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Abstract

Large foundation models have demonstrated remarkable success
in natural language processing and computer vision. Applying the
large models to downstream tasks often requires fine-tuning, in
order to boost the predictive accuracy. However, the fine-tuning
process relies heavily on labeled data and extensive training. This
dependency makes fine-tuning impractical for niche applications,
such as rare object detection or specialized medical tasks. To over-
come these limitations, we propose KALE: Knowledge Aggregation
for Label-free model Enhancement, a label-free method for model
enhancement, leveraging knowledge aggregation via model fusion
and adaptive representation alignment. Our method is powered
by a carefully designed joint self-cooperative optimization func-
tion that considers (i) multi-granularity optimization (task-specific
and layer-specific), (ii) self and cooperative supervision integra-
tion, and (iii) mitigation of error accumulation caused by entropy
minimization. Additionally, we introduce a class cardinality-aware
sample filtering to ensure the stability of the fusion process. We
also design a lightweight representation alignment technique to
refine the fusion coefficient in a few shots for quality enhance-
ment. We evaluate our method on multiple image classification
datasets using ViT-B/32 and ViT-L/14 backbones. Experimental
results demonstrate that our label-free method consistently outper-
forms state-of-the-art unsupervised approaches, including TURTLE
and supervised full fine-tuning, in terms of average performance.
Specifically, compared to TURTLE, our method achieves average
improvements of 20.7% with ViT-B/32 and 19.5% with ViT-L/14.
Furthermore, on the challenging SUN397 dataset, our method sur-
passes supervised full fine-tuning by 4% and 2.3% with ViT-B/32
and ViT-L/14, respectively.
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1 Introduction

Foundation models in computer vision (CV) and natural language
processing (NLP) have seen rapid, transformative progress driven by
large-scale datasets and growing computational devices. Prominent
examples like BERT [5] in NLP and Vision Transformer (ViT) [6]

in CV demonstrate remarkable generalization across many tasks,
serving as foundational backbones for modern Al Despite their
versatility, adapting these models to downstream tasks typically
relies on supervised fine-tuning, which demands extensive labeled
data and substantial computational resources. This dependence cre-
ates a major barrier to practical deployment, especially in scenarios
where high-quality annotations are scarce or prohibitively costly.

Fine-tuning is the dominant strategy for adapting foundation
models to specific tasks, relying heavily on learning from labeled
data. Full fine-tuning (FFT) updates all model parameters to fit
task-specific distributions, typically yielding strong performance.
Parameter-efficient fine-tuning (PEFT) methods like LoRA [13]
reduce trainable parameters via lightweight modules, but still re-
quire labels to guide updates. Despite improved efficiency, both FFT
and PEFT depend on annotations, limiting their use in domains
with scarce labels—such as medical imaging [19], low-resource lan-
guages [32], or rare object detection [29]. Label dependence remains
a major bottleneck, as high-quality annotation is often costly, or
infeasible [39], restricting scalability and generalization.

In light of the challenges of data dependency in supervised fine-
tuning, recent research has begun to explore the learning-from-
model [43] paradigm. Existing model-based approaches, such as
model fusion [16, 25], has emerged as an effective technique to
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enable knowledge transferring. These methods aggregate knowl-
edge from multiple pretrained models, enabling the construction
of more powerful multi-task learning (MTL) models. Prior model
fusion methods primarily focus on building universal MTL mod-
els [9] that perform reasonably well across tasks; however, they
often suffer from significant performance degradation on individual
tasks [9, 16, 26, 28, 40], limiting their practical applicability where
task-specific accuracy is critical. Building upon these insights, our
key contribution lies in enhancing the existing model fusion meth-
ods to not only achieve effective knowledge aggregation but also
improve the performance of the fused model on single tasks.

Motivated by the advantages and limitations of model fusion,
we propose KALE (Knowledge Aggregation for Label-free model
Enhancement). On one hand, model fusion enables label-free knowl-
edge aggregation by combining multiple pretrained models, offer-
ing a promising alternative to data-dependent fine-tuning. On the
other hand, existing fusion methods often suffer from performance
degradation on individual tasks, limiting their practical use where
task-specific accuracy is critical. KALE is designed to harness the
benefits of model fusion while addressing its shortcomings by ex-
plicitly optimizing the fusion process to maintain and improve
task-specific performance. Additionally, KALE supports efficient
downstream specialization without requiring labeled data or full
parameter updates, effectively balancing multi-task knowledge in-
tegration with task-focused refinement.

