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Abstract itis common for players to leave and rejoin the game dur-
ing a quest. When a player rejoins the game, the subquest
Given a set of clients and a set of existing facilities, theshe was on may have been completed by her teammates
min-dist location selection query returns a location from aand the team has moved on to another region to complete
given set of potential locations for establishing a new fa-other subquests. It would be a waste of time for this player
cility so that the average distance between a client and hdo rejoin the game from where she left. A very helpful util-
nearest facility is minimized. This type of queries has aity for the game is selecting a starting point from a set of
wide range of applications in marketing, decision supportpreset rejoin locations to minimize the average distance
systems, urban development simulations and massivelpetween a mob and its nearest player, so that players can
multiplayer online games. The computational cost of afocus on fighting mobs and complete quests rather than
naive algorithm, which sequentially scans all the poténtiawalking.
locations, is too high to process this type of queries in real
time. Motivated by this, we propose a branch and bound

algorithm that exploits geometric properties of the data & _

objects and early prunes unpromising potential locations ¢, G * client

from consideration to achieve a higher query processing o existing facility
efficiency. We conduct a detailed cost analysis and exten- oof

. 1 . .
sive experiments to validate the efficiency of the branch © ' = potential location
and bound algorithm. The results show that the proposed of &
algorithm outperforms the naive algorithm constantly. c Ro ..

*Y

Keywords: Spatial databases, optimal location selection,

Min-dist metric Figure 1: An example for the query

1 Introduction The example in Figure 1 illustrates the query:
c1,¢o,...,cs} IS @ set of clients (residents or mobs),
Many businesses or organizations manage large numbefdi, f2} is a set of existing facilities (public facilities or
of facilities. For example, Walmart has warehouses, andeammates) andp;,p>} is a set of potential locations
Australia Post has branch offices. It is a common need focandidate locations for new facility establishment or re-
a business to add facilities. For example, Walmart mighjoin). Now we need to select one from the potential lo-
want to add a warehouse to reduce the distances betweentions to establish a new facility. Before adding a new
its stores and warehouses; Australia Post might want téacility, f; is the nearest facility of;, c3, c3 andcg; fa is
add a new post office in an emerging suburb to reduce ththe nearest facility oy, c5, c; andcg. If a new facility is
traveling distances for their postmen. Usually, a set of po-established at;, it will become the nearest facility faf,
tential locations is available, typically from a real estat c; andcs. If a new facility is established ak, it will be-
agent (e.g., real estate websites provide hundreds of tho@ome the nearest facility @f, andcs. As we can observe,
sands of places for renting or buying). po results in a smaller average distance between a client
This paper investigates thmein-dist location selection and the nearest facility, so it is selected as the answer.
query, which selects a location (for Walmart or Australia ~ Although an existing commercial software (ArcGIS
Post) that minimizes the average distance between a cliert011) can solve several kinds of simpler location opti-
(a chain store or an addressee) and her nearest facilitymization problems, none can solve the min-dist location
(warehouse or post office) to reduce logistics cost or to im-selection problem, as we will detail in Section 2.
prove the quality of servicdMe assume that the business
Q?E;quvgllgg%gc%?ggf its client distribution from surveys, 1 contributions and Organization of the Paper
_ The min-dist location selection query also has other apin this paper, we examine solutions to the min-dist loca-
plications as follows. In urban development simulation,tion selection query and make the following contributions.
very often urban planners need to simulate the above lo-
cation selection procedure, so that the influence of estab- e We formulate the min-dist location selection query.
lishing a new public facility or business center on the res- .
idents can be observed. In the multi-billion dollar com- ® We analyze the properties of the query and propose
puter game industry, massively multiplayer online games ~ Pruning techniques to reduce the search space for
(MMOGs) like World of Warcrafthave group quests for processing the query.

players to complete in teams, which mostly involve killing | Based on the proposed pruning techniques, we pro-

mobs (monsters or other non-player characters). As the o _
guests often take players days or even weeks to complete, gggg t?\eb{q%rzacrg and bound method to efficiently pro



e We perform an analytical cost study and an extensivgroblems. Cabello et al. (2005) propose a facility location
experimental study. The results confirm the effec-problem based on the MAXCOV optimization criterion,
tiveness of the proposed pruning techniques and thehich is to find regions in the data space to maximize the

efficiency of the proposed algorithm. numbers of RNNs for the points in these regions. Figure 2
The rest of the paper is organized as follows. Section 2 D
reviews related work. Section 3 formulates the query and R N N NN
presents a naive algorithm. Section 4 presents the branch /-7 C;\\?lf\ A2 \\
and bound method. Section 5 analyzes the cost of the pro- |/ \e Vil
posed method and Section 6 presents the experimental re- AN 3%’/{ / RN
sults. Finally, Section 7 concludes the paper. N o . L
\*“,(ggzii\\\ . 1:\‘.
2 Related Work A LY -G /!
We review four categories of work below: work on the \\\\ S
nearest neighbor (NNyuery, work on theeverse near- N
est neighbor (RNNgjuery, work onmax-inf location op- N A
timization problems and work omin-distlocation opti- N el

mization problems. ~.. -
NN query: Given a set of objectS and a query object

q, the NN query returng’s nearest objects i¥. Two

popular NN query processing algorithms are the depth-

first algorithm (Roussopoulos et al. 1995) and the best-gives an example, where the gray regions are the optimal

first algorithm (Hjaltason & Samet 1995). . regions. Points in these regions have 4 RNNs, while an
RNN query: Kom & Muthukrishnan (2000) first pro- %nt outside of these regigns has at most 3 RNNs. CaX

h . DO
pose the reverse nearest neighbor (RNN) query and def”%ello et al. (2005) introduce the conceptrefarest loca-

the RNNs of an object to be the objects whose respec- . :
: ; " tion circle (NLC)to solve the problem, where the NLC
tive nearest neighbor is. In the same paper, Korn and of a clientc is a circle centered atwith its radius being

