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ABSTRACT
Semi-supervised learning is an essential approach to classifi-
cation when the available labeled data is insufficient and we
need to also make use of unlabeled data in the learning pro-
cess. Numerous research efforts have focused on designing
algorithms to improve the F1 score, but have any mecha-
nism to control precision or recall individually. However,
many applications have precision/recall preferences. For in-
stance, an email spam classifier requires a precision of 0.9
to mitigate the false dismissal of useful emails. In this pa-
per, we propose a method that allows to specify a preci-
sion/recall preference while maximising the F1 score. Our
key idea is that we divide the semi-supervised learning pro-
cess into multiple rounds of supervised learning, and the
classifier learned at each round is calibrated using a sub-
set of the labeled dataset before we use it on the unlabeled
dataset for enlarging the training dataset. Our idea is appli-
cable to a number of learning models such as Support Vector
Machines (SVMs), Bayesian networks and neural networks.
We focus our research and the implementation of our idea
on SVMs. We conduct extensive experiments to validate the
effectiveness of our method. The experimental results show
that our method can train classifiers with a precision/recall
preference, while the popular semi-supervised SVM training
algorithm (which we use as the baseline) cannot. When we
specify the precision preference and the recall preference to
be the same, which indicates to maximise the F1 score only
as the baseline does, our method achieves better or similar
F1 scores to the baseline. An additional advantage of our
method is that it converges much faster than the baseline.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Support Vector Machines, Precision, Recall
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Table 1: S3VM with recall preferences

Preferences
our method the baseline

r p F1 r p F1

rg = 0.5 0.57 0.60 0.59

0.59 0.63 0.61
rg = 0.6 0.68 0.57 0.62
rg = 0.7 0.73 0.55 0.63
rg = 0.8 0.77 0.54 0.63

Keywords
Semi-supervised SVM training, Precision, Recall, Preference

1. INTRODUCTION
Semi-supervised learning is an essential approach to clas-

sification when the available labeled data is insufficient and
we need to also make use of unlabeled data in the learning
process. Unlabeled data are shown to be useful for train-
ing better classifiers in many applications [1, 2]. Numer-
ous research efforts have focused on designing algorithms to
improve the F1 score in semi-supervised classification, but
have any mechanism to control precision or recall individu-
ally. However, many applications have high precision/recall
preferences. An email server needs a classifier to filter out
unwanted or harmful content known as spam [3]. The email
spam classifier requires a precision of 0.9 (i.e., a precision

preference of 0.9) to mitigate the dismissal of useful emails.
A classifier for cancer detection has a recall preference of
0.95 trying to avoid missing patients with cancer [4]. In this
paper, we propose a semi-supervised learning method that
allows to specify a precision/recall preference while max-
imising the F1 score. Our key idea is that we divide the
semi-supervised learning process into multiple rounds of su-
pervised learning, and the classifier learned at each round
is calibrated using a subset of the labeled dataset before
we use it on the unlabeled dataset for enlarging the train-
ing dataset of the next round. Our idea is applicable to a
number of learning models such as Support Vector Machines
(SVMs) [5], Bayesian networks [6] and neural networks [7].
We focus our research and the implementation of our idea
on SVMs. Table 1 gives an example of what our method can
achieve in comparison to the popular semi-supervised SVM
(S3VM) training algorithm [8] which we use as the baseline
in this paper; rg represents the recall preference, and all
the other settings such as kernel parameters of SVMs are
the same; the values highlighted by bold font are the recall
of our final classifiers. As can be seen from the table, our
method can train classifiers with different recall preferences



while the baseline gives precision and recall from the algo-
rithm that does not have mechanism to control the precision
and recall individually and only optimises the F1 score.

The key steps of our method are as follows. (i) We ran-
domly divide the labeled dataset into two subsets L and B.
Let Ti denote the training dataset in the ith round; L is used
as the initial training dataset, i.e., T1. (ii) In the ith round,
Ti is used for training an SVM classifier H and the dataset
B is used for measuring the precision and recall of H. (iii)
If the precision (or recall) preference is satisfied, we adjust
the decision value of H to improve the F1 score. Otherwise,
we increase (or decrease) the decision value of H to improve
the precision (or recall). (iv) Then, the classifier H with
the adjusted decision value is used to classify the unlabeled
dataset to form a dataset S of highly confident instances.
The result of the union of the dataset S and the dataset L
is used as the training dataset, Ti+1, in the next round. The
steps (ii) to (iv) are repeated until the termination condition
is reached.

We conduct extensive experiments to validate the effec-
tiveness of our method. When we specify a preference, the
other preference is set to be 0 by default. The experimen-
tal results show that our method can train classifiers with a
precision/recall preference, while the popular S3VM training
algorithm (i.e., Transductive SVM [8] and TSVM for short)
does not have any mechanism to allow for preferences. When
we specify the precision preference and the recall preference
to be the same for our method, which indicates to maximise
the F1 score only as TSVM does, our method achieves better
F1 scores than or similar F1 scores to TSVM.

An additional advantage of our method is that it converges
faster than TSVM. This is because TSVM trains the SVM
classifier in the way similar to a combinatorial optimisa-
tion approach which requires more training iterations, while
our method trains the SVM classifier by dividing the S3VM
training process into a small number of the supervised SVM
training processes. Our experimental results show that our
method converges at least several times faster than TSVM
and in some cases the improvement factor is more than one
order of magnitude.

The remainder of the paper is organised as follows. We
discuss related work in Section 2, and present preliminaries
in Section 3. Following that, we elaborate our method in
Section 4 and provide our experimental results in Section 5.
Finally, we conclude the paper in Section 6.