KALE operates in two stages. In the first stage, KALE performs
model fusion to aggregate diverse knowledge from multiple pre-
trained models. To ensure effective integration, we introduce a prin-
cipled fusion optimization strategy called Joint Self-Cooperative
Optimization, which captures knowledge at both task-specific and
layer-specific granularities. This approach effectively mitigates the
common issue of error accumulation found in entropy-based meth-
ods [23]. To further enhance the adaptation stability, we propose a
class cardinality-aware sample filtering technique that selectively
removes high-uncertainty samples according to class cardinality, en-
suring robust and balanced performance across tasks. In the second
stage, KALE specializes the fused model for a target task through
adaptive representation alignment. This unsupervised adaptation
enables the fused model to retain its aggregated knowledge while
improving task-specific performance.

We conduct extensive experiments on diverse image classifica-
tion benchmarks with varying numbers of classes using Vision
Transformer models. We compare the unsupervised classification
performance of our approach against a wide range of baselines built
on ViT models. As illustrated in Figure (1), KALE consistently out-
performs the state-of-the-art unsupervised method TURTLE in both
of its variants, and even surpasses supervised full fine-tuning—all
without relying on any labeled data. Our main contributions are
summarized as follows:

e We propose KALE, a fully label-free method that improves model
performance by combining knowledge aggregation through model
fusion and adaptive representation alignment.

o We design a new unsupervised optimization function tailored to
fusion optimization, incorporating both task-specific and layer-
specific granularity, and introduce a class cardinality-aware fil-
tering technique to stabilize and accelerate the fusion process.
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Figure 1: Comparison of unsupervised classification perfor-
mance across multiple image classification tasks using CLIP
ViT-B/32.

e We conduct extensive experiments on diverse image classifica-
tion benchmarks. Results show that KALE outperforms full fine-
tuning, the state-of-the-art unsupervised methods, demonstrat-
ing strong generalization and efficiency.

2 Related Work
2.1 (Weakly) Unsupervised Learning

Unsupervised and weakly supervised learning methods focus on ex-
tracting effective representations from data with limited or no anno-
tations. TURTLE [8] enables state-of-the-art unsupervised transfer
by optimizing margin-based classifiers in foundation model repre-
sentations. Self-supervised learning (SSL) [14] learns generalizable
features via pretext tasks, such as contrastive learning [35] that
distinguishes similar and dissimilar samples, and masked autoen-
coding [11] that reconstructs masked inputs. Furthermore, deep
clustering techniques [7] jointly optimize feature representations
and cluster assignments to group data based on semantic similarity.
The effectiveness of learned representations is typically assessed
via linear probing [1], which trains simple classifiers with minimal
supervision on downstream tasks. While these approaches avoid
labeled data, they often underperform compared to supervised
fine-tuning on individual tasks. Our work addresses this critical
gap by leveraging model fusion for robust knowledge transfer and
aggregation, enabling improved performance.

2.2 Label-Free Model Enhancement

Label-free methods aim to enhance model performance without re-
lying on annotated data. Classic approaches include self-supervised
learning [10], which learns representations via pretext tasks like
contrastive or masked modeling, and unsupervised domain adap-
tation [24], which aligns distributions across domains using ad-
versarial or discrepancy-based techniques. Pseudo-labeling [2] and
consistency-based training [17] generate synthetic labels or enforce
prediction stability to leverage unlabeled data. While effective, these
methods often rely on carefully designed augmentations, or access
to source data. More recent trends explore extracting knowledge
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Figure 2: Overview of KALE. Two stages are included. (1) Knowledge aggregation via model fusion; (2) Adaptive representation

alignment with few-shots adaptation.

directly from pretrained models [16, 28, 43], bypassing the need
for additional training. In contrast, our method, KALE, adopts a
model-centric view by fusing task-relevant knowledge from mul-
tiple models and adapting it to the target task via unsupervised
representation alignment. This approach requires no labels, no
source domain data, and no auxiliary pretraining, offering a scal-
able alternative for label-free model enhancement.

2.3 Model Fusion for Knowledge Aggregation

Model fusion is an emerging approach that aims to integrate mul-
tiple pretrained models into a single unified model [16, 26, 28,
40]. Techniques such as weight averaging [36], Fisher-weighted
merging [28], task-specific editing [16], TIES-Merging [40], and
AdaMerging [41] have been proposed to aggregate knowledge
across models without requiring labeled data. EMR-Merging [15]
represents the state-of-the-art fusion method, leveraging an elect-
mask-rescale strategy to effectively resolve weight conflicts. While
these methods show promise for multi-task learning, they often
suffer from performance degradation on individual tasks due to
interference among incompatible parameters. KALE builds on these
advances by introducing a principled fusion optimization objec-
tive and a second-stage adaptation process to mitigate knowledge
interference and boost task-specific accuracy.

3 Methodology

This section presents the overall framework of KALE, which con-
sists of two key stages: (1) Knowledge aggregation via model fusion,
and (2) Unsupervised representation alignment for performance
enhancement. The entire process is designed to operate without
any human-annotated labels, enabling truly label-free model en-
hancement.