Muué?Uerviﬁg?g?h%r%l?lﬁt?zg ﬁ-gﬁd%?tsrgg S(?Sltdilt%afr? &hgeg 4ihe distance betweenandc's nearest existing facility. To
query, . . ; ind the solution for the MAXCOV criterion based prob-
variant that indexes NN circles of the data objects rathe m is to find the regions that are enclosed by the largest
than the data objects themselves. Here, the NN circle of er of NLCs, which requires complex computations.
an objecb is defined to be a circle that (':enters)amth Its The study only gave a theoretical analysis of the prob-
radius being the distance betweeando's nearest neigh- lem. Wong et al. (2009) study this problem further and
bor. Based on the NN circles, to find the R’,\IN of an Ob'propose a method to compute the regions overlapped by
ject o only requires checking which objects’ NN circles & largest number of NLCs. Xia et al. (2005) propose
enclosev. However, the RNN-tree based solution has tWou,q 45 most influential sites problem and a branch and

major drawbacks. One is that it requires the extra mainb ; : :
: : - ound algorithm to solve the problem. This problem finds
tenance of an RNN-tree. The other is that it requires Prehe top# most influential existing sites within a given re-

computing the NN circles. Therefore, this solution cannot ion It does not consider anv potential locations. Du
handle objects with frequent updates. To solve the firs t aI.Q('ZOOS) propose to find aypgint from a continuous
problem, Yang & Lin (2001) propose to integrate the NN candidate region that can maximize the influence value.

circle information into an R-tree that indexes the clients : ;
! They useL; as the distance metric and have a strong as-
themselves, so that the resultant R-tree variantN- umption that all the roads are either horizontal or ver-

tree can be used to process RNN queries as well as oth " ;
; . . cal. Cheema et al. (2011) propose to find an influence
common types of queries on the clients, and thus avoid th one for a query locatiop, where the clients inside this

maintenance of an extra RNN-tree. To solve the secon

problem, Stanoi et al. (2001) propose an approximation?gg:nizawdgﬁﬁcdgng]ewﬂNg&ﬁg’nr%ﬂ;}fo?% Zﬁanr:g r26011)
refinement framework to compute the RNNs on the fly, SG; 1< the candidate locations according to their influence
that no precomputation is needed. ' ' ng Ir Intiu

: values and another study (Huang, Wen, Qi, Zhang, Chen
There are also studies (Tao et al. 2006, Wu et al. 2008 : : - :
Achtert et al. 2009, Cheema et al, 2010) that work o & He 2011) contributes in efficient algorithms to compute

RNN query variants. A most relevant variant, the MNthe top% most influential candidate locations. Unlike the

: above problems, which relate the influence values to the
versek nearest neighbor (RNN) query, extends the an- N f .
swer set to include objects who perceive the query obje ardinalities of RNN sets, Gao et al. (2009) propose to find

as among theik nearest neighbors. Wu et al. (2008) studyloe opiimal locatiorp outside a given regiofy based on

the RkNN query on continuously moving objects, which : Catignf’gpgin][ﬁlity whert;: ﬂf]elppttimd%”%()f a(quc?tiopl
( . 1S, .js modeled by the amount of clients hwhose distances
g%srglr?éiz two sets of moving objects according to the"Jto p is within a given threshold. Intuitively, the more

While these methods work well for processing a SinglechentSp attracts, the greater its optimality. These studies

A differ from ours in optimization functions and other set-
R(k)NN query, they are not designed to computé&)R(Ns . : :
for large amount of objects at the same time, which is O”émgl\?llinT-gig,?' t?gg::;gt'%%zgo r;?taellp&l)é.%) ropose the
of the key difficulties in the related location optimization . "4 b l-locai %I A P |-p
problems. Thus, the R{NN problem can be viewed as a ™"~ Ist optimal-location problem. Given a client set

sub problem of the related location optimization problems,and an existing facility sef, it finds points within a given

: ; ; egion( so that if a new facility is established at any one
but its problem solving techniques do not solve the relate : - ; :
location optimization problems, (i)f these points, the average distance of the clients to their

A f . . oo respective nearest facilities is minimized. Figure 3 gives
e e oL 7 2250 o a1 example, wherat may b o of the pots 1 he ar-
p . g S . swer set and it is different from the solutipato our prob-
tions, where the influence of a location is defined by theﬁem To solve this problem, assumidg distance metric
number of clients it attracts. Here, the concept‘af ' P y

» ; . P .. and all the roads are either horizontal or vertical, Zhang
tract” can have different meanings in different max-inf o4 "5, (2006) propose a method that divides the solution

Figure 2: A max-inf problem (Cabello et al. 2005)



S Table 1: Frequently Used Symbols

& S Symbols Explanation
S e An entry in a R-tree node
c* R™o f l 0 Any point in the data space
! Q t‘ dist(o1,02) | The distance between two points andos
1o f2 P 4 G C,F,P The set of clients, existing facilities
Crie_ e a and potential locations, respectively
B G ne,ng,ny | Cardinality ofC, I/, andP, respectively
c, f,p A clientin C, an existing facility inF’
Figure 3: The min-dist optimal-location problem and a potential location iff, respectively

space progressively to minimize the candidate region until-€t dist(01,02) denote the distance between two points
the answer set is found. Approximate solutions are pro?1 @ndoz, andn, be the number of clients. The min-dist
vided during the process of refinement. location selection query is defined as follows.

