KALE, adopts a

model-centric view by fusing task-relevant knowledge from mul-

tiple models and adapting it to the target task via unsupervised

representation alignment. This approach requires no labels, no

source domain data, and no auxiliary pretraining, offering a scal-

able alternative for label-free model enhancement.

2.3 Model Fusion for Knowledge Aggregation
Model fusion is an emerging approach that aims to integrate mul-

tiple pretrained models into a single unified model [16, 26, 28,

40]. Techniques such as weight averaging [36], Fisher-weighted

merging [28], task-specific editing [16], TIES-Merging [40], and

AdaMerging [41] have been proposed to aggregate knowledge

across models without requiring labeled data. EMR-Merging [15]

represents the state-of-the-art fusion method, leveraging an elect-

mask-rescale strategy to effectively resolve weight conflicts. While

these methods show promise for multi-task learning, they often

suffer from performance degradation on individual tasks due to

interference among incompatible parameters. KALE builds on these

advances by introducing a principled fusion optimization objec-

tive and a second-stage adaptation process to mitigate knowledge

interference and boost task-specific accuracy.

3 Methodology
This section presents the overall framework of KALE, which con-

sists of two key stages: (1) Knowledge aggregation via model fusion,

and (2) Unsupervised representation alignment for performance

enhancement. The entire process is designed to operate without

any human-annotated labels, enabling truly label-free model en-

hancement.

3.1 Overview of KALE
KALE (KnowledgeAggregation for Label-freemodel Enhancement)

is a two-stage framework designed to improve model performance

without relying on any labeled data. Figure 2 shows the overview

framework of KALE. It consists of the following components:

• Stage 1: Knowledge Aggregation via Model Fusion. KALE
begins by aggregating knowledge from a set of fine-tuned mod-

els, all initialized from the same pretrained checkpoint. Instead

of merging model weights directly, it identifies and combines

the task-specific transformations (i.e., the changes made by each

model relative to the shared initialization). These transforma-

tions are typically geometrically aligned in parameter space due

to their shared training origin, which allows for a meaningful

combination. Fusion coefficients are introduced to control the

contribution of each source model, enabling the construction of

an initial fused model that integrates diverse knowledge without

any labeled supervision.

• Stage 2: Adaptive Representation Alignment. After initializ-
ing the fused model, KALE performs unsupervised adaptation

using unlabeled target data. This stage aligns the internal repre-

sentations of the fused model with those of a reference model,

which could be a previous version of the fused model or another

teacher model. The alignment is performed by minimizing a dis-

crepancy measure (e.g., feature-level divergence), allowing the

fused model to specialize toward the target domain. Importantly,

this stage also refines the fusion coefficients introduced in the

first stage, adapting the model’s knowledge composition to better

suit the target distribution.

Through this two-stage process, KALE enables effective knowl-

edge transfer and adaptation in the absence of labeled data. It not

only leverages the strengths of multiple fine-tuned models but also

adapts to new domains or tasks via unsupervised representation

alignment, making it a practical and efficient solution for zero-label

generalization.



CIKM’25, Nov. 10-14, 2025, Seoul, Korea Yuebin Xu, Xuemei Peng, Zhiyi Chen, and Zeyi Wen

3.2 Stage 1: Knowledge Aggregation via Model
Fusion

3.2.1 Fusion Objective. The first stage of KALE focuses on aggre-

gating knowledge from multiple pretrained and fine-tuned models

into a single unified model without relying on any labeled data.

Task Vector Representation. Given a set of 𝑁 fine-tuned models

{𝜃𝑘 }𝑁𝑘=1, where each 𝜃𝑘 denotes the parameters of the 𝑘-th model

fine-tuned on a distinct task, and all share a common pretrained

initialization 𝜃pre, we define the task-specific residuals (or task
vectors) as:

𝜏𝑘 = 𝜃𝑘 − 𝜃pre, 𝑘 = 1, . . . , 𝑁 , (1)

where 𝜏𝑘 encodes the learned adaptation from the pretrained model

to task 𝑘 . These task vectors reflect the semantic shifts introduced

by each task and form the basis for constructing a fused model.