3.1 Overview of KALE

KALE (Knowledge Aggregation for Label-free model Enhancement)
is a two-stage framework designed to improve model performance

without relying on any labeled data. Figure 2 shows the overview
framework of KALE. It consists of the following components:

o Stage 1: Knowledge Aggregation via Model Fusion. KALE
begins by aggregating knowledge from a set of fine-tuned mod-
els, all initialized from the same pretrained checkpoint. Instead
of merging model weights directly, it identifies and combines
the task-specific transformations (i.e., the changes made by each
model relative to the shared initialization). These transforma-
tions are typically geometrically aligned in parameter space due
to their shared training origin, which allows for a meaningful
combination. Fusion coefficients are introduced to control the
contribution of each source model, enabling the construction of
an initial fused model that integrates diverse knowledge without
any labeled supervision.

Stage 2: Adaptive Representation Alignment. After initializ-
ing the fused model, KALE performs unsupervised adaptation
using unlabeled target data. This stage aligns the internal repre-
sentations of the fused model with those of a reference model,
which could be a previous version of the fused model or another
teacher model. The alignment is performed by minimizing a dis-
crepancy measure (e.g., feature-level divergence), allowing the
fused model to specialize toward the target domain. Importantly,
this stage also refines the fusion coefficients introduced in the
first stage, adapting the model’s knowledge composition to better
suit the target distribution.

Through this two-stage process, KALE enables effective knowl-
edge transfer and adaptation in the absence of labeled data. It not
only leverages the strengths of multiple fine-tuned models but also
adapts to new domains or tasks via unsupervised representation
alignment, making it a practical and efficient solution for zero-label
generalization.
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3.2 Stage 1: Knowledge Aggregation via Model
Fusion

3.2.1 Fusion Objective. The first stage of KALE focuses on aggre-
gating knowledge from multiple pretrained and fine-tuned models
into a single unified model without relying on any labeled data.
Task Vector Representation. Given a set of N fine-tuned models
{Hk}kN: 1> Where each 6y denotes the parameters of the k-th model
fine-tuned on a distinct task, and all share a common pretrained
initialization Opre, we define the task-specific residuals (or task
vectors) as:

k=1,..,N, (1)

where 7. encodes the learned adaptation from the pretrained model
to task k. These task vectors reflect the semantic shifts introduced
by each task and form the basis for constructing a fused model.
Fusion Formulation. The goal is to produce a fused model 6,
that incorporates complementary knowledge from all source tasks.
To this end, we perform a weighted combination of task vectors:

T, = O — Gpre,

N
Ont = Opre + ) Mg+ @), ®)
k=1

where A € R is the fusion coefficient for task k, and ®(-) is a trans-
formation function applied to task vectors (e.g., identity mapping,
normalization, or attention-based reweighting). This formulation
flexibly adjusts each task’s influence in the fusion process.
Fusion Loss Objective. To balance the performance across all
tasks, the fusion coefficients A = (A,...,Ay) are optimized to
minimize the average fusion loss over the tasks:

N
* _ 1 (k)
A* = arg min - I; L Om(2)), 3)

k)

where 'Lf(use denotes the unsupervised fusion loss measuring the
fused model’s performance on task k.

3.2.2  Limitations of Existing Methods. Existing model fusion strate-
gies for multi-task learning can be broadly categorized into source-
free and source-based approaches. (i) Source-free methods,
such as Task Arithmetic [16]
and TIES-Merging [40], lin-

early combine task vectors % gﬁ 8 SLS.STB Z iusrsswg

under the assumption of lin- e 0.9 A <A> o e
ear mode connectivity. While Sos| +

efficient and lightweight, these é

methods lack the flexibility 50'7 < >

to adapt to heterogeneous &o6 ©

task behaviors, often result- 0 200 400
ing in performance degra- Number of Classes

dation when tasks are in-
compatible or vary in scale.
(ii) Source-based methods, in-
cluding entropy minimization (EM)-based fusion [41], leverage
unlabeled data and the output distributions of source models to
guide optimization. Despite achieving better average performance,
these methods are highly sensitive to noise in the early fusion
stages. Randomly initialized fusion weights yield unreliable pseudo-
labels, which, when iteratively reinforced, lead to pseudo-label drift

Figure 3: Spearman’s p.
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and error accumulation [23]. This biased trajectory favors certain
tasks while suppressing others, impairing generalization. A detailed
analysis of error accumulation will be presented in the subsequent
experimental results section. Furthermore, as the number of fused
models increases, entropy becomes increasingly unreliable as a sur-
rogate loss. Specifically, its correlation with the true optimization
objective weakens, as evidenced by the decreasing Spearman’s p
between entropy and the final loss (Figure 3). This observation
highlights the diminishing effectiveness of EM-based strategies in
scalable multi-model settings.