Zhang et al.’s problem definition has the same min-distygfinition 1. Min-dist location selection query.

optimization function as ours, but our problem definition =~ Gjyen a set of pointé’' as clients, a set of points as
has an additional set of potential locations given as cangyisting facilities and a set of poini2 as potential loca-
didates for selectiorin many real applications, we can  tong the min-dist location selection query finds a poten-

only choose from some candidate location®.g., Wal- - 5| |gcation p,, € P for a new facility to be established

mart may only establish a new warehouse at a place fo 1
rent or sale rather than anywhere in a region. Zhang e%t’ so thatvp € P :

al.’s query may return points or a region in the middle of a

river or a football field, which is not a useful result for our > cecimin {dist(c,0)|o € FUpm}}
applications. MoreoveiZhang et al.'s algorithm relies on Ne

L distance assumptigfie., distance must follow vertical

or horizontal roads), making it inapplicable for the urban < > cccimin {dist(c,0)lo € F Up}}

development simulation or MMOG applications, where >
people can walk freely. Our problem definition assumes
L, distance, which suits our applications better. Since the denominator is the same on both sides of
Note that in computational geometry, given a setthe inequality, the problem is equivalent to minimizing the
C of object locations (e.g., clients), thé-medoid sum (instead of the average) of the distances between the
query (Mouratidis et al. 2005) finds a set of medoidsclients and their respective nearest facilities.
¢’ C C with cardinality ¥ that minimizes the average
distance from each objeet € C to its closest medoid : :
in C. Thek-median unery is a variation, where we find 32 ANaive Algorithm
k locations called medians, not necessarily(inwhich A straightforward algorithm to the min-dist location selec
minimize the average distance (from each objeetC to  tion query is to sequentially check all potential locations
its closest median). These two types of queries are actu=or every new potential locatiop, we compute the sum
ally using the min-dist metric. However, our problem is of the distances of all clients to their respective neagest f
different from both of them. A fundamental difference is cilities. The potential location with the smallest sum ie th
that these problems do not assume a set of existing facibnswer. We call this algorithm theequential scan (SS)
ities or a set of potential locations, but we do. If there isalgorithm.
at least one existjng facility or some potential. locatioms t In SS, repeatedly finding the nearest facility to each
be chosen from in a specific location selection problemclient for every potential location is too expensive. There
k-medoid queries ok-median queries do not apply. fore, we precompute the distances of all the clients to their
Related commercial software: As mentioned in the respective nearest facilities and store the distancess Thi
Introduction, an existing commercial software (ArcGIS precomputation involves a nested loop iterating through
2011) can solve several kinds of simpler location opti-every client and for every client iterating through every
mization problems. The most related problem this soft-facility. KNN-join algorithms (e.g., Yu et al. (2010)) can
ware can solve is called thminimize impedance query do this more efficiently and maintain the results dynami-
which finds locations for a set of new facilities to min- cally when clients and facilities are updated. The SS al-
imize the sum of distances between clients and their regorithm with precomputation is shown in Algorithm 1,
spective nearest facilities. However, this problem doés nowhere c.dnn(c, F) denotesc’s precomputed distance to
consider existing facilities. If we use this software to find her closest existing facility and is stored witk record.
a set of locations; for new facilities, there is no guaran- We see that even with precomputation SS is still very
tee thatS; will contain all the points in the set of existing costly as it has to access the whole client datgsetmes,

facilities F. Therefore, this software does not solve our : S . ; .
problem wheren,, is the cardinality ofP and C,, is the capacity
' of a block for P (assuming we read in disk blocks).
Therefore, the need for an efficient algorithm is obvious.

e

3 Preliminaries
This section formulates the min-dist location selection® A Branch and Bound Method
guery and presents a naive algorithm to process the quer

Frequently used symbols are summarized in Table 1. ¥ this section, we propose a brand and bound method that

exploits data objects’ geometric properties to prune un-
) promising potential locations from consideration, so that
3.1 Problem Formulation the min-dist location selection query can be processed

All data objects (clients, facilities and potential locats) more efficiently. This method requires the query to be
are represented by points in an Euclidean space. We may note that there may be ties in the average distances. To simplify our disguiss

refer to the data objects data pointsor simply agpoints we always return the first potential location found that have the smallest averag
distance.




ALGORITHM 1: SS(C, P) c

1 optLoc < NULL; // optLoc is the optimal location; G [o
2 for p € Pdo
3 p.distSum < 0; . R Bf__'Abl__—__'
4 for c € C'do G ! |
5 if dist(p,c) < c.dnn(c, F) then RN LG
I'l cdnn(c,F) is preconputed c7'22 0, Ry
6 p.distSum < p.distSum + dist(p, c); o _‘(':8 ______ G
7 else )
8 p.distSum < Figure 4:1S(Np)
L p.distSum + c.dnn(c, F);
9 if optLoc = NULL or set of a nodén Rp. Let Np be a node ilRp. The influ-
p.distSum < optLoc.distSum then ence set of the nod®p is defined ad S(Np) = {c|c €
10 | optLoc < p; C and3o € Np.mbr : dist(c,0) < dnn(c, F)}. A client
- isin I.S(Np) if there is a point (not necessarily a potential
11 returnopt Loc; location) in the minimum bounding rectangle (MBR) of

Np that can reduce the client’s NFD. IntuitivellS(Np)
defines the set of clients which might achieve distance re-

redefined in a form that enables the computation for th uction without knowing which potential locations are ac-

bounds. Next, we start with redefining the query. Oui?]”%’hig ]I\\/fl PBI% igftjrsfiunlii(i)gnu(r)gi (goi)vf:sr Zr:]ye&(;srﬁipbllee pﬁig(tje

o Np indexes two potential locationsg andp,. We can ob-
4.1 Query Redefinition serve thatf.S(p;) = {c1,co,c3} andIS(ps) = {c4,cs5}.