Fusion Formulation. The goal is to produce a fused model 𝜃𝑀
that incorporates complementary knowledge from all source tasks.

To this end, we perform a weighted combination of task vectors:

𝜃𝑀 = 𝜃pre +
𝑁∑︁
𝑘=1

𝜆𝑘 · Φ(𝜏𝑘 ), (2)

where 𝜆𝑘 ∈ R is the fusion coefficient for task 𝑘 , and Φ(·) is a trans-
formation function applied to task vectors (e.g., identity mapping,

normalization, or attention-based reweighting). This formulation

flexibly adjusts each task’s influence in the fusion process.

Fusion Loss Objective. To balance the performance across all

tasks, the fusion coefficients 𝜆 = (𝜆1, . . . , 𝜆𝑁 ) are optimized to

minimize the average fusion loss over the tasks:

𝜆∗ = argmin

𝜆

1

𝑁

𝑁∑︁
𝑘=1

L (𝑘 )
fuse
(𝜃𝑀 (𝜆)) , (3)

where L (𝑘 )
fuse

denotes the unsupervised fusion loss measuring the

fused model’s performance on task 𝑘 .

3.2.2 Limitations of Existing Methods. Existing model fusion strate-

gies for multi-task learning can be broadly categorized into source-

free and source-based approaches. (i) Source-free methods,
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Figure 3: Spearman’s 𝜌 .

such as Task Arithmetic [16]

and TIES-Merging [40], lin-

early combine task vectors

under the assumption of lin-

ear mode connectivity. While

efficient and lightweight, these

methods lack the flexibility

to adapt to heterogeneous

task behaviors, often result-

ing in performance degra-

dation when tasks are in-

compatible or vary in scale.

(ii) Source-based methods, in-

cluding entropy minimization (EM)-based fusion [41], leverage

unlabeled data and the output distributions of source models to

guide optimization. Despite achieving better average performance,

these methods are highly sensitive to noise in the early fusion

stages. Randomly initialized fusion weights yield unreliable pseudo-

labels, which, when iteratively reinforced, lead to pseudo-label drift

and error accumulation [23]. This biased trajectory favors certain

tasks while suppressing others, impairing generalization. A detailed

analysis of error accumulation will be presented in the subsequent

experimental results section. Furthermore, as the number of fused

models increases, entropy becomes increasingly unreliable as a sur-

rogate loss. Specifically, its correlation with the true optimization

objective weakens, as evidenced by the decreasing Spearman’s 𝜌

between entropy and the final loss (Figure 3). This observation

highlights the diminishing effectiveness of EM-based strategies in

scalable multi-model settings.

3.2.3 Joint Self-Cooperative Optimization. To address the afore-

mentioned limitations, we propose a robust, label-free optimization

strategy that jointly leverages self-supervision and cooperative
supervision from task-specific teacher models. This dual-guided

design mitigates the adverse effects of noisy early predictions and

promotes balanced optimization across tasks.

Concretely, the fused model is trained to produce confident pre-

dictions via entropy minimization (self-supervision) while simulta-

neously aligningwith the soft outputs of task-specific expert models

(cooperative supervision). The self-supervised component reduces

uncertainty and stabilizes early-stage optimization, whereas the

cooperative signal provides external correction to mitigate mislead-

ing predictions and prevent convergence to biased task subsets.

This joint objective effectively addresses pseudo-label drift and

error accumulation, enhancing both the expressiveness and robust-

ness of the fusion process and enabling more stable, generalizable

performance across heterogeneous tasks.

Formally, given an unlabeled instance 𝑥𝑘 from task 𝑘 , and the

corresponding output logits from the fused model 𝜃𝑀 and the 𝑘-th

model 𝑦𝑘 (𝑥𝑘 ) (used as soft targets), the task-specific optimization

loss is defined as:

L(𝑥𝑘 ; 𝜆𝑘 ) = 𝛼 ·
(
−

𝐾∑︁
𝑘=1

𝑦𝑘 (𝑥𝑘 ) · log𝜃𝑀 (𝑥𝑘 ; 𝜆𝑘 )
)

+ 𝐻 (𝜃𝑀 (𝑥𝑘 ; 𝜆𝑘 )), (4)

where the first term is a cross-entropy loss encouraging consistency

with teacher model predictions, and the second term is an entropy

regularization that drives the fused model toward confident pre-

dictions. This joint loss helps stabilize early-stage optimization,

mitigates error accumulation, and reduces task-level bias.