3.2.3  Joint Self-Cooperative Optimization. To address the afore-
mentioned limitations, we propose a robust, label-free optimization
strategy that jointly leverages self-supervision and cooperative
supervision from task-specific teacher models. This dual-guided
design mitigates the adverse effects of noisy early predictions and
promotes balanced optimization across tasks.

Concretely, the fused model is trained to produce confident pre-
dictions via entropy minimization (self-supervision) while simulta-
neously aligning with the soft outputs of task-specific expert models
(cooperative supervision). The self-supervised component reduces
uncertainty and stabilizes early-stage optimization, whereas the
cooperative signal provides external correction to mitigate mislead-
ing predictions and prevent convergence to biased task subsets.
This joint objective effectively addresses pseudo-label drift and
error accumulation, enhancing both the expressiveness and robust-
ness of the fusion process and enabling more stable, generalizable
performance across heterogeneous tasks.

Formally, given an unlabeled instance xj. from task k, and the
corresponding output logits from the fused model 05 and the k-th
model yi (xg) (used as soft targets), the task-specific optimization
loss is defined as:

K
Lo ) = - | = D i) - log O (s M)
k=1
+H(Om (xpe; Ak)), 4

where the first term is a cross-entropy loss encouraging consistency
with teacher model predictions, and the second term is an entropy
regularization that drives the fused model toward confident pre-
dictions. This joint loss helps stabilize early-stage optimization,
mitigates error accumulation, and reduces task-level bias.
Layer-Specific Fine-Grained Fusion. To further enhance compat-
ibility across model components, we observe that different layers
exhibit distinct behaviors across tasks. Shallow layers often encode
general low-level features, while deeper layers learn task-specific
semantics. A uniform fusion coefficient across all layers ignores
this heterogeneity and may underperform.

To address this, we introduce layer-specific fusion coefficients /1]1(,
optimized individually per layer I and per model k. The resulting
objective is:

K L
L) =a- =3yl - log O (xes Ap)
k=1 1=1

+H(0, (s A0)), ()
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Figure 4: Learned layer-specific fusion indices across every
pair of the eight models. Deeper colors represent a higher
magnitude.

where 911\/1 is the output at layer [ of the fused model. This fine-
grained approach allows the fusion process to adapt flexibly to the
representational diversity across layers.

Empirical Insights. Figure 4 illustrates the learned layer-specific
indices across multiple models. The results show that shallow and
middle layers tend to share similar fusion weights, while deeper
layers display more divergent contributions, aligning with the in-
tuition of hierarchical feature specialization. This confirms the
effectiveness of our layer-specific optimization in aligning with
model representation behavior. By integrating cooperative supervi-
sion, entropy regularization, and layer-wise fusion granularity, our
joint optimization strategy enables robust knowledge aggregation
across tasks, while mitigating common failure modes in existing
fusion techniques.

3.24 Class Cardinality-aware Sample Filtering. Despite the bene-
fits of joint optimization, the quality of unlabeled samples remains
critical. High-entropy predictions can degrade optimization, par-
ticularly for tasks with large class cardinality. To address this, we
introduce a class-aware entropy-based filtering mechanism.
Entropy Thresholding. For each task k, we define a task-specific
entropy threshold:

Ho(k) = pt - log C., (6)

where Cy. is the number of classes and y is a scaling factor. A sample
x is retained only if:

Fent (x:0) = L [H(x; 0) < Ho(K)], ™

where I[-] is the indicator function.
Entropy-based Reweighting. To stabilize optimization when
many samples are filtered, we apply a dynamic reweighting factor:

o _ 1 B
exp [H(x;0k) — Ho(k)] B-Npg,,’

®

where B is batch size and N, is the number of retained samples.
This ensures sufficient gradient contributions while preserving
robustness.

Final Optimization Objective. The overall loss for optimizing
the fusion coefficients integrates filtering and reweighting:

min % - Fony(x; 6¢) - £ (o 24). )
k

This objective promotes reliable and token-efficient optimiza-
tion, enabling robust knowledge fusion across tasks with diverse
structures and label granularities.
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3.3 Stage 2: Adaptive Representation Alignment

After obtaining the fused model from Stage 1, we further improve
its task-specific generalization by aligning its intermediate repre-
sentations with those of the target task model 7. This alignment
step reduces representational mismatch and enhances cross-task
transferability—without using labeled data.

Alignment Objective. Let 7‘}1() denote the representation at layer

[ of the target model 67, and let r}L'Al/[(~; A) denote the corresponding
representation of the fused model parameterized by fusion coeffi-
cients A = (A1, ...,An). Given an unlabeled batch X = {x(!) }}iB=1
from the target task, we compute the Centered Kernel Alignment
(CKA) similarity [20]:

ckA®) = cKkA (T]Q(X;A), TT’(X)). (10)

We define the alignment loss over the last two layers S as:
1
=, (1-cka®). 11
Lallgn |S| IGS( ) ( )

Optimization. During this stage, the base models are frozen. We
refine the fusion coefficients A, which are embedded inside the
fused model 64 (-; 1), by minimizing the alignment loss:

A= arg m}%n -Ealign + ’7”/1”%’ (12)

where 1 is a regularization weight. This optimization can be com-
pleted using only a few forward passes over unlabeled examples,
enabling an efficient few-shot adaptation.