- : Also, there are three points, o, andos in the MBR of
We call the distance between a clientand her near- . .
est facility thenearest facility distance (NFD)f c. Let (Jiv P- We;‘a\éﬁcgff.(?’cﬁ) < d”Z(CG’F )ﬁZStgroﬁércégoé
dnn(o, S) denote the distance between a pairdnd its nn(er, F) ist(03,c5) < dnn(cs, F). '

F IS(N ) = {Cl Co, ... Cg}.
nearest pointin asét Thendnn(c, F') anddnn(c, FUp) 2. 1020 s .
denote the NFD of: before and after a new facility is The idea of the BB method is as follows. We traverse

established on a potential locatign respectively. The Rpina dgpth-first or;jer and simulte_meously trav_ersg the

min-dist location selection query is actually minimizing R-tree variant or’, R, (recall that this R-tree maintains

the sum of all the clients’ NED. some additional information for computing bounds). We
If 0 is a point not in the sef and dist(c,0) <  USe€ the tree structure to narrow down the clients we have

dnn(c, F), then establishing a new facility awill reduce  t0 €xamine for identifying the influence sets of a poten-
the NFD ofc. In this case, we say thatcan get alNFD  tial location. ‘As we visit a nodeVp of Rp (suppose
reductionfrom 0. We define thénfluence setfo, denoted Ve iS in leveli of p), we identify a set of nodes from
by 15(0), as the set of clients that can get NFD reduc-level i of R?, whose subtrees must cover all the clients
tion fromo. Formally, IS(o) = {c|c € C,dist(c,0) < in IS(Np); we call this set of nodes fromt?, the influ-
dnn(c, F)}. The influence set of a potential locatipn  ence nodeg¢IN) of Np and denote it by N(Np). Based
includes all the clients that will reduce their NFD if a on the MBR of Np and the aggregate information stored
new facility is established at For example, in Figure 1, in the nodes of N(Np), we can compute a lower bound
IS(p1) = {c1, ¢, c3}, andIS(ps) = {ca, c5}- . and an upper bound for the distance reduction of all the
It IS(p) # 0 for a potential locatiom, then establish-  potential locations contained in the subtree rootedy at
ing a new facility atp will reduce the sum of the clients’ As we traverse dowi® p, the bounds will become tighter.
NFD. We call the sum of the clients’ NFD reduced by we record the largest lower bound so far during traver-
the distance reductiof p, denoted byir(p). Formally,  sal, which serves as a pruning distance, denotegidas
dr(p) = 3 crs(p(dnn(c, F)—dnn(c, FUp)). Minimiz- I at any time we encounter a node @y with an up-
ing the sum of the clients’ NFD when adding a facility on per bound of distance reduction smaller thainthen that
p Is equivalent to maximizingr(p). Therefore, the min- node can be discarded from the search, since our goal is
dist location selection query can be redefined as follows. to find the potential location with the largest distance re-
. . . . duction. When we reach the leaf level Bf>, we get the
Definition 2. Given a set of point§” as clients, a set of exact information of the potential locations and can com-
points ' as existing facilities and a set of poinfs as  pute their exact distance reductions pdf is smaller than
potential locations, the min-dist location selection quer an exact distance reduction, thehgets updated to it. The
finds a potential locatiorp,, € P, so thatVp € P!  search stops as we finish traversiRg and the potential

dr(p) < dr(pm). location with the largesir value is the answer.
The derivation of the upper boundaxzdr and the
4.2 The Branch and Bound Algorithm lower boundmindr are presented in Sections 4.3 and 4.4,

_ respectively. The condition to identif§S(Np) of Np,
The Branch and Bound (BBjnethod estimates the po- and the structure aR®, are related to the upper bound, so
tential locations’dr values to achieve early pruning. It \ye present them in Section 4.3.
assumes that the datasets are indexed in spatial indexes. The recursive part of the BB algorithm is summarized
Specifically, it assumes an R-tré&> to index the poten- iy Algorithm 2. We explain the algorithm together with
tial location setP, and an R-tree variamR%, to index the  the example in Figure 5, where the nodes within a dot-
client setC' and store some other information for the com- ted rectangle represent the IN of a nodeiip. Initially,
puting the bounds (details are in Section 4.3), although thev is set to the root node d&p, which is Ny, IN is set
method can be easily adapted to any hierarchical spatiab the root node ofR%,, N¢, pd is set to 0 anchptLoc
index. The branch and bound scheme is performed during set toNULL. For each nodeVy being accessed, we
a traversal on both trees. construct/ N (e,,) for each of its entry,, using the child

Before explaining the BB method, we need to extendnodes of the nodes iRV (Np) (lines 1 to 3). In Figure 5,
the concept of the influence set of a point to thituence



we havelIN(e;) = {N}}, IN(e3) = {N% N!} and
IN(e3) = 0. These actually meansN (N;) = {N?},
IN(Ns) = {N%,N%} andIN(N3) = (). Then the child
nodes ofN;, N, and N3 will use the child nodes of these
INs to construct their own INs. For exampl&N (Ny;)

is constructed with the child nodes of, and the resul-
tant IN(Nyy) is {N?,, Nb,}. Similarly, IN(N»;) and
IN(Ny,) are constructed with the child nodesg§ and
N¥, which results i N (Nap) = {N%;} andI N (Nyg) =
{N3,, N5, Nb }.  This ensures that the level BV (Np)

ALGORITHM 2: BB(Np, IN, pd, optLoc)

w N -

N o o bh

10
11

12
13

14

15
16

17

18

19

20

21
22

if Np is a non-leaf nod¢hen
for e, € Npdo
Construct/ N (e,, ), computemazdr and
mandr;
if maxdr > pdthen
if mindr > pdthen
L pd < mindr;

BB(ep.childnode, IN (ep), pd, opt Loc);

Ise if Np is a leaf node but nodes iV are
on-leaf nodeshen
for Nb € IN do
IN' « 0
for b € N¢, el satisfies IN conditions of
Np do
| IN' <« IN'Ue.childnode;

BB( Np, IN’, pd, optLoc);