Layer-Specific Fine-Grained Fusion. To further enhance compat-

ibility across model components, we observe that different layers

exhibit distinct behaviors across tasks. Shallow layers often encode

general low-level features, while deeper layers learn task-specific

semantics. A uniform fusion coefficient across all layers ignores

this heterogeneity and may underperform.

To address this, we introduce layer-specific fusion coefficients 𝜆𝑙
𝑘
,

optimized individually per layer 𝑙 and per model 𝑘 . The resulting

objective is:

L(𝑥𝑘 ; 𝜆𝑙𝑘 ) = 𝛼 ·
(
−

𝐾∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝑦𝑙
𝑘
· log𝜃𝑙𝑀 (𝑥𝑘 ; 𝜆

𝑙
𝑘
)
)

+ 𝐻 (𝜃𝑙𝑀 (𝑥𝑘 ; 𝜆
𝑙
𝑘
)), (5)
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where 𝜃𝑙
𝑀

is the output at layer 𝑙 of the fused model. This fine-

grained approach allows the fusion process to adapt flexibly to the

representational diversity across layers.

Empirical Insights. Figure 4 illustrates the learned layer-specific

indices across multiple models. The results show that shallow and

middle layers tend to share similar fusion weights, while deeper

layers display more divergent contributions, aligning with the in-

tuition of hierarchical feature specialization. This confirms the

effectiveness of our layer-specific optimization in aligning with

model representation behavior. By integrating cooperative supervi-

sion, entropy regularization, and layer-wise fusion granularity, our

joint optimization strategy enables robust knowledge aggregation

across tasks, while mitigating common failure modes in existing

fusion techniques.

3.2.4 Class Cardinality-aware Sample Filtering. Despite the bene-
fits of joint optimization, the quality of unlabeled samples remains

critical. High-entropy predictions can degrade optimization, par-

ticularly for tasks with large class cardinality. To address this, we

introduce a class-aware entropy-based filtering mechanism.

Entropy Thresholding. For each task 𝑘 , we define a task-specific

entropy threshold:

𝐻0 (𝑘) = 𝜇 · log𝐶𝑘 , (6)

where𝐶𝑘 is the number of classes and 𝜇 is a scaling factor. A sample

𝑥 is retained only if:

𝐹ent (𝑥 ;𝜃𝑘 ) = I [𝐻 (𝑥 ;𝜃𝑘 ) < 𝐻0 (𝑘)] , (7)

where I[·] is the indicator function.
Entropy-based Reweighting. To stabilize optimization when

many samples are filtered, we apply a dynamic reweighting factor:

𝛾𝜃𝑘 =
1

exp [𝐻 (𝑥 ;𝜃𝑘 ) − 𝐻0 (𝑘)]
· 𝐵

𝐵 − 𝑁𝐹ent
, (8)

where 𝐵 is batch size and 𝑁𝐹ent is the number of retained samples.

This ensures sufficient gradient contributions while preserving

robustness.

Final Optimization Objective. The overall loss for optimizing

the fusion coefficients integrates filtering and reweighting:

min

𝜆𝑘
𝛾𝜃𝑘 · 𝐹ent (𝑥 ;𝜃𝑘 ) · L(𝑥𝑘 ; 𝜆𝑘 ). (9)

This objective promotes reliable and token-efficient optimiza-

tion, enabling robust knowledge fusion across tasks with diverse

structures and label granularities.

3.3 Stage 2: Adaptive Representation Alignment
After obtaining the fused model from Stage 1, we further improve

its task-specific generalization by aligning its intermediate repre-

sentations with those of the target task model 𝜃𝑇 . This alignment

step reduces representational mismatch and enhances cross-task

transferability—without using labeled data.