Stage 2 performs lightweight representation alignment by ad-
justing internal fusion coefficients using only unlabeled data. By
maximizing structural similarity to the target model’s top-layer
representations, the fused model achieves stronger capability on
the singular task.

3.4 Overall Algorithm of KALE

Algorithm 1 outlines the proposed KALE framework, which en-
hances a pretrained model 8. by aggregating knowledge from N
task-specific models {6 }sz , using unlabeled data {Dy} and align-
ing with a target model §7. The method is guided by the entropy
threshold p, the loss weight @, and the regularization term 5. In
Stage 1, we compute task vectors 7; = 0 — Opre and initialize a
fused model 0, via weighted layer-wise fusion (Eqn. 2). Across iter-
ations, we filter confident samples using entropy (Eqn. 7), reweight
them via confidence scores (Eqn. 8), and update fusion coefficients
{/lfc} using a joint loss (Eqn. 4, 5). In Stage 2, we freeze all source
models and adapt 6y to the target task by aligning intermediate
representations with 7 using CKA similarity (Eqn. 10). The final
coefficients A* are optimized to minimize alignment loss and £,
regularization, yielding the enhanced model 0y (1*).

4 Experiment

To comprehensively evaluate both the effectiveness and efficiency
of KALE in enhancing single-task model performance without the
use of labeled data, we perform extensive experiments on a diverse
range of image classification datasets. Additionally, we conduct
thorough ablation studies to rigorously assess the contribution of
each individual component within our method.
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Algorithm 1: KALE

Input: Opre, {0k}, {D} 1 1]
Output: Enhanced model 0y (1)
// Stage 1
for k =1to N do
L Extract task vector: 75 « 0 — Opre;

[

©w

Initialize the fused model 0y as defined in Eqn. 2;

'S

for i = 1 to max epochs or convergence do
5 for k =1to N do

6 Sample batch x from Dy;
7 Filter and reweight samples based on Eqn. 7 and
Eqn. 8;

8 Update fusion coeflicients {)L]l(} according to the joint

loss in Eqn. 4 and Eqn. 5;

// Stage 2
Freeze 9pre, {0}, and oT.
10 Sample a batch X from the target task;

©

1

oy

For selected layers I € S, compute fused and target
representations;
12 Compute CKA similarity and alignment loss Lyj;gn as
defined in Eqn. 10;
13 Update fusion coefficients A by minimizing Lyjign + 17||)L||§;
14 return Enhanced model Oy (1)

Tasks and Models. We evaluate KALE on seven diverse image clas-
sification datasets, each treated as a distinct target task: SUN397 [38],
Cars [21], RESISC45 [3], EuroSAT [12], GTSRB [34], MNIST [22],
and DTD [4]. These datasets span a wide range of visual domains,
including natural scenes, remote sensing imagery, traffic signs,
handwritten digits, textures, and fine-grained object categories. The
number of classes ranges from 10 (e.g., MNIST) to 397 (SUN397). All
experiments are based on vision encoders from the CLIP family [31]:
ViT-B/32 and ViT-L/14, both pretrained on the Wikipedia-based
image text dataset [33], and the finetuned models are obtained from
the Task Vectors repository [16]. Accuracy is used as the evaluation
metric for all tasks.

Baselines. Our baselines mainly follow prior work on unsuper-
vised image classification, where TURTLE [8] represents the state-
of-the-art. In addition to TURTLE, we include K-Means cluster-
ing [27] to provide a classical unsupervised baseline. To cover
weakly-supervised approaches, we add Linear Probe [1], which
trains a logistic regression classifier on frozen features with L2
regularization. For upper bounds, Full fine-tuning [37], training
from scratch with full labels and multitask learning [15] jointly
training on source and target tasks serve as our baselines. Further-
more, we consider label-free model aggregation baselines, including
EMR-Merging [15], currently the SOTA in this category, alongside
weight averaging [36] and Task arithmetic [16]. Zero-shot CLIP [31]
is included as a vision-language pretrained baseline evaluated di-
rectly without adaptation. All methods are evaluated on single-task
enhancement scenarios.

Implementation Details. KALE employs the standard Task Arith-
metic method for weight transformation, as Eqn. 2, performing
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a linear combination with a fusion coefficient A = 0.3. Fusion
is applied exclusively to the Vision Transformer encoders, while
classification heads are excluded due to the differing number of
classes across tasks. Linear Probe uses CuML logistic regression
with L2 regularization tuning; K-Means with 1000 iterations and
10 initializations, and TURTLE trained for 6000 steps with batch
size 10,000 and entropy regularization y = 10. TURTLE 2-space
integrates DINOv?2 features. Evaluation is via Hungarian-matched
clustering accuracy on test sets.