2. RELATED WORK
Zhu [9] gives a nice survey on semi-supervised learning.

Our study falls into the category called “self-learning” of the
semi-supervised learning research field. We focus on semi-
supervised SVM training. In what follows, we review the
existing studies on supervised SVM training, S3VM training
and partially supervised SVM training, respectively.

Supervised SVM training: Supervised SVM train-
ing only uses labeled instances, which is a foundation for
S3VM training as S3VM training problems can be solved us-
ing adopted supervised SVM training algorithms. Osuna et
al. [10] proposed a supervised SVM training algorithm based
on decomposition. This approach decomposes the training
instances into groups. In each training iteration, one group
of the instances is used to update the currently found hy-
perplane. To improve Osuna et al.’s algorithm, Platt [11]
proposed the Sequential Minimal Optimisation (SMO) algo-

rithm. SMO also uses decomposition, but in each training
iteration, only two training instances are used to update
the currently found hyperplane. Other SVM training algo-
rithms, such as Joachims’ algorithm [12] and “Pegasos” [13],
focus on improving the training efficiency for linear SVMs.
As SMO is space efficient and fast, and can train both lin-
ear and non-linear SVMs, we use it as the supervised SVM
training algorithm in our method.

Semi-supervised SVM training: Bennett et al. [14]
first introduced S3VM and the training algorithm. The
S3VM training algorithm attempts to train SVMs using both
labeled and unlabeled data. The goal of S3VM training is to
find a hyperplane that separates the two classes of instances
in the labeled dataset with the maximum margin and mean-
while, to minimise the number of unlabeled instances falling
between the margin. Finding the exact solution to the S3VM
training problem is NP-hard [9], and hence some existing
studies [15, 16] improve the efficiency of the S3VM training
algorithm by approximation. The key idea of the S3VM
training algorithms is to convert an S3VM training pro-
cess to multiple supervised SVM training processes. These
S3VM training algorithms focus on maximising the F1 score
but cannot train SVMs with a precision/recall preference.
Among these algorithms, Transductive SVM (TSVM) [8] is
one of the most popular algorithms for S3VM training and
can train both linear and non-linear SVMs. We use TSVM
as our baseline algorithm, and will discuss it in Section 3.

Partially supervised SVM training: Another cate-
gory of work similar to S3VM training is partially supervised
SVM training. Partially supervised SVM training does not
require labeled negative instances. “PEBL” [17] is a par-
tially supervised SVM training algorithm based on positive
and unlabeled instances. The algorithm first identifies some
negative instances from the unlabeled dataset based on some
features of the positive instances. Then those identified neg-
ative instances are put together with the positive instances
to train an SVM classifier using the supervised SVM train-
ing algorithm. The trained SVM classifier is used to iden-
tify more negative instances from the unlabeled dataset for
enlarging the training dataset of the next round of the su-
pervised SVM training. These steps are repeated until no
more negative instances are identified. To achieve faster
convergence, Fung et al. [18] proposed an algorithm similar
to PEBL. Their algorithm not only identifies more negative
instances but also identifies more positive instances for en-
larging the training dataset of the next round of the super-
vised SVM training. Liu et al [19] gave a more comprehen-
sive study on partially supervised learning. These studies
have different settings from ours that has positive, negative
and unlabeled instances. More importantly, we propose a
method for S3VM training with precision/recall preferences.

3. PRELIMINARIES
In this section, we first present the details of supervised

SVM training, S3VM training and SVM classification. Then,
we provide our problem definition.

3.1 Supervised SVM training
A labeled training instance xi is attached with an integer

yi ∈ {+1,−1} as its label. A positive (negative) instance
is a training instance with the label of +1 (−1). Given a
set X of n training instances, the goal of training SVMs is
to find a hyperplane that separates the positive from the



negative instances in X with the maximum margin, and
meanwhile, with the minimum misclassification error on the
training instances. The training is equivalent to solving the
following optimisation problem:

argmin
w,ξ,b

1

2
||w||2 + C

n
∑

i=1

ξi

subject to yi(w · xi − b) ≥ 1− ξi

ξi ≥ 0, ∀i ∈ {1, ..., n}

(1)

where w is the normal vector of the hyperplane, C is the
penalty parameter, ξ is the slack variable vector to toler-
ant some training instances falling in the wrong side of the
hyperplane, and b is the bias of the hyperplane.

To handle the non-linearly separable data, SVMs uses a
mapping function to map the training instances from the
original data space to a higher dimensional data space where
the data may become linearly separable. The optimisation
problem 1 can be rewritten to a dual form [20] where map-
ping functions can be replaced by kernel functions [21] which
make the mapping easier. The optimisation problem in the
dual form is shown as follows.

max
α

F (α) =
n
∑

i=1

αi −
1

2
α

T
Qα

subject to 0 ≤ αi ≤ C,∀i ∈ {1, ..., n}
n
∑

i=1

yiαi = 0

(2)

where F (α) is the objective function; α ∈ R
n is a weight

vector, where αi denotes the weight of the training instance
xi; Q is a symmetric matrix, where Q = [Qij ], Qij =
yiyjK(xi,xj) andK(xi,xj) is a kernel value computed from
a kernel function (e.g., the Gaussian kernel function,
K(xi,xj) = exp{−γ||xi − xj ||

2}).
The goal of the training translates to finding a weight

vector α that maximises the value of the objective func-
tion F (α). The training instances with their weights greater
than 0 are called support vectors. In our method, we use a
popular training algorithm, the Sequential Minimal Opti-
misation (SMO) algorithm as discussed in Section 2. SMO
iteratively improves the weight vector until the optimal con-
ditions (i.e., the Karush-Kuhn-Tucker conditions [22]) are
met. For more details of SMO, please consult the original
paper of SMO [11].