>0

else
/!l Np and nodes in IN are all
| eaf nodes
for N2 € IN do
for e, € Np do
for €% € Ng,
dist(ep, €b) < eb.dnn(c, F) do
ep.dr <
ep.dr + eb.dnn(c, F) — dist(e,, €b);

if optLoc = NULL or e,,.dr > optLoc.dr
then
| optLoc < ey;

il:optLoc.dr > pd then
| pd < optLoc.dr;

o Y \

[Na ] [N | [N [Na ] [N | [ Nas ] ] N | [ Neo | [ N |
\
/I // // \\ //\

and that of Np are the same. The boundsaxdr and : ;
mindr of an entrye, are computed using the aggregatedNc }, While for the non-leaf nodesyax " Dist
attributes stored in the parent entried of (e,,). The child

node ofe, will be pruned ifmaxzdr < pd (line 4). if

Figure 5: Example of algorithm BB

mindr > pd, pd will be updated to benindr (lines 3

to 6). Then the child nodes of the unpruned entries of
Np are traversed (line 7). Note that the heightsiy

and R%, may be different. Thus, there are different pro-
cedures for the condition where the traversal reaches the
leaf level of only one tree. (i) If the traversal reaches an
non-leaf nodeNp of Rp, andI N (Np) are leaf nodes, we
construct the INs of the child nodes &fp using nodes

of IN(Np) since there is no child node for the nodes in
IN(Np) (lines 1 to 7). (ii) If the traversal reaches a leaf
nodeNp of Rp, andI N (Np) are non-leaf nodes, we con-
struct a subset of N(Np) with the entries of each node
N& € IN(Np), denote it ad N’(Np), and perform al-
gorithm BB onNp andIN’(Np) (lines 8 to 13). Doing
this recursively guarantees that all clients containetién t
subtrees of the nodes IV (N p) will be accessed, which
means/.S(Np) is fully accessed. The advantage of this
method compared to the construction of INs for the data
entries directly is its reduction of node accessesin
Since entries of a same node tend to have sinfiléfs, if

we access the nodes iV (Np) directly for each data en-
try of Np, many nodes (and their descendant nodes) will
be accessed repeatedly and the number of node accesses
will be large. When the traversal reaches the leaf nodes
of both trees, for each data entry of a nodeNp of Rp,

all entries of each nod&’% € IN(Np) are accessed to
updatee,,.dr (lines 14 to 18)opt Loc andpd are updated
accordingly (lines 19 to 22). When the traversal edds,
has been accessed for all potential locationsamdoc is
found.

4.3 An Upper Bound

We derive an upper bounthaxdr for the distance re-
duction of all potential locations contained in the subtree
rooted at a nodé&Vp. To simplify our discussion, we use
sub(N) to denote the set of data entries contained in the
subtree rooted at the no@é. Then|sub(N)| denotes the
cardinality of sub(N). For examplesub(Np) denotes
the set{p|p is a potential location indexed in the subtree
root at nodeNp}.

The following discussion holds for any R-tree based

index on the set of clients, we usé: (instead of N2,
used in the above subsection) to denote a node in such
an index. Recall the definition efr of a potential loca-
tion p, dr(p) = > crs(p) (dnnlc, F) — dnn(c, F' U p)).
We derivemaxdr in a similar way. Since we are us-
ing a set of nodes to computeaxdr for a nodeNp of
Rp, maxzdr(Np) = 3 . es(|sub(Nc)| - (91(Ne) —
g92(Ne, Np))), whereS is a set of client R-tree nodes,
g1 Is a metric related to a nod€., andg- is a metric re-
lated to N and Np. We use|sub(N¢)| because, in an
ideal condition, every client € sub(N¢) is in I.5(p) of
some potential locatiop € Np. To derive a reasonable
upper bound, we try to find smafl and g, (N¢) and a
large g2 (N¢, Np). We use the metricspax F Dist and
minDist, asg; and go, respectively. IN(Np) is used
as.S, which will be established based emax F' Dist and
minDist. The definitions ofmax F Dist and minDist
are as follows.

Definition 3. The largest NFD valuenfax F' Dist) for all
clients that are in the subtree rooted at a natle.

This metric is proposed by Yang & Lin (2001)
as mazx_dnn and it is defined in a bottom-up fash-
ion. For the leaf nodesynaxzF Dist(N¢) is defined
as the largest NFD value for all the clients indexed
in Ng, i.e., maxFDist(N¢g) = max{dnn(c,F)gc E)

N¢
is defined as the largestnaxF Dist value for all
the child nodes ofN¢, i.e, maxFDist(Ng) =



max{mazF Dist(e..childnode)|e. € N¢ }.

Figure 6 gives an example, wherénn(cs, F),
dnn(cg, F') anddnn(cy, F) are the largest NFD values of
the clients indexed in the leaf nodd§, N, and N3, re-

spectively. The three NFD values are picked as the respec-
tive max F Dist values of the three nodes. Meanwhile, the

largest value amongnax F Dist(Ny), maxzF Dist(N)
andmaz F Dist(N3) is picked as thenax F Dist of the
parent node §,) of these three nodes. Therefore, we
getmaxF Dist(Ny) = maxF Dist(N3) = dnn(ca, F),
which is effectively the largest NFD value for all the
clients in the subtree rooted Af;.

maxFDist(N;, ),i=1,2,3

maxFDist(N, )

Figure 6: Example ofnaxF Dist

Definition 4. The smallest distancer(inDist) between
two objects.

Hence, ifminDist(Ng, Np) > maxF Dist(N¢),

we can obtain:

Ve € sub(Ne)Vp € sub(Np) :
dist(c,p) > dnn(c, F).

Therefore sub(N¢) N IS(Np) = 0.

maxFDist(Nc )

Figure 8: Example of Theorem 1

Figure 8 illustrates Theorem 1. Here, the rounded rect-
angle represents a region wheregnDist(N¢, Np) <
mazxF Dist(N¢g). If a point p lies outside the rectangle,
it satisfies the condition of Theorem 1, hence no client
¢ € sub(N¢) is contained by S(p).