4.1 Results

Performance Comparison. We present the overall performance
in Table 1, where the highest values are highlighted in bold and the
second-best results are underlined. As shown, our method KALE
consistently achieves the best average accuracy across all bench-
marks for both ViT-B/32 and ViT-L/14, reaching 90.2% and 94.0%, re-
spectively. This outperforms all other approaches, including strong
supervised baselines. Specifically, KALE surpasses the best super-
vised method (Full Fine-Tuning) by +0.7% on ViT-B/32 and +0.4%
on ViT-L/14—remarkably, without using any labeled data.

Compared to recent unsupervised methods like TURTLE and K-
Means, our approach shows substantial improvements, exceeding
them by more than 20 percentage points on average. It also clearly
outperforms weakly supervised baselines such as Linear Probe by
+3.5% (ViT-B/32) and +2.7% (ViT-L/14). Furthermore, when com-
pared to the strongest label-free model aggregation baseline, EMR-
Merging++, KALE achieves a notable gain of +2.6% and +6.4% on
ViT-B/32 and ViT-L/14, respectively. A minor exception is observed
on the MNIST dataset, where our method slightly underperforms
the best baseline by 0.2% (ViT-B/32) and 0.1% (ViT-L/14). We at-
tribute this to MNIST’s low visual complexity and narrow domain,
which tend to benefit conventional fine-tuning or memorization-
heavy strategies.

The superiority of KALE can be attributed to three key factors:
(i) Knowledge integration across multiple models. By aggregating
pre-trained models with related but diverse knowledge, KALE ef-
fectively captures shared capabilities—such as generalizable feature
extraction—in tasks like image classification, yielding stronger gen-
eralization. (ii) Conflict-aware and fine-grained model fusion. Unlike
previous aggregation-based methods that often suffer from destruc-
tive task interference, our approach employs a layer-specific fusion
strategy that mitigates such conflicts. The notable performance
margin over EMR-Merging++ and other merging baselines high-
lights the stability and effectiveness of this design. (iii) Adaptive
representation alignment for performance recovery. Our second-stage
feature-level alignment addresses distribution mismatches intro-
duced during fusion, restoring task-specific model capacity and
improving downstream performance without label supervision.

These advantages hold consistently across both model scales,
demonstrating the scalability of KALE. Traditional clustering ap-
proaches and linear probes, although computationally efficient, fail
to leverage the rich cross-model knowledge, falling short by over
20 percentage points on average. Similarly, zero-shot CLIP, despite
its large-scale pretraining, underperforms compared to our method,
reinforcing the necessity of explicit downstream adaptation.
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Table 1: Performance comparison on image classification benchmarks using ViT-B/32 and ViT-L/14.
The highest values are highlighted in bold, and the second-best results are underlined.

Method SUN397 Cars RESC45 EuroSAT GTSRB MNIST DTD Avg.
Zero-shot CLIP [31] 63.2 59.6 60.2 45.0 32.6 48.3 444 50.5
Multi-task Learning [15] 73.9 74.4 93.9 98.2 98.9 99.5 77.9 88.1
Full Fine-Tuning [37] 753 777 961 997 987  99.7 794 895
o Linear Probe [1] 76.1 80.9 92.5 95.2 86.7 98.9 76.5 86.7
% K-Means (1-space) [27] 50.4 43.7 66.0 63.3 32.7 57.5 437 51.0
g  K-Means (2-space) [27] 57.5 50.1 65.3 64.8 234 46.9 50.1 51.2
= TURTLE (1-space) [8] 58.1 49.1 82.2 69.8 39.6 80.9 49.1 61.3
TURTLE (2-space) [8] 65.2 46.0 88.0 95.6 38.3 97.2 56.0 69.5
Task Arithmetic [16, 18] 63.8 62.1 72.0 77.6 65.1 94.0 52.2 69.5
Weight Averaging [36] 65.3 63.4 71.4 71.7 52.8 87.5 50.1 66.0
EMR-Merging++ [15] 75.2 72.8 93.5 99.5 98.1 99.6 74.4 87.6
KALE (Ours) 793 784 961 998 988 995  79.6  90.2
Zero-shot CLIP [31] 66.8 77.7 71.0 59.9 50.5 76.3 55.3 65.7
Multi-task Learning [15] 80.8 90.6 96.3 96.3 99.1 99.6 84.4 92.4
Full Fine-Tuning [37] 823 924 974 1000 992  99.7 841 936
- Linear Probe [1] 81.5 90.7 95.5 97.0 93.2 99.0 81.9 91.3
S K-Means (1-space) [27] 55.4 50.5 73.7 71.7 45.9 66.6 50.5 59.2
&« K-Means (2-space) [27] 60.6 49.0 73.9 84.7 31.3 69.0 49.0 59.6
2 TURTLE (1-space) [8] 63.4 57.6 87.6 93.8 50.3 66.3 57.6 68.1
TURTLE (2-space) [8] 67.9 64.6 89.6 96.0 48.4 97.8 57.3 74.5
Task Arithmetic [16, 18] 63.8 62.1 72.0 77.6 65.1 94.0 52.2 69.5
Weight Averaging [36] 653 634 714 717 528 875 501  66.0
EMR-Merging++ [15] 832 907 968 996 991 997 827  93.1
KALE (Ours) 84.6 92.7 97.4 99.7 99.4 99.7 84.8 94.0