3.2 Semi-supervised SVM training
A labeled instance xi is attached with an integer yi ∈

{+1,−1} as its label, while the label y∗

j ∈ {+1,−1} of an
unlabeled instance x∗

j is unknown. Given n labeled instances

and k unlabeled instances, the S3VM training problem can
be formulated as follows.

argmin
w,ξ,ξ∗,y∗,b

1

2
||w||2 + C

n
∑

i=1

ξi + C
∗

k
∑

j=1

ξ
∗

j

subject to yi(w · xi − b) ≥ 1− ξi

y
∗

j (w · x∗

j − b) ≥ 1− ξ
∗

j

ξi ≥ 0, ∀i ∈ {1, ..., n}

ξ
∗

j ≥ 0, ∀j ∈ {1, ..., k}

(3)

where C and C∗ are the penalty parameters of the labeled
instances and the unlabeled instances, respectively; ξ and
ξ∗ are the slack variable vectors to tolerant misclassification
for the labeled and unlabeled instances, respectively.

There are many S3VM training algorithms. Here we focus
on one of the most popular S3VM training algorithms, i.e.,
TSVM [8]. Initially, the TSVM algorithm trains an SVM
using only the labeled instances. Then the trained SVM
classifier is used to classify the unlabeled instances, and to
assign each unlabeled instance with a label that we call “soft
label” in this paper. Following that, TSVM switches two of
the soft-labeled instances and retrains the SVM classifier
with all the training instances such that the value of the
objective function is reduced. The label switching process
and the training process are repeated until the value of the
object function is minimised.

Instead of solving the S3VM training problem in the way
similar to a combinatorial optimisation approach, we break
the S3VM training process into a small number of supervised
SVM training processes. The training dataset (except which
of the initial training) in TSVM is always all the labeled
instances and all the unlabeled instances. In comparison,
the training dataset in our method is a subset of the labeled
instances and a subset of the unlabeled instances, which
makes each training iteration faster. We also design our
algorithm to train an SVM classifier with a precision/recall
preference. We will detail our method in Section 4.

3.3 SVM classification
After the supervised SVM training or the S3VM training

process, the trained SVM classifier can be used to classify
an instance xl using the following equations.

v =
m
∑

i=1

yiαiK(xsvi
,xl) + b

yl =

{

+1 if v > δ,

−1 otherwise.

(4)

where xsvi
is the ith support vector of the SVM classifier,

m is the number of the support vectors, b is the bias of
the hyperplane, yl is the predicted label of xl, and δ is the
decision value which equals to 0 by default.

3.4 Problem definition
Given a labeled dataset M, an unlabeled dataset U and a

testing dataset G, S3VM training with a precision (or recall)
preference pg (or rg) is to train a classifier H using M and U
such that H classifies G with precision p (or recall r) meeting
one of the following conditions:

• if p < pg (or r < rg), p (or r) is the highest value the
S3VM training process can obtain.

• if p ≥ pg (or r ≥ rg), F1 is the highest value the S3VM
training process can obtain.

4. S3VM TRAINING WITH PRECISION OR
RECALL PREFERENCES

In the section, we elaborate our S3VM training method.
As our method can train SVM classifiers with precision/recall
preferences, we call our method Preference enabled semi-
supervised SVM training (PSVM for short). Our key idea
is that we divide the semi-supervised learning process into
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Figure 1: The PSVM method

multiple rounds of supervised learning, and the classifier
trained at each round is calibrated using a subset of the
labeled dataset before we use it on the unlabeled dataset for
enlarging the training dataset of the next round.

The key steps of our method are as follows. (i) We ran-
domly divide the labeled dataset M (“M” for manually la-
beled dataset) into two datasets, denoted by L and B (“L”
for labeled training dataset and“B” for caliBration dataset),
respectively. Let Ti (“T” for training) denote the training
dataset in the ith round; L is used as the initial training
dataset, i.e., T1. (ii) In the ith round, the dataset Ti is used
for training an SVM classifier H using the supervised SVM
training algorithm. The calibration dataset B is used for
measuring the precision and recall of the classifier H. (iii)
If the precision (or recall) preference is satisfied, we adjust
the decision value (i.e., δ in Equation 4) of H to improve the
F1 score. Otherwise, we increase (or decrease) the decision
value to improve the precision (or recall). (iv) The classifier
H with the adjusted decision value is used for classifying the
instances in the unlabeled dataset U (“U” for unlabeled).
We refer to the unlabeled instances classified by H as the
“soft-labeled” instances. Those soft-labeled instances form
a dataset denoted by S (“S” for soft-labeled). The result of
the union of the dataset S and the labeled training dataset
L forms the training dataset, Ti+1, for the next round, and
the steps (ii) to (iv) are repeated until the termination con-
dition is achieved. We discuss the termination condition in
detail in Section 4.5.1.

A round in PSVM can be summarised in four phases:
training, measuring, adjusting and classification. Figure 1
gives an overview of PSVM. Adopting our idea to other mod-
els (e.g., Bayesian networks and neural networks) is straight-
forward except that the adjusting phase needs some special
cares. In what follows, we first describe the necessity of a
separated calibration dataset. Then, we give the details of
the training, measuring, adjusting and classification phases.
Finally, we give our overall S3VM training algorithm.

4.1 Necessity of a separated calibration dataset
As we can see from Figure 1, there are three purposes of

using the labeled dataset M at each round:

• forming the labeled training dataset (i.e., dataset L in
Figure 1) for supervised SVM training;

• measuring the precision and recall of the trained SVM
classifier (i.e., dataset B in Figure 1);

• adjusting the decision value for classifying the unla-
beled instances (i.e., dataset B in Figure 1).