Alignment Objective. Let F 𝑙
𝑇
(·) denote the representation at layer

𝑙 of the target model 𝜃𝑇 , and let F 𝑙
𝑀
(·; 𝜆) denote the corresponding

representation of the fused model parameterized by fusion coeffi-

cients 𝜆 = (𝜆1, . . . , 𝜆𝑁 ). Given an unlabeled batch 𝑋 = {𝑥 (𝑖 ) }𝐵
𝑖=1

from the target task, we compute the Centered Kernel Alignment

(CKA) similarity [20]:

CKA
(𝑙 ) = CKA

(
F 𝑙𝑀 (𝑋 ; 𝜆), F 𝑙𝑇 (𝑋 )

)
. (10)

We define the alignment loss over the last two layers S as:

L
align

=
1

|S|
∑︁
𝑙∈S

(
1 − CKA(𝑙 )

)
. (11)

Optimization. During this stage, the base models are frozen. We

refine the fusion coefficients 𝜆, which are embedded inside the

fused model 𝜃𝑀 (·; 𝜆), by minimizing the alignment loss:

𝜆∗ = argmin

𝜆
L
align
+ 𝜂∥𝜆∥2

2
, (12)

where 𝜂 is a regularization weight. This optimization can be com-

pleted using only a few forward passes over unlabeled examples,

enabling an efficient few-shot adaptation.

Stage 2 performs lightweight representation alignment by ad-

justing internal fusion coefficients using only unlabeled data. By

maximizing structural similarity to the target model’s top-layer

representations, the fused model achieves stronger capability on

the singular task.

3.4 Overall Algorithm of KALE
Algorithm 1 outlines the proposed KALE framework, which en-

hances a pretrained model 𝜃pre by aggregating knowledge from 𝑁

task-specific models {𝜃𝑘 }𝑁𝑘=1 using unlabeled data {D𝑘 } and align-

ing with a target model 𝜃𝑇 . The method is guided by the entropy

threshold 𝜇, the loss weight 𝛼 , and the regularization term 𝜂. In

Stage 1, we compute task vectors 𝜏𝑘 = 𝜃𝑘 − 𝜃pre and initialize a

fused model 𝜃𝑀 via weighted layer-wise fusion (Eqn. 2). Across iter-

ations, we filter confident samples using entropy (Eqn. 7), reweight

them via confidence scores (Eqn. 8), and update fusion coefficients

{𝜆𝑙
𝑘
} using a joint loss (Eqn. 4, 5). In Stage 2, we freeze all source

models and adapt 𝜃𝑀 to the target task by aligning intermediate

representations with 𝜃𝑇 using CKA similarity (Eqn. 10). The final

coefficients 𝜆∗ are optimized to minimize alignment loss and ℓ2
regularization, yielding the enhanced model 𝜃𝑀 (𝜆∗).

4 Experiment
To comprehensively evaluate both the effectiveness and efficiency

of KALE in enhancing single-task model performance without the

use of labeled data, we perform extensive experiments on a diverse

range of image classification datasets. Additionally, we conduct

thorough ablation studies to rigorously assess the contribution of

each individual component within our method.
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Algorithm 1: KALE

Input: 𝜃pre, {𝜃𝑘 }𝑁𝑘=1, {D𝑘 }
𝑁
𝑘=1

, 𝜇, 𝛼, 𝜂

Output: Enhanced model 𝜃𝑀 (𝜆∗)
// Stage 1

1 for 𝑘 = 1 to 𝑁 do
2 Extract task vector: 𝜏𝑘 ← 𝜃𝑘 − 𝜃pre;
3 Initialize the fused model 𝜃𝑀 as defined in Eqn. 2;

4 for 𝑖 = 1 to max epochs or convergence do
5 for 𝑘 = 1 to 𝑁 do
6 Sample batch 𝑥 from D𝑘 ;
7 Filter and reweight samples based on Eqn. 7 and

Eqn. 8;

8 Update fusion coefficients {𝜆𝑙
𝑘
} according to the joint

loss in Eqn. 4 and Eqn. 5;

// Stage 2

9 Freeze 𝜃pre, {𝜃𝑘 }, and 𝜃𝑇 ;
10 Sample a batch 𝑋 from the target task;

11 For selected layers 𝑙 ∈ S, compute fused and target

representations;

12 Compute CKA similarity and alignment loss L
align

as

defined in Eqn. 10;