Overall, these results validate KALE as a powerful label-free al-
ternative to both supervised fine-tuning and existing unsupervised
or weakly supervised baselines, offering a scalable and effective
solution for performance enhancement via model aggregation.
Effectiveness Analysis. To evaluate the effectiveness of our Joint
Self-Cooperative Optimization strategy in addressing the error ac-
cumulation problem, we first visualize the variance of fusion coeffi-
cient magnitudes during the adaptation process of using Entropy
Minimization and our proposed Joint-Cooperative optimization.

SUN397 0.4

Cars.
RESISC45
EuroSAT-
SVHN

0.3

Datasets
Datasets

-0.2

GTSRB
MNIST-
DTD

Steps

(a) Entropy Minimization  (b) Joint Optimization (Ours)

Figure 5: Fusion coefficient variance during adaptation.

As shown in Figure 5, the Entropy Minimization baseline ex-
hibits increasing variance in fusion weights over adaptation steps
(ever deeper color in Figure 5a), indicating an overemphasis on cer-
tain tasks and a lack of coordination among task-specific updates.
Moreover, EM is highly sensitive to the number of adaptation steps,
requiring careful manual tuning to avoid performance degradation.

This instability reflects the absence of an effective error correction
mechanism, leading to a failure to converge reliably. In contrast, our
method maintains consistently stable and balanced fusion weights
throughout the adaptation process (Figure 5a). This stability sug-
gests that our Joint Self-Cooperative Optimization promotes more
robust and coordinated task interaction. By jointly evolving shared
representations with implicit mutual correction, our method en-
ables effective cross-task generalization and ensures convergence
without the need for sensitive step control. To further validate this,
we track average accuracy across the adaptation trajectory.
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Figure 6: Average accuracy during adaptation.

Figure 6 reveals that EM suffers from accuracy degradation over
time on challenging datasets such as SUN397, Cars, and DTD. This
reflects a typical error accumulation effect due to uncoordinated
updates and task interference. In contrast, our Joint Optimization



CIKM’25, Nov. 10-14, 2025, Seoul, Korea

method achieves steady performance gains, converges in fewer
than 100 steps, and maintains stability without any collapse.

These results confirm that Joint Self-Cooperative Optimization
effectively mitigates error accumulation by encouraging shared
representations to evolve in a coordinated manner across tasks.
This leads to more robust and generalizable adaptation, validating
the stability and effectiveness of our two-stage framework.
Efficiency Analysis. We further examine the optimization dynam-
ics in the early stages of training. In addition to overall performance,
we focus on the adaptation efficiency of KALE. To this end, we track
its accuracy progression over optimization steps during Stage 2
(adaptive representation alignment) across all datasets. Figure 7
reports the results for ViT-B/32, where each curve shows the aver-
age accuracy over five runs, and the blue dashed line denotes the
performance of fully supervised fine-tuning.

Remarkably, KALE converges on all benchmarks within 100
steps, often requiring substantially fewer updates. For example,
competitive accuracy is achieved in just 20 steps on MNIST and
around 30 steps on EuroSAT. This rapid convergence highlights
the efficiency and stability of our method, enabled by the well-
initialized representations from Stage-1 and the lightweight nature
of Stage-2 adaptation. By minimizing optimization overhead while
maintaining strong accuracy, KALE significantly reduces the cost
of deployment, making it a highly practical solution for label-free
model enhancement.

4.2 Ablation Studies

To better understand the contribution of each component in KALE,
we conduct ablation studies on representative datasets using the
ViT-B/32 backbone. We isolate and evaluate the effectiveness of
three core modules: (i) the knowledge aggregation stage (Stage-1),
(ii) the sample filtering strategy, and (iii) the weight transformation
functions.