In our method, we randomly divide the labeled dataset M
into two subsets (i.e., the labeled training dataset L and cali-
bration dataset B). We call this approach“PART”, because
L and B are part of M. Alternatively, we may use the whole
labeled dataset M for training, measuring and adjusting
without division (i.e., L = B = M). We call this approach
“FULL”, since both L and B contain the whole dataset M.
The advantage of the PART approach is that the calibration
dataset B is independent of the training dataset for training
the SVM classifier. Hence, the measuring is a better estima-
tion of the effectiveness of the SVM classifier on the unseen
data, and the adjusting is more effective than that using the
FULL approach. In comparison, using the training dataset
to measure the classifier itself (i.e., L = B = M) can lead
to the over-fitting problem. We conduct experiments to val-
idate the effectiveness of PART in comparison to FULL in
Section 5.

4.2 The training phase of PSVM
The training phase in Figure 1 is a standard supervised

SVM training process. The training dataset T for the su-
pervised SVM training is the union of the labeled training
dataset L and the soft-labeled dataset S (cf. Figure 1). Note
that the training dataset for training the first SVM classifier
is L, since the dataset S is empty initially.

We use SMO as the supervised SVM training algorithm.
We implement the algorithm using the GPU (“GPU” for the
Graphics Processing Unit [23]) based on Catanzaro et al.’s
GPU SVM algorithm [24]. The implementation details of
the GPU-based algorithm are out of the scope of this paper
and we provided the details in another work [25].

4.3 The measuring phase of PSVM
As shown in Figure 1, after the training phase, we mea-

sure the precision, recall and F1 score of the trained SVM
classifier using the calibration dataset B. The measuring
phase is a standard classification process on the dataset B.
If the computed value v of an instance using Equation 4 is
larger than 0 (i.e., δ = 0), then the instance is assigned a
label of +1. Otherwise the instance is assigned a label of −1.
After the classification on all the instances on the dataset
B, we compare those assigned labels with the true labels of
the instances. Then, we can compute the precision p, recall
r and F1 score using the following equations.

precision p =
tp

tp+ fp
(5)

recall r =
tp

tp + fn
(6)

F1 score F1 =
2pr

p+ r
(7)

where tp is the number of true positive instances, fp is the
number of false positive instances and fn is the number of
false negative instances.

The measuring phase has two purposes. The first purpose
is to check if the SVM classifier satisfies the precision (or
recall) preference. Specifically, we compare the precision p

(or recall r) with the precision (or recall) preference pg (or
rg), and check if the precision p (or recall r) satisfies the
precision (or recall) preference, i.e., p ≥ pg (or r ≥ rg).

The second purpose of the measuring phase is to identify
the best SVM classifier Hbest for the final result of the S

3VM
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Figure 2: Adjusting δ to satisfy the preference

training process. There are two cases when we identify the
best SVM classifier Hbest.

• Case 1: the precision (or recall) preference is not sat-
isfied. We choose the SVM classifier with the largest
precision (or recall) among all the trained SVM classi-
fiers during the S3VM training process.

• Case 2: the precision (or recall) preference is satis-
fied. We choose the SVM classifier with the largest F1

score among all the trained classifiers that satisfy the
precision (or recall) preference.

4.4 The adjusting phase of PSVM
After the measuring phase, we can decide to improve the

precision (or recall) or to improve the F1 score (i.e., the
first purpose of the measuring phase). When we adjust the
decision value δ in Equation 4, we have two cases as follows:

• The trained SVM classifier at the current round does
not satisfy the precision (or recall) preference. We in-
crease (or decrease) the decision value δ such that the
classification result of the classifier on the calibration
dataset B satisfies the precision (or recall) preference.

• The trained SVM classifier at the current round satis-
fies the precision (or recall) preference. We adjust the
decision value δ to improve the F1 score.

Next, we first describe the technique to adjust the decision
value for improving precision (or recall) to satisfy the preci-
sion (or recall) preference. Then, we explain the approach
to adjusting the decision value for improving the F1 score.
Finally, we discuss adjusting the decision value for identi-
fying the negative instances from the unlabeled dataset U
more confidently.

4.4.1 Satisfying the precision/recall preference
If the trained SVM classifier at the current round does not

satisfy the precision (or recall) preference, we can increase
(or decrease) the decision value δ of the SVM classifier to
improve its precision (or recall). Note that when we have
a precision (or recall) preference, the recall (or precision)
preference rg (or pg) equals to 0.

Without loss of generality, we analyse the approach for
increasing the precision p. Let us first rewrite Equation 5

into the following equation: p =
1

1 + fp

tp

. To increase preci-

sion p, we need to reduce
fp

tp
(i.e., the ratio of the number of
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Figure 3: Adjusting δ to improve F1

false positive and that of true positive). We can increase the

decision value δ of Equation 4 to reduce
fp

tp
. This is because

a positive instance is likely to have a larger v value while a
negative instance is likely to have a smaller v value (i.e., the
property of SVMs). As a result, by increasing δ, the num-
ber of false positive instances decreases more significantly

than that of true positive instances. Hence,
fp

tp
decreases

and precision p increases. Similarly, we can decrease δ to
increase recall r.

In what follows, we describe the approach for computing
the new decision value δ+. Figure 2 shows an example of
the classification results on the calibration dataset B, where
a “x” represents a positive instance and a “-” represents a
negative instance in the calibration dataset B. The dashed
line indicates the decision value δ which equals to 0. The
position of an instance indicates the v value of the instance.
As can be seen from the figure, 14 positive instances have
v values greater than δ (i.e., true positive), and 7 negative
instances have v values greater than δ (i.e., false positive).