13 Update fusion coefficients 𝜆 by minimizing L
align
+ 𝜂∥𝜆∥2

2
;

14 return Enhanced model 𝜃𝑀 (𝜆∗)

Tasks andModels.We evaluate KALE on seven diverse image clas-

sification datasets, each treated as a distinct target task: SUN397 [38],

Cars [21], RESISC45 [3], EuroSAT [12], GTSRB [34], MNIST [22],

and DTD [4]. These datasets span a wide range of visual domains,

including natural scenes, remote sensing imagery, traffic signs,

handwritten digits, textures, and fine-grained object categories. The

number of classes ranges from 10 (e.g., MNIST) to 397 (SUN397). All

experiments are based on vision encoders from the CLIP family [31]:

ViT-B/32 and ViT-L/14, both pretrained on the Wikipedia-based

image text dataset [33], and the finetuned models are obtained from

the Task Vectors repository [16]. Accuracy is used as the evaluation

metric for all tasks.

Baselines. Our baselines mainly follow prior work on unsuper-

vised image classification, where TURTLE [8] represents the state-

of-the-art. In addition to TURTLE, we include K-Means cluster-

ing [27] to provide a classical unsupervised baseline. To cover

weakly-supervised approaches, we add Linear Probe [1], which

trains a logistic regression classifier on frozen features with L2

regularization. For upper bounds, Full fine-tuning [37], training

from scratch with full labels and multitask learning [15] jointly

training on source and target tasks serve as our baselines. Further-

more, we consider label-free model aggregation baselines, including

EMR-Merging [15], currently the SOTA in this category, alongside

weight averaging [36] and Task arithmetic [16]. Zero-shot CLIP [31]

is included as a vision-language pretrained baseline evaluated di-

rectly without adaptation. All methods are evaluated on single-task

enhancement scenarios.

Implementation Details. KALE employs the standard Task Arith-

metic method for weight transformation, as Eqn. 2, performing

a linear combination with a fusion coefficient 𝜆𝑘 = 0.3. Fusion

is applied exclusively to the Vision Transformer encoders, while

classification heads are excluded due to the differing number of

classes across tasks. Linear Probe uses CuML logistic regression

with L2 regularization tuning; K-Means with 1000 iterations and

10 initializations, and TURTLE trained for 6000 steps with batch

size 10,000 and entropy regularization 𝛾 = 10. TURTLE 2-space

integrates DINOv2 features. Evaluation is via Hungarian-matched

clustering accuracy on test sets.

4.1 Results
Performance Comparison. We present the overall performance

in Table 1, where the highest values are highlighted in bold and the

second-best results are underlined. As shown, our method KALE

consistently achieves the best average accuracy across all bench-

marks for both ViT-B/32 and ViT-L/14, reaching 90.2% and 94.0%, re-

spectively. This outperforms all other approaches, including strong

supervised baselines. Specifically, KALE surpasses the best super-

vised method (Full Fine-Tuning) by +0.7% on ViT-B/32 and +0.4%

on ViT-L/14—remarkably, without using any labeled data.

Compared to recent unsupervised methods like TURTLE and K-

Means, our approach shows substantial improvements, exceeding

them by more than 20 percentage points on average. It also clearly

outperforms weakly supervised baselines such as Linear Probe by

+3.5% (ViT-B/32) and +2.7% (ViT-L/14). Furthermore, when com-

pared to the strongest label-free model aggregation baseline, EMR-

Merging++, KALE achieves a notable gain of +2.6% and +6.4% on

ViT-B/32 and ViT-L/14, respectively. A minor exception is observed

on the MNIST dataset, where our method slightly underperforms

the best baseline by 0.2% (ViT-B/32) and 0.1% (ViT-L/14). We at-

tribute this to MNIST’s low visual complexity and narrow domain,

which tend to benefit conventional fine-tuning or memorization-

heavy strategies.