Effectiveness of Knowledge Aggregation. Since our approach
is grounded in the learn-from-model paradigm, it is essential to
first verify whether our Stage-1 process indeed aggregates use-
ful knowledge from diverse models. To this end, we isolate the
fused model produced by Stage-1—before any downstream adapta-
tion—and evaluate its multi-task generalization ability. This allows
us to directly quantify the breadth and effectiveness of knowledge
integration. We compare against a comprehensive set of state-of-
the-art model fusion techniques, all of which are label-free, ensuring
a fair comparison. Specifically, we compare our approach against
a suite of state-of-the-art model fusion baselines, including Task
Arithmetic (TA)[16], TIES-Merging (TM)[30], RegMean (RM)[18],
Fisher-Merging (FM)[28], Model Soups (MS)[36], and AdaMerging
(AD)[41].

As shown in Figure 8, our method—denoted in pink in the final
column—consistently achieves the best accuracy on 7 out of 8 tasks,
demonstrating robust and superior multi-task learning capabilities.
In contrast, baseline fusion methods often suffer from performance
drops on specific datasets due to parameter conflicts or insufficient
integration of model-specific knowledge. Notably, KALE excels
on complex benchmarks with large class spaces, such as SUN397,
Cars, and DTD, where effective aggregation of complementary
knowledge is crucial. These results confirm that our fusion strategy
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Figure 7: Adaptation efficiency of KALE using ViT-B/32.

significantly broadens the scope of transferable knowledge, forming
a solid foundation for the subsequent Stage-2 specialization.
Effectiveness of Class Cardinality-aware Sample Filtering,.
To assess the impact of our class-cardinality-based sample filtering
strategy, we compare model performance with and without this
filtering under identical experimental settings. The only distinction
lies in the application of our filtering method.

As illustrated in Figure 9, our filtering method consistently leads
to superior performance at every adaptation step across models of
varying capacities. Notably, models employing the filtering con-
verge significantly faster, demonstrating improved learning effi-
ciency and reduced training time. This accelerated convergence
suggests that the filtered training set better prioritizes informa-
tive and representative samples, thereby facilitating more effective
knowledge integration during adaptation. These findings under-
score the critical role of filtering out redundant, noisy, or low-value
samples that could otherwise dilute the learning signal. By focus-
ing on a carefully selected subset aligned with class cardinality,
our method enables more focused gradient updates and alleviates
potential interference during knowledge aggregation. Ultimately,
this results in not only higher accuracy but also more stable and
efficient model specialization. This component is thus essential for
maximizing the benefits of our multi-stage framework.
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Effect of Weight Transformation Functions. Weight transfor-
mation functions ®(-) are key to model fusion, defining how pa-
rameters from multiple models combine into an initial fused model
(Equation 2). As none guarantee lossless knowledge fusion, it is
crucial to test whether our Joint Self-Cooperative Optimization
consistently improves fusion quality across various initialization.
To this end, we experiment with several representative weight
transformation functions: standard Task Arithmetic (TA), TIES-
Merging (TM), DARE-enhanced Task Arithmetic (DARE [42]+TA),
and DARE-enhanced TIES-Merging (DARE+TIES). These methods
reflect diverse approaches to parameter alignment, weighting, and
fusion, encompassing both simple arithmetic and adaptation-based
techniques.

As shown in Figure 10, when combined with our Joint Self-
Cooperative Optimization, all these initializations exhibit substan-
tial and consistent performance gains—achieving average accuracy
improvements of 14.7%, 11.2%, 12.2%, and 11.2%, respectively. This
consistent uplift demonstrates that, regardless of the initial fusion
quality dictated by the choice of ®, our optimization procedure
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Figure 10: Effect of Weight Transformation Functions.

robustly refines and enhances the fused model, effectively mitigat-
ing parameter conflicts and knowledge interference. These results
validate the generality and effectiveness of our joint optimization
framework, highlighting its critical role in unlocking the full poten-
tial of diverse weight transformation strategies. It ensures reliable
knowledge aggregation and downstream task specialization, even
when starting from imperfect initial fusions.

5 Conclusion

In this paper, we propose KALE, a label-free framework for model
enhancement via knowledge aggregation and few-shot specializa-
tion. KALE eliminates the need for labeled data by fusing multiple
models and introducing a joint self-cooperative optimization ob-
jective that aligns task- and layer-specific knowledge, integrates
self and cooperative supervision, and mitigates error accumulation
caused by entropy minimization. To ensure stable fusion, KALE
also employs a class cardinality-aware sample filtering strategy.
Experimental results show that our method outperforms full fine-
tuning in the diverse image classification tasks on two of the Vision
Transformer backbones (i.e., ViT-B/32 and ViT-L/14), with notable
improvements on hard tasks SUN397 by over 4 points. It effec-
tively tackles data scarcity, enabling fine-tuning in environments
with limited or inaccessible labeled data. Additionally, our method
achieves competitive performance in knowledge aggregation, sur-
passing SOTA model fusion methods by over 3 points on multi-task
benchmarks. Moreover, the efficiency and effectiveness of each com-
ponent are rigorously evaluated. These results highlight KALE’s
capability to enhance large models without relying on labeled data.
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