So, the precision is p =
14

14 + 7
= 0.67. Similarly, the recall

is r =
14

14 + 6
= 0.7 on the calibration dataset B. Suppose

we would like to train an SVM classifier with a precision
preference of 0.7 (i.e., pg = 0.7). In this example, we increase
the decision value from 0 to 0.2 (i.e., δ+ = 0.2) to get the

precision of
13

13 + 4
= 0.76 at the cost of decreasing recall to

13

13 + 7
= 0.65.

Instead of having a precision preference, suppose we would
like to train an SVM classifier with a recall preference of 0.9
(i.e., rg = 0.9). We decrease the decision value from 0 to

-0.4 (i.e., δ+ = −0.4) to get the recall of
15

15 + 1
= 0.94 at

the cost of decreasing precision to
19

19 + 11
= 0.63.

After we obtain the new decision value δ+, we expect that
the classification result of the SVM classifier using the de-
cision value δ+ on the calibration dataset B satisfies the
precision (or recall) preference.

4.4.2 Improving theF1 score
There are two scenarios that we need to improve the F1

score. First, the trained classifier satisfies the precision (or
recall) preference, but we want to improve its F1 score. Sec-
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Figure 4: Adjusting decision boundary

ond, we would like to train a classifier with as high F1 score
as possible without having a specific precision (or recall)
preference. These two scenarios are essentially the same,
i.e., we have the precision preference pg and the recall pref-
erence rg to be the same (e.g., both to be 1) in the adjusting
phase. In Figure 3, the decision value for satisfying the pre-
cision preference pg is the rightmost dashed line where δ+
equals to 1.0, while the decision value for satisfying the recall
preference rg is the leftmost dashed line where δ+ equals to
-0.6. As we cannot find a decision value which satisfies both
of the preferences, we adjust the decision value δ to a value
that improves the F1 score. The approach that we use to
improve the F1 score is to reduce the gap between precision
p and recall r, i.e., the value of |p− r|.

Theorem 1. Given p, r and p+ r = z where z is a con-

stant, the F1 score is maximised when p equals to r.

The proof is straightforward and omitted. Although z may
not be exactly a constant in S3VM training, the theorem
gives a direction of improving the F1 score. Intuitively, while
improving the F1 score, our method treats the precision and
recall equally and minimises both the number of false posi-
tive instances and the number of false negative instances. In
the example in Figure 3, we improve the precision since the
precision is smaller than the recall (0.67 v.s. 0.7). To han-
dle this case, our method temporarily specify the precision
preference to be 0.7 (i.e., the recall of the trained classifier)
and compute the decision value δ+ using the same idea we
discussed in Section 4.4.1.

4.4.3 Identifying negative instances more confidently
So far, we only consider the decision value δ+ for deciding

the positive instances. In other words, v values of the pos-
itive instances should be larger than δ+. All the instances
with v values no larger than δ+ are identified as negative
instances. It is also important to identify the negative in-
stances more confidently. We use a decision value δ− to
identify negative instances. In our method, δ− equals to the
average v value of all the negative instances in the calibra-
tion dataset B. Please note that the decision value δ− for
negative instances has no effect on adjusting the precision
and recall of the SVM classifiers.

Figure 4 shows an SVM classifier before and after the
decision value adjusting. The SVM with the decision values
δ+ and δ− is applied to classify the instances in the unlabeled
dataset U . In what follows, we discuss the classification
phase of PSVM on the unlabeled dataset.

4.5 The classification phase of PSVM
We use the SVM classifier with the adjusted decision val-

ues to classify an unlabeled instance xj to be positive, neg-
ative or uncertain. The label yj of the instance xj can be
predicted by the following equation.

yj =







+1 if v > δ+,

−1 if v < δ−,

0 otherwise
(8)

We refer to these labeled instances by the SVM classifiers
as soft-labeled instances and they form a dataset denoted
by S . The dataset S is used as part of the training dataset
in the next round of the S3VM training process. Next, we
describe two approaches to forming the S dataset.

4.5.1 Forming the soft-labeled datasetS

As we can see from Figure 1, each round of the S3VM
training process outputs soft-labeled instances to S . We
provide the following two approaches for forming the soft-
labeled dataset S . (i) The soft-labeled dataset S is emp-
tied after the training phase at each round and accepts the
soft-labeled instances from the classification phase. (ii) The
soft-labeled dataset S unions itself with the soft-labeled in-
stances from the classification phase at each round, and the
instances in S are removed from the unlabeled dataset U
forming a new set of unlabeled data. We call the first ap-
proach “Reconstruction”denoted by REC, since each round
S is reconstructed. We refer to the second approach “Incre-
ment” denoted by INC, because each round S is increased
based on the soft-labeled dataset S of the previous round.

Termination: A termination condition for both INC and
REC is that the trained SVM classifier (denoted by Hc) at
the current round, is identical to any one of the SVM classi-
fiers trained in the previous rounds, denoted by Hp. Under
this condition, for the INC approach, the classification phase
cannot identify any more instances as positive or negative
from the unlabeled dataset, since all the possible positive or
negative instances have been identified by Hp and already
stored in S . For the REC approach, the classification phase
using Hc outputs the same soft-labeled dataset as that out-
put by Hp.