The following theorem defines and proves the upper
boundmaxdr.

This metric is proposed by Roussopoulos et al. (1995)Theorem 2. The following expression defines an upper

We useminDist(c, Np) to denote the smallest distance
between a point and the MBR of a nod&/p. If ¢ is
within the MBR ofNp, thenminDist(c, Np) = 0. Oth-
erwise, minDist(c, Np) is the distance betweenand
its nearest point on the MBR dfp. Similarly, we use
minDist(Nc, Np) to denote the smallest distance be-
tween the MBR oN- and the MBR ofVp. If these two
MBRs overlap, theminDist(N¢, Np) = 0. Otherwise,
minDist(N¢o, Np)=min {dist(o1, 02)|01, 02 are points

on the MBRs ofV¢ and Np, respectively. (Figure 7)

minDistG Ne )
G minDistE: Ne )
'?2\F.Cﬁ
N
«X__'P |
G |
! Ne :N°03
(A
1G B, :“ |
L' e m - = 149G

minDistN: Np )

Figure 7: Example ofninDist

The following theorem guarantees that the sub-

trees of the nodes IN{Ng|minDist(No, Np) <
maxF Dist(N¢g)} cover all the clients ifS(Np). This
set defined N(Np).

Theorem 1. Given two nodesVe and Np, sub(N¢) N
IS(Np) = 0if minDist(N¢, Np) > mazF Dist(N¢).

Proof. According to the definitions ofminDist and
maxF Dist, we have:

(1)Ve € sub(Ne)Vp € sub(Np) :
dist(c,p) > minDist(N¢c, Np);
(2)Ve € sub(N¢) -
maxF Dist(N¢) > dnn(c, F).

bound for thedr values of all data points indexed in the
subtree rooted at a nod®p of Rp.

ZNCEIN NP){|5U5(NC)|'

imaxFDist(NC) —minDist(N¢, Np)|}

Proof. An implicit statement about the definition of
dr(p) (cf. Section 4.1) for a potential locatignis that
dnn(c, F) > dist(c,p). However, this may not be true
if IN(Np) is used instead of S(p) whenc € sub(N¢)
andN¢g € IN(Np) bute ¢ 1S(p). Let us define a set
Sp(N¢) which contains the clients isub(N¢) who are
also inIS(p). Formally,

Sp(N¢) = {c|dnn(c, F) — dist(c,p) > 0,
¢ € sub(N¢), No € IN(Np),p € sub(Np)}.

We can see that,(N¢) C sub(N¢). Take advantage of
the following relationships.

(1)Vp € sub(Np) :
{c|c € sub(N¢), Nc € IN(Np)} 2 IS(Np) 2 IS(p);
(2)Ve € sub(N¢) :
maxF Dist(N¢g) > dnn(c, F);
(3)Ve € sub(N¢)Vp € sub(Np) :
minDist(N¢, Np) < dist(c, p).

For any potential locatiop € sub(Np), we obtain:

dr(p) = Z:Cels(pi:[dnn(c7 F) — dist(c,p)] .

= ZNCGIN(NP) cesp(Nc)[d””(C’ F) — dist(c, p)]

< Y NCeIN(Np) 2oces, (o) MmazF Dist(Ne ) —
minDist(Ng, Np)]

< ZNcEIN(Np) Ecesub(Nc) [maxFDzst(NC)—
minDist(N¢o, Np)]

= ZNCGIN NP){|SUb(NC)|'
imaxFDist(NC) —minDist(N¢, Np)|}

Thus, the upper bound holds. O



To computemaxdr in the process of traversal, each
entry e? of RY, stores|sub(NZ)| andmazF Dist(N2),
denoted asNum andmaxz F Dist, for its child nodeNg.
For the data entriessNum = 1 andmaxFDist = | N\gy---------- ,
dnn(el, F). Recursively from the leaf nodes to the root |
node, the values of the two new attributes can be com- v N |
puted for each entry of the non-leaf nodes based on their Vi |
definitions. When there is an updatef},, the structure el B UG,
can be maintained efficiently in a similar recursive man- MINExistDNNNe Ne )
ner. TreeR?, can also be used in processing conventional c

ueries on an R-tree efficiently, since adding two attrisute . ) .
\(/qvill not significantly increase);he height of ?he tree. This Figure 10: Example oininExist DN N
will be validated in our cost analysis and the experiments.

intersection points

if we draw the four perpendicular bisectors 8f;.mbr's
4.4 A Lower Bound edges and diagonals, they interséét.mbr at eight

[ indr is simi ints. These points are called théersection point¢Xia
The way we derive the lower boundindr is similar to poin A _
that of derivingmaxzdr. We definemindr(Np) in the et al. 2005) ofN¢. Xia et al. prove that for any point

N¢.mbr, there is a corner point or an intersection
form of max {g; (N¢) — g2(Ne, Np)|N¢ € S}, whereS ¢ € Ne ' ! ran |
is a set of client R-tree nodeg, is a metric related to a pointo’ of Ne.mbr, such thatninMaxDist(o', Np) >

; ; inMaxDist(o, Np). As a result, the computation
nodeN¢, andg, is a metric related t&Vo and Np. We 772 ' ] Ult, (
use the maximum value instead of the sum value because§f 7 ExistDNN(Nc, Np) requires checking at most

; : ; : ; elve points.
is possible for thd S(p) of a potential locatiom to be in- Now we have the following theorem to define and

dexed in only one subtree rooted at a nodézpf We use prove the lower bounehindr.

maxF Dist asgy, andminEzist DNN asgs. IN(Np) ) ) ]

is used ass. MetricminExist DN N is defined based on Theorem 3. The following expression defines a lower
minMazxDist. These two metrics are proposed by Rous-bound for thedr value of all data points indexed in the
sopoulos et al. (1995) and Xia et al. (2005), respectivelysubtree rooted at a nod¥p of Rp.