The superiority of KALE can be attributed to three key factors:

(i) Knowledge integration across multiple models. By aggregating

pre-trained models with related but diverse knowledge, KALE ef-

fectively captures shared capabilities—such as generalizable feature

extraction—in tasks like image classification, yielding stronger gen-

eralization. (ii) Conflict-aware and fine-grained model fusion. Unlike
previous aggregation-based methods that often suffer from destruc-

tive task interference, our approach employs a layer-specific fusion

strategy that mitigates such conflicts. The notable performance

margin over EMR-Merging++ and other merging baselines high-

lights the stability and effectiveness of this design. (iii) Adaptive
representation alignment for performance recovery. Our second-stage
feature-level alignment addresses distribution mismatches intro-

duced during fusion, restoring task-specific model capacity and

improving downstream performance without label supervision.

These advantages hold consistently across both model scales,

demonstrating the scalability of KALE. Traditional clustering ap-

proaches and linear probes, although computationally efficient, fail

to leverage the rich cross-model knowledge, falling short by over

20 percentage points on average. Similarly, zero-shot CLIP, despite

its large-scale pretraining, underperforms compared to our method,

reinforcing the necessity of explicit downstream adaptation.
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Table 1: Performance comparison on image classification benchmarks using ViT-B/32 and ViT-L/14.
The highest values are highlighted in bold, and the second-best results are underlined.

Method SUN397 Cars RESC45 EuroSAT GTSRB MNIST DTD Avg.

V
i
T
-
B
/
3
2

Zero-shot CLIP [31] 63.2 59.6 60.2 45.0 32.6 48.3 44.4 50.5

Multi-task Learning [15] 73.9 74.4 93.9 98.2 98.9 99.5 77.9 88.1

Full Fine-Tuning [37] 75.3 77.7 96.1 99.7 98.7 99.7 79.4 89.5

Linear Probe [1] 76.1 80.9 92.5 95.2 86.7 98.9 76.5 86.7

K-Means (1-space) [27] 50.4 43.7 66.0 63.3 32.7 57.5 43.7 51.0

K-Means (2-space) [27] 57.5 50.1 65.3 64.8 23.4 46.9 50.1 51.2

TURTLE (1-space) [8] 58.1 49.1 82.2 69.8 39.6 80.9 49.1 61.3

TURTLE (2-space) [8] 65.2 46.0 88.0 95.6 38.3 97.2 56.0 69.5

Task Arithmetic [16, 18] 63.8 62.1 72.0 77.6 65.1 94.0 52.2 69.5

Weight Averaging [36] 65.3 63.4 71.4 71.7 52.8 87.5 50.1 66.0

EMR-Merging++ [15] 75.2 72.8 93.5 99.5 98.1 99.6 74.4 87.6

KALE (Ours) 79.3 78.4 96.1 99.8 98.8 99.5 79.6 90.2

V
i
T
-
L
/
1
4

Zero-shot CLIP [31] 66.8 77.7 71.0 59.9 50.5 76.3 55.3 65.7

Multi-task Learning [15] 80.8 90.6 96.3 96.3 99.1 99.6 84.4 92.4

Full Fine-Tuning [37] 82.3 92.4 97.4 100.0 99.2 99.7 84.1 93.6

Linear Probe [1] 81.5 90.7 95.5 97.0 93.2 99.0 81.9 91.3

K-Means (1-space) [27] 55.4 50.5 73.7 71.7 45.9 66.6 50.5 59.2

K-Means (2-space) [27] 60.6 49.0 73.9 84.7 31.3 69.0 49.0 59.6

TURTLE (1-space) [8] 63.4 57.6 87.6 93.8 50.3 66.3 57.6 68.1

TURTLE (2-space) [8] 67.9 64.6 89.6 96.0 48.4 97.8 57.3 74.5

Task Arithmetic [16, 18] 63.8 62.1 72.0 77.6 65.1 94.0 52.2 69.5

Weight Averaging [36] 65.3 63.4 71.4 71.7 52.8 87.5 50.1 66.0

EMR-Merging++ [15] 83.2 90.7 96.8 99.6 99.1 99.7 82.7 93.1

KALE (Ours) 84.6 92.7 97.4 99.7 99.4 99.7 84.8 94.0

Overall, these results validate KALE as a powerful label-free al-

ternative to both supervised fine-tuning and existing unsupervised

or weakly supervised baselines, offering a scalable and effective

solution for performance enhancement via model aggregation.