Compared with the REC approach, the INC approach has
the following advantages. Firstly, the INC approach has
an additional termination condition that the classification
phase cannot identify any new soft-labeled instances. This
leads to much faster convergence of the S3VM training pro-
cess. Secondly, those soft-labeled instances are of highly
confident and tend to be labeled with the same labels as the
previous rounds. Hence, we do not need to classify them
again and can reduce the computation cost. One drawback
of the INC approach is the unrecoverable mistake. For in-
stance, an unlabeled instance is wrongly labeled as a positive
instance by an SVM classifier. In the INC approach, that
instance is always used as a positive instance in the rest of
the S3VM training process, and there is no chance to cor-
rect it. In contrast, that wrongly labeled instance may be
corrected by other SVMs classifier if we use the REC ap-
proach. Due to the SVM’s good property of error-tolerance,
some wrongly labeled instances actually are allowed. Fur-
thermore, the instances in the soft-labeled dataset S are of
highly confident and tend to be labeled with the same labels
in different rounds.



In summary, we recommend the INC approach which makes
the S3VM training converge faster. We conduct experiments
to validate our claim in our experimental study.

Algorithm 1: S3VM training in PSVM

Input: L and B: sets of labeled instances;
U : a set of unlabeled instances;
C: a penalty parameter; γ: a kernel parameter;
pg and rg: precision and recall preferences.

Output: an SVM classifier Hbest

S′
+

:= ∅ , S′
−

:= ∅ /* soft-labeled instance sets */1

repeat2

S+ := S′+ , S− := S′
−
, S := S+ ∪ S−3

H← train(L, S, C, γ) /* supervised training */4

Hbest ← measureClassifier(H, B, Hbest)5

adjustDecisionValue(H, B, δ+, δ−, pg, rg)6

foreach x ∈ U do /* for each unlabeled x */7

if x /∈ S then /* not been labeled */8

v ← classify(H, x)9

if v > δ+ then10

S′+ := S+ ∪ {x}11

else if v < δ− then12

S′
−

:= S− ∪ {x}13

until S′+ ⊆ S+ ∧ S
′

−
⊆ S− /* no x is added */14

4.6 The overall algorithm of PSVM
In what follows, we describe the overall S3VM training al-

gorithm of PSVM. Without loss of generality, we assume the
Gaussian kernel function is used in the training algorithm
and using the INC approach for forming the soft-labeled
dataset. The pseudo-code of our S3VM training algorithm
is summarised in Algorithm 1. Initially, the soft-labeled
dataset S (line 3) is empty. In the supervised SVM training,
the training dataset includes the soft-labeled dataset S and
the labeled training dataset L (line 4). After an SVM H is
trained, we measure the precision, recall and F1 score of the
trained SVM H, compare it with the identified best SVM
Hbest, and keep the better SVM to Hbest (line 5). Based on
the precision (or recall) preference pg (or rg), we compute
two decision values δ+ and δ− (i.e., adjusting the decision
value) of the trained SVM using the calibration dataset B
(line 6). For each unlabeled instance that is not in the soft-
labeled dataset S , we compute the value v using Equation 4,
and use Equation 8 to classify the instance (lines 7 to 13).
The above steps are repeated until no instance in the unla-
beled dataset is identified as a positive or negative instance
by the SVM classifier with the adjusted decision value.

The number of the supervised SVM training processes is
determined by the classification phase (line 9). In the worse
case, there is only one instance added to the soft-labeled
dataset S (lines 7 to 13) at each round of the S3VM training.
Hence, the number of rounds at the worse case equals to the
number of unlabeled instances. In the average case, many of
the unlabeled instances are added to the soft-labeled dataset
at each round, and the number of rounds is much smaller
than the number of unlabeled instances.

As discussed in Section 4.5.1, the REC approach can be
used to form the soft-labeled dataset S . The implementation
for this method is straightforward. We just need to add
a line right after line 4 to empty S+, S−, S

′

+, S
′

−
and S .

The termination condition is changed to that the currently

(a) Optimal hyperplane (b) Initial hyperplane

(c) Intermediate hyperplane (d) Final hyperplane

Figure 5: Hyperplane changes in PSVM

trained SVM H is identical to any one of the previous SVM
classifiers.

4.6.1 A running example of PSVM
To show the intuition of our method, we give an example.

The optimal hyperplane for the given dataset is shown in
Figure 5a. Figure 5b shows the hyperplane found only us-
ing the labeled training dataset L. After adding some soft-
labeled instances (denoted by circles containing “x” or “-”),
the hyperplane is improved to the one shown in Figure 5c.
As the S3VM training proceeds, the hyperplane shown in
Figure 5d approaches close to the optimal hyperplane shown
in Figure 5a.

5. EXPERIMENTAL STUDY
In this section, we empirically evaluate our PSVMmethod.

A supervised SVM traing method and an S3VM training
method (i.e., Transductive SVM [8]), denoted by SSVM and
TSVM respectively, are served as our baselines. We im-
plemented PSVM and SSVM using GPUs in CUDA-C [23],
based on Catanzaro et al.’s GPU SVM implementation [24].
TSVM is written in C and downloaded from the SVMlight

site1. Four datasets from the libSVM site2 are used in our
experiments. The cardinality of the datasets varies from
17,766 to 60,000 and the dimensionality of them varies from
22 to 780. All the SVM implementations use the Guassian
kernel function and the same parameters which are selected
using the grid search [26]. The information of the datasets
and the parameters are listed in Table 2. We randomly sam-
ple 10% of each dataset to form the testing dataset to vali-
date the effectiveness of the finally obtained classifier. The
size of the labeled dataset M is 10% of the whole dataset
by default, and the remaining instances form the unlabeled
dataset U . In PSVM, a half of the labeled dataset M is used
as the labeled training dataset L, and the other half is used
as the calibration dataset B. SSVM uses only the labeled

1http://svmlight.joachims.org/
2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Table 2: The datasets and parameters
Dataset Card. Dim. C γ

Adult 32,542 123 100 0.5
IJCNN1 49,990 22 10 0.125
MNIST 60,000 780 10 0.125
Protein 17,766 357 10 0.25

Table 3: Precision preferences (Adult)
precision preference pg 0.55 0.6 0.65 0.7

precision 0.549 0.633 0.666 0.672
recall 0.736 0.503 0.391 0.370
F1 0.628 0.558 0.491 0.475

dataset M as its training dataset, and TSVM uses M as
the labeled training dataset and U as the unlabeled training
dataset. All the experiments are conducted on a desktop
computer running Linux with a Xeon E5-2643 CPU, 32GB
main memory and a Tesla C2075 GPU.