We present their definitions before presenting the defini- )
tion of mindr. max{mazF Dist(N¢c)—

e . . minExist DNN(N¢, Np)|Ne € IN(Np)}.
Definition 5. The minimum upper bound of the distance
between a point and its nearest data poinin another  proof. The definition ofminEzist DN N implies:
MBR (minM ax Dist).

minMazxDist(c, Np) denotes the minimum upper Ve e sub(N¢o)3p € sub(Np) :
bound of the distance from a clientto her nearest po- minExist DNN(Ng, Np) > dist(c,p)
tential location insub(Np). It is the distance between _ v, ¢ sub(N¢)3p € sub(Np) :
¢ and the second nearest corner &f.mbr since there —minExzistDNN(N¢, Np) < —dist(c, p)
must be a potential locatiop on the side joining the  aAjgo 3¢ ¢ sub(N¢) : ’ - e
nearest and the second nearest corners, and the dis- ' ma:cFDz‘si(N ) = dnn(c, F)
tance betweer: and p must be equal to or less than Hencedec € sub(Nc)HpCe SUb(NP)"

minMazDist(c, Np). (Figure 9) maxFDist(N¢) — minExist DNN(N¢, Np)
<dnn(c, F) — dist(c,p) < dr(p).

Therefore, the lower bound holds. O

4.5 Discussion

Let us revisit the BB method. Its core idea is that a depth-

first traversal is performed oRp while a global lower

boundpd is used to prune the subtrees. The pruning dis-

tancepd is updated oncenindr of some node otlr of

some potential location is found to be larger than it. The

minMaxDist¢ N- )i=3,5,6, 8 pruning power relies on the fast increasepdf The rea-

son why we do not use a best-first traversal is thatdr

is rather small. Thus the main reason fefto increase

is the update of newly found larger value. If we use

a best-first traversalir value will not be found until the

Definition 6. The minimum upper bound of the distancetraversal reaches the leaf nodes of both trees, which means

between a point in the MBR of some nddeto its nearest  almost all non-leaf nodes may end up staying in the active

data pointo contained in the MBR of another nodé, page list waiting to be pruned. The space requirement for

(minExist DN N). this process is too high. Hence, we opt to use the depth-
We useminExist DNN(N¢o, Np) to denote the first traversal.

minimum upper bound of the distance between a point

within the MBR ofN¢, No.mbr, and its nearest potential

locationp € sub(Np). Formally,

Figure 9: Example ofninM ax Dist

5 Cost Analysis

minExzist DNN(N¢, Np) = In this section, we analyze the I/O cost and CPU cost of
max{minMa;vDist(o Np)|o € Ne.mbr} the BB method and compare them with those of the SS
’ ] ' method.

Xia et al. (2005) propose a method to efficiently com-  We first introduce the notation and equations used in
puteminExzist DN N (N¢, Np). As shown in Figure 10, the analysis. We assume an R-tree node has the size of a



disk block. LetC,,, be the maximum number of entries in

a disk block(i.e., C,,, = block size / size of a data enfry Table 2: Parameters and Their Settings

and C, be the effective capacity of an R-tree node, I.e., gz;zfgiestt‘:irbuﬂon 3‘3"2;?“ TS
the average number of entries in an R-tree node. Then the STetsoice 10K, 50K 00K 00K, T000K
average height of an R-trek, is computed aslogc, n|, Existing facility setsize | 0.1K, 0.5K, IK,5K, 10K
wheren is the cardinality of the dataset (we denote the car- [Potential location set size | 1K, 5K, 10K, 50K, 100K
dinalities of C, F' and P by n., ny andn,, respectively). 1 (Gaussian distribution ) | 0

The expected number of nodes in an R-tree is the total [ 42 (Gaussian distribution ] 0.125, 0.25, 0,51, 2
number of nodes in all tree levels (leaf nodes being level | N (Zipfian distribution) 1000

1 and the root node being levi), which is > | & = o (Zipfian distribution) | 0.1,0.3,0.60.9, 1.2

n(cieJrCLng...JrC%):—Cf_l(l—cig)z—cf_l. 61 E il Set
I/O cost: For the SS method, the data points are re-"" xpermental Setup

trieved in blocks from the disk, and the I/0 costliS; — Al the experiments were conducted on a personal com-
o> &= = &=~ For the BB method, the I/O cost depends puter with 3GB RAM and 2.66GHz Intel(R) Core(TM)2

on the number of R-tree nodes accessed. In the metho@uad CPU. The disk page size is 4K bytes, and no buffer
Rp is traversed in a depth-first order and for every nodds used. We measure the running time and the number of
Np of Rp, we need to retrieve the nodes in the client R-1/Os. ) )

tree that satisfies certain conditions withs. In the worst We conduct experiments on synthetic and real datasets.
case, every node dRp is traversed, and for every node Synthetic datasets are generated with a space domain of
of Rp, the whole client R-tree is traversed. Therefore, thel000 x 1000. The dataset cardinalities range from 0.1K
worst-case I/O cost is;2; 27 = 5. While this ~ to 1000K. Three types of datasets are usedU(i)form

c—1C.—1  (C.—1)2 :
. : atasets where data points are generated randomly ac-
worst-case 1/O cost is worse than the 1/0O cost of the Séjording to a uniform distribution; (ilGaussian datasets

method becausé, < Cr, in practice, many nodes of here data points follow the Gaussian distribution; (iii)

the R-trees are pruned during the trayersal. E}Ne qu"’"ﬂ'tm\é’ipfian datasetswhere data points follow the Zipfian dis-

the percentages of the pruned node&inand k¢, as the b jtion. The parameters used in the experiments on syn-

pruning power, and denote them by, andw., reSpec- thetic datasets are summarized in Table 2, where values in

tively. Then we have the the average /O cost of the BBy 5|4 denote default values.