Effectiveness Analysis. To evaluate the effectiveness of our Joint

Self-Cooperative Optimization strategy in addressing the error ac-

cumulation problem, we first visualize the variance of fusion coeffi-

cient magnitudes during the adaptation process of using Entropy

Minimization and our proposed Joint-Cooperative optimization.
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Figure 5: Fusion coefficient variance during adaptation.

As shown in Figure 5, the Entropy Minimization baseline ex-

hibits increasing variance in fusion weights over adaptation steps

(ever deeper color in Figure 5a), indicating an overemphasis on cer-

tain tasks and a lack of coordination among task-specific updates.

Moreover, EM is highly sensitive to the number of adaptation steps,

requiring careful manual tuning to avoid performance degradation.

This instability reflects the absence of an effective error correction

mechanism, leading to a failure to converge reliably. In contrast, our

method maintains consistently stable and balanced fusion weights

throughout the adaptation process (Figure 5a). This stability sug-

gests that our Joint Self-Cooperative Optimization promotes more

robust and coordinated task interaction. By jointly evolving shared

representations with implicit mutual correction, our method en-

ables effective cross-task generalization and ensures convergence

without the need for sensitive step control. To further validate this,

we track average accuracy across the adaptation trajectory.
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Figure 6: Average accuracy during adaptation.

Figure 6 reveals that EM suffers from accuracy degradation over

time on challenging datasets such as SUN397, Cars, and DTD. This

reflects a typical error accumulation effect due to uncoordinated

updates and task interference. In contrast, our Joint Optimization
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method achieves steady performance gains, converges in fewer

than 100 steps, and maintains stability without any collapse.

These results confirm that Joint Self-Cooperative Optimization

effectively mitigates error accumulation by encouraging shared

representations to evolve in a coordinated manner across tasks.

This leads to more robust and generalizable adaptation, validating

the stability and effectiveness of our two-stage framework.

Efficiency Analysis.We further examine the optimization dynam-

ics in the early stages of training. In addition to overall performance,

we focus on the adaptation efficiency of KALE. To this end, we track

its accuracy progression over optimization steps during Stage 2

(adaptive representation alignment) across all datasets. Figure 7

reports the results for ViT-B/32, where each curve shows the aver-

age accuracy over five runs, and the blue dashed line denotes the

performance of fully supervised fine-tuning.

Remarkably, KALE converges on all benchmarks within 100

steps, often requiring substantially fewer updates. For example,

competitive accuracy is achieved in just 20 steps on MNIST and

around 30 steps on EuroSAT. This rapid convergence highlights

the efficiency and stability of our method, enabled by the well-

initialized representations from Stage-1 and the lightweight nature

of Stage-2 adaptation. By minimizing optimization overhead while

maintaining strong accuracy, KALE significantly reduces the cost

of deployment, making it a highly practical solution for label-free

model enhancement.

4.2 Ablation Studies
To better understand the contribution of each component in KALE,

we conduct ablation studies on representative datasets using the

ViT-B/32 backbone. We isolate and evaluate the effectiveness of

three core modules: (i) the knowledge aggregation stage (Stage-1),

(ii) the sample filtering strategy, and (iii) the weight transformation

functions.

Effectiveness of Knowledge Aggregation. Since our approach
is grounded in the learn-from-model paradigm, it is essential to

first verify whether our Stage-1 process indeed aggregates use-

ful knowledge from diverse models. To this end, we isolate the

fused model produced by Stage-1—before any downstream adapta-

tion—and evaluate its multi-task generalization ability. This allows

us to directly quantify the breadth and effectiveness of knowledge

integration. We compare against a comprehensive set of state-of-

the-art model fusion techniques, all of which are label-free, ensuring

a fair comparison. Specifically, we compare our approach against

a suite of state-of-the-art model fusion baselines, including Task

Arithmetic (TA)[16], TIES-Merging (TM)[30], RegMean (RM)[18],

Fisher-Merging (FM)[28], Model Soups (MS)[36], and AdaMerging

(AD)[41].

As shown in Figure 8, our method—denoted in pink in the final

column—consistently achieves the best accuracy on 7 out of 8 tasks,

demonstrating robust and superior multi-task learning capabilities.