In what follows, we first show that PSVM can train classi-
fiers with precision/recall preferences. Then, we investigate
the effectiveness of PSVM on maximising the F1 score and
the efficiency of PSVM. Finally, we study the effect of each
proposed technique.

5.1 Enabling precision/recall preferences
We use the Adult dataset as the representative to demon-

strate the training with precision/recall preferences of PSVM.
The experiments on the other datasets showed similar results
which are omitted.

To validate the effectiveness of training classifiers with
precision preferences, we specify the precision preference pg
to be 0.55, 0.6, 0.65 and 0.7, respectively, and specify rg to
be 0. As can be seen from Table 3, the precision preference
can be satisfied when the precision preference is between
0.55 and 0.65. While the precision preference is too high
(i.e., at 0.7), PSVM cannot satisfy the preference but tries
its best to satisfy the preference. In fact, when the precision
preference is specified to be 1, the preference is unlikely to be
satisfied for the chosen hyper-parameters C and γ. However,
specifying precision preference to be 1 indicates to train a
classifier with the maximum precision. This is useful when
we would like to train a classifier with as high precision as
possible.

Next, we show the results of training classifiers with recall
preferences. Table 4 shows the results on specifying the
recall preference rg to be 0.5, 0.6, 0.7 and 0.8, respectively,
and on specifying pg to be 0. As can be seen from the table,
when the recall preference is between 0.5 and 0.7, PSVM can
train classifiers satisfying the preferences. When the recall
preference is specified to be 0.8, PSVM cannot satisfy the
preference but it tries its best to train a classifier with recall
of 0.77.

Note that SSVM and TSVM do not have any mechanism
to control the precision/recall individually, and give only
the precision and recall of 0.66 and 0.41, and 0.63 and 0.59,
respectively.

5.2 Maximising theF1 score
To validate the effectiveness of PSVM on maximising F1

only, we specify both the precision and recall preferences

Table 4: Recall preferences (Adult)
recall preference rg 0.5 0.6 0.7 0.8

recall 0.572 0.675 0.734 0.770
precision 0.603 0.573 0.552 0.535

F1 0.587 0.619 0.630 0.630

Table 5: F1 score comparison
Dataset PSVM TSVM SSVM
Adult 0.63±0.015 0.61 0.51

IJCNN1 0.75±0.01 0.76 0.65
MNIST 0.94±0.01 0.93 0.84
Protein 0.51±0.02 0.51 0.24

to be 1 (i.e., both of the preferences are the same). We
compare the F1 scores of the three methods using the four
datasets. The results in Table 5 are the average values of
the results obtained by repeating the experiments 20 times.
The variance (e.g., ±0.01) is because of the random sam-
pling for constructing the datasets in the experiments. As
can be seen from Table 5, PSVM significantly outperforms
SSVM by over 10% of improvement on the F1 score. This
demonstrates the usefulness of using the unlabeled data for
training SVM classifiers. Compared with TSVM, PSVM
achieves better or similar F1 scores. This indicates that
PSVM is a competitive method for S3VM training.

5.3 Efficiency of PSVM
We also conducted a set of experiments to show the effi-

ciency of the two S3VM training methods, i.e., PSVM and
TSVM. Figure 6 gives the result on the efficiency compari-
son. As can be seen from the figure, PSVM constantly out-
performs TSVM by three orders of magnitude. In the exper-
iment, we observed that TSVM took more than 20 hours for
the MNIST dataset while PSVM only took around 8 min-
utes to complete the whole semi-supervised training process
and both methods trained a similar classifier (F1 score: 0.93
v.s. 0.94). This demonstrates that PSVM is highly efficient
and is a promising semi-supervised training method.

As the speedup factor is achieved by both the computa-
tion power of the GPU and the fast convergence of PSVM,
we show the experimental results to inference the speedup
contributed from the fast convergence. Table 6 shows the
total number of the training iterations in the whole semi-
supervised training. In all the datasets tested, the total
number of the training iterations of PSVM is several times
smaller than that of TSVM. On the IJCNN1 dataset, the
total number of training iterations of PSVM is 10 times
less than that of TSVM. Note that a training iteration of
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Table 6: The total number of training iterations
Dataset PSVM TSVM
Adult 37,976 151,018

IJCNN1 20,913 278,098
MNIST 224,368 652,377
Protein 83,262 190,096
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Figure 7: Improvement over the F1 score

PSVM is faster than a training iteration in TSVM because of
the smaller training dataset, as we discussed in Section 3.2.
Catanzaro et al. [24] reported that the GPU implementation
of SVMs is one to two orders of magnitude faster than the
CPU implementation of SVMs. Therefore, we can infer that
the reduction of the total number of the training iterations
(i.e., faster convergence) contributes to around one order of
magnitude speedup.

5.4 Effects of the proposed techniques
In what follows, we first investigate the effects of the size

of the labeled dataset M. Then we study the effect of using
a calibration dataset B which is independent of the train-
ing dataset. Following that, we compare the results of two
techniques for forming the soft-labeled dataset S . Finally,
we show the experimental results on the effect of adjusting
the decision values.

5.4.1 Effect of the size of the labeled datasetM

This set of experiments is to demonstrate the effect of the
size of the labeled datasetM. We vary the size of the labeled
dataset M by varying the percentage of the whole dataset
that is used to form M. The percentage varies from 5% to
15%. The experimental results on TSVM are similar to the
results on PSVM and hence are omitted. We use SSVM as
the base and compute the improvement indicator using the
following equation:

imp = F
PSVM
1 − F

SSVM
1

In the experiments on the four datasets, we noticed that
the F1 score of SSVM increases by around 10% while the
F1 score of PSVM increases by less than 5%. This indicates
that the size of the labeled dataset M has a more significant
impact on the F1 score of SSVM while PSVM is relatively
insensitive to the size of the labeled dataset, thanks to the
usage of the unlabeled dataset. Hence, the improvement
indicator imp is expected to decrease as the size of M in-
creases. The phenomenon is shown in Figure 7.

5.4.2 Effect of using the calibration datasetB

As discussed in Section 4.1, we can use the whole labeled
dataset M for the training, measuring and adjusting (i.e.,

Table 7: Effect of F1 using PART and FULL
dataset PSVM-part PSVM-full
Adult 0.63 0.61

IJCNN1 0.75 0.79
MNIST 0.94 0.84
Protein 0.51 0.24

Table 8: Effect of F1 using INC and REC
dataset PSVM-inc PSVM-rec
Adult 0.63 0.63

IJCNN1 0.75 0.74
MNIST 0.94 0.94
Protein 0.51 0.50

the FULL approach), instead of taking a half of the labeled
dataset to form the calibration dataset B (i.e., the PART
approach). We denote our method that uses the PART ap-
proach by PSVM-part and the method that uses the FULL
approach by PSVM-full. Table 7 shows the results on F1.
As we can see from the table, PSVM-part significantly out-
performs PSVM-full on the MNIST and Protein datasets,
and PSVM-part has similar F1 scores to PSVM-full on the
Adult and IJCNN1 datasets. PSVM-part demonstrates the
robustness among the datasets tested, while PSVM-full suf-
fers from the over-fitting problem on the MNIST and Protein
datasets. Although PSVM-full has a larger labeled training
dataset, our experiment on the effect of the dataset size of
M show that PSVM is insensitive to the size of the labeled
dataset. Therefore, we recommend the PSVM-part method
which is more robust.

5.4.3 Effect of forming the soft-labeled datasetS

As discussed in Section 4.5.1, we can incrementally enlarge
the soft-labeled dataset S (i.e., the INC approach). We can
also empty S after the training phase and reconstruct the
dataset at each round (i.e., the REC approach). We denote
our method using the INC approach by PSVM-inc, and de-
note that using the REC approach by PSVM-rec. As can be
seen from Table 8, the F1 scores of PSVM-inc and PSVM-
rec are almost the same. In the experiment, we noticed
that the PSVM-inc is several times faster than PSVM-rec.
This is because the convergence is slower for PSVM-rec than
PSVM-inc which has one more termination condition as dis-
cussed in Section 4.5.1. We recommend using the PSVM-inc
method which is more efficient but retains similar effective-
ness of the classifiers.

5.4.4 Effect of adjusting decision values
Here, we show experimental results to validate the effect

of adjusting the decision values. We compare our method
with decision value adjusting with two methods that do not
adjust the decision value δ. Specifically,

• PSVM is the method that uses a separated calibration
dataset (i.e., the PART approach) and adjusts the de-
cision value.

• PSVM-part-NA is the method that uses the PART ap-
proach but does not adjust the decision value.

• PSVM-full-NA is the method that uses the FULL ap-
proach and does not adjust the decision value.



Table 9: Effect of adjusting decision values
dataset PSVM PSVM-part-NA PSVM-full-NA
Adult 0.63 0.51 0.51

IJCNN1 0.75 0.68 0.66
MNIST 0.94 0.78 0.83
Protein 0.51 0.25 0.24

All these methods use the INC approach to forming the soft-
labeled dataset S as INC is efficient. PSVM-part-NA and
PSVM-full-NA do not adjust the decision value and hence
the decision value δ equals to 0.

As can be seen from Table 9, PSVM significantly outper-
forms the methods without adjusting the decision value on
all the datasets tested. This demonstrates the importance
of adjusting the decision value in the S3VM training, since
by adjusting the decision value we only add highly confident
instances to the soft-labeled dataset S .

6. CONCLUSION
Semi-supervised learning is an essential approach to clas-

sification when the available labeled data is insufficient and
we need to also make use of unlabeled data in the learn-
ing process. Numerous research efforts have focused on de-
signing algorithms to improve the F1 score, but have any
mechanism to control precision or recall individually. In
this paper, we proposed a method called PSVM that allows
to specify a precision/recall preference while maximising the
F1 score. Our key idea is that we divide the semi-supervised
learning process into multiple rounds of supervised learn-
ing, and the classifier learned at each round is calibrated
using a subset of the labeled dataset before we use it on the
unlabeled dataset for enlarging the training dataset. Our
idea is applicable to a number of learning models such as
SVMs, Bayesian networks and neural networks. We focused
our research and the implementation of our idea on SVMs.
We conducted extensive experiments to validate the perfor-
mance of our method. The experimental results showed that
our method can train classifiers with a precision/recall pref-
erence, while the S3VM training baseline algorithm cannot.
When we specified both the precision preference and the re-
call preference to be the same, which indicates to maximise
the F1 score only as the baseline does, our method achieved
better or similar F1 scores to the baseline. An additional
advantage of our method is one order of magnitude faster
than TSVM.
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