In contrast, baseline fusion methods often suffer from performance

drops on specific datasets due to parameter conflicts or insufficient

integration of model-specific knowledge. Notably, KALE excels

on complex benchmarks with large class spaces, such as SUN397,

Cars, and DTD, where effective aggregation of complementary

knowledge is crucial. These results confirm that our fusion strategy
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Figure 7: Adaptation efficiency of KALE using ViT-B/32.

significantly broadens the scope of transferable knowledge, forming

a solid foundation for the subsequent Stage-2 specialization.

Effectiveness of Class Cardinality-aware Sample Filtering.
To assess the impact of our class-cardinality-based sample filtering

strategy, we compare model performance with and without this

filtering under identical experimental settings. The only distinction

lies in the application of our filtering method.

As illustrated in Figure 9, our filtering method consistently leads

to superior performance at every adaptation step across models of

varying capacities. Notably, models employing the filtering con-

verge significantly faster, demonstrating improved learning effi-

ciency and reduced training time. This accelerated convergence

suggests that the filtered training set better prioritizes informa-

tive and representative samples, thereby facilitating more effective

knowledge integration during adaptation. These findings under-

score the critical role of filtering out redundant, noisy, or low-value

samples that could otherwise dilute the learning signal. By focus-

ing on a carefully selected subset aligned with class cardinality,

our method enables more focused gradient updates and alleviates

potential interference during knowledge aggregation. Ultimately,

this results in not only higher accuracy but also more stable and

efficient model specialization. This component is thus essential for

maximizing the benefits of our multi-stage framework.
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Effect of Weight Transformation Functions.Weight transfor-

mation functions Φ(·) are key to model fusion, defining how pa-

rameters from multiple models combine into an initial fused model

(Equation 2). As none guarantee lossless knowledge fusion, it is

crucial to test whether our Joint Self-Cooperative Optimization

consistently improves fusion quality across various initialization.

To this end, we experiment with several representative weight

transformation functions: standard Task Arithmetic (TA), TIES-

Merging (TM), DARE-enhanced Task Arithmetic (DARE [42]+TA),

and DARE-enhanced TIES-Merging (DARE+TIES). These methods

reflect diverse approaches to parameter alignment, weighting, and

fusion, encompassing both simple arithmetic and adaptation-based

techniques.

As shown in Figure 10, when combined with our Joint Self-

Cooperative Optimization, all these initializations exhibit substan-

tial and consistent performance gains—achieving average accuracy

improvements of 14.7%, 11.2%, 12.2%, and 11.2%, respectively. This

consistent uplift demonstrates that, regardless of the initial fusion

quality dictated by the choice of Φ, our optimization procedure
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Figure 10: Effect of Weight Transformation Functions.

robustly refines and enhances the fused model, effectively mitigat-

ing parameter conflicts and knowledge interference. These results

validate the generality and effectiveness of our joint optimization

framework, highlighting its critical role in unlocking the full poten-

tial of diverse weight transformation strategies. It ensures reliable

knowledge aggregation and downstream task specialization, even

when starting from imperfect initial fusions.

5 Conclusion
In this paper, we propose KALE, a label-free framework for model

enhancement via knowledge aggregation and few-shot specializa-

tion. KALE eliminates the need for labeled data by fusing multiple

models and introducing a joint self-cooperative optimization ob-

jective that aligns task- and layer-specific knowledge, integrates

self and cooperative supervision, and mitigates error accumulation

caused by entropy minimization. To ensure stable fusion, KALE

also employs a class cardinality-aware sample filtering strategy.

Experimental results show that our method outperforms full fine-

tuning in the diverse image classification tasks on two of the Vision

Transformer backbones (i.e., ViT-B/32 and ViT-L/14), with notable

improvements on hard tasks SUN397 by over 4 points. It effec-

tively tackles data scarcity, enabling fine-tuning in environments

with limited or inaccessible labeled data. Additionally, our method

achieves competitive performance in knowledge aggregation, sur-

passing SOTA model fusion methods by over 3 points on multi-task

benchmarks. Moreover, the efficiency and effectiveness of each com-

ponent are rigorously evaluated. These results highlight KALE’s

capability to enhance large models without relying on labeled data.
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