method.,/Oy = (1—wp)(1—we) 7"z - The superiority We adopt two groups of real datasets provided by Dig-

of the BB method over the SS method liesuip andw,. ital Chart of the World (RtreePortal 2011), which contain

In our performance study, we will show that the pruningthe points of populated places and cultural landmarks in

techniques used in the BB method are effective &0¢g  the US and in North America. We name them as the US

is constantly much less thdi®,. group and the NA group, respectively. For each group of
CPU cost: The CPU cost can be considered as thedatasets, the populated places are used as the cligfit set

product of the CPU cost per disk block (R-tree node) mul-The cultural landmark dataset is divided into two datasets.

tiplied by the number of disk blocks (R-tree nodes) ac-Half of the cultural landmarks are chosen randomly to

cessed. The 1/O cost analysis provides the number oform the existing facility sef’, and the remaining are used

nodes accessed. The CPU cost per disk block (R-treas the potential location sét For the US group, the car-

node), typically involves distance metric computations.dinalities ofC, F', P are 15206, 3008 and 3009, respec-

For every pair of disk blocks accessed, the SS methotively, while those for the NA group are 24493, 4601 and

computeslist(c, p) for every pair of client and potential  4602. _

locationp. So there ar€2, distance metric computations.  We use the R-tree (Guttman 1984) and its proposed

For every pair of R-tree nodé#Vp, N), the BB method  Variant as the underlying access methods.

only computes the values of several distance metrics to de-

termine whetheN¢ should be put if N (Np) for further 6.2 Experiments on Uniform Datasets

process. Thus, the BB method has a much smaller num-

ber of distance metric computations to process a pair ofhe following experiments focus on the effect of dataset

R-tree nodes than that of the SS method to process a paiardinalities. We vary the sizes 6f, /' and P indepen-

of disk blocks. We have also shown that on average, theently.

BB method has a much smaller 1/O cost than that of the

SS method. Therefore, the CPU cost of the BB method i ; ;

much smaller than that of the SS method. ¥.2.1 Varying the Number of Clients

6 A Performance Study 10° 5 10° =5
@ BB —&— » BB —&-
. : o 10°F e Q0% CE
In this section, we report the results of our perfor_mance_g ) : .
study. The experimental setting is presented in Sece 10'f o L3 gw'f e e
tion 6.1. To evaluate the performance of the proposec o4 T 1 5.l et ]
method under different environments, we conduct exper« P S
-1 1 1 1 2 1 1

iments on both synthetic and real datasets. Specifically, 0% — ——-—-—"- 10— ook
Section 6.2 presents experiments on datasets with uniform Ciient Set Cardinality Ciient Set Cardinality
distribution varying the size of the datasets. Section 6.3 (a) Running time (b) Number of I/Os
presents experiments on datasets with Gaussian distribu-

tion varying the variance of the distribution function. Sec

tion 6.4 presents experiments on datasets with Zipfian dis- Figure 11: The effect of client set cardinality
tribution varying the alpha value of the distribution func- '

tion. Section 6.5 presents experiments on real datasets. The results for the experiments that vary the number of

clients are shown in Figure 11. From this figure, we can
see that the BB method outperforms the SS method by



almost ten times in terms of both the running time and the Results of the experiments that vary the number of po-
number of I/Os. This is because of the pruning techniquesential locations are shown in Figure 13. The BB method
used by the BB method to reduce the search space for thaill shows high efficiency in these experiments.
query answer, and this result confirms our cost analysis, We observe that, generally, the growth in the number
where the average cost of the BB method is shown to bef potential locations has the similar effect on the running
much smaller than that of the SS method. time and the number of I/Os as increasing the number of
We also see that even with a small set of clients (10K) clients. We also notice that, as the number of potential
it takes the SS method seconds to process the query. Colocations increases, the running time and the number of
sidering the capability of human perception, 0.1 second#Os of the BB method increase much slower than those
may be a preferable choice for processing a query (Morsef the SS method do (please note the logarithmic scale).
1996). Then the SS method is far inferior and is unable toTrhis is because when the number of potential locations
produce the query answer in time, especially for the urbaftecomes larger, the height Bf increases and every time
development simulations and the MMOG applications. Asa non-leaf node irRp is pruned, more potential locations
for the BB method, it computes the query answer in lessare pruned. When the number of potential locatieps
than 0.1 seconds for the 10K dataset. Even for a very largbecomes very large (i.e.,, > 10K), the proposed pruning
dataset (1000K), it computes the query answer within sectechniques function even better and the advantage of the
onds. With some upgrades in hardware, it is still realisticBB method becomes significant.
for the BB method to produce the query answer in time.

6.3 Experiments on Gaussian Datasets
6.2.2 Varying the Number of Existing Facilities
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(a) Running time
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(a) Running time

Variance
(b) Number of I/0s

_ o 3 o Figure 14: The effect of? in Gaussian distribution
Figure 12: The effect of existing facility set cardinality
) ) In the following experiments, we vary the distribution
‘The results of the experiments varying the number ofof the datasets.
existing facilities are shown in Figure 12. Again, in this Figure 14 shows the results of experiments conducted
figure, the BB method shows much better performanc%n the Gaussian datasets where we vary the value of

than the SS method in terms of both the running time an ; ; ;
: . r the Gaussian datasets, varyirgmeans varying the
the number of I/Os because of the pruning techniques “Seﬂggree of the inclination for the data points to cluster at

to reduce the search space. fhe central area of the distribution. Increasirigleads to

Another observation is that an increase in the numbe ;
of facilities yields a drop in both the running time and the ess dense data points at the center. We observe that, com-

number of /Os for the BB method. The reason is that onPared with varying dataset cardinalities, varyintydoes
average the more the facilities, the shorter the nearest f4l0t affect much of the algorithm performance. The BB
cility distances for the clients. In other wordn(c, ) ~ Method still outperforms the SS method in terms of both
decreases with the increase of the number of existing fa}—he running time and the number of I/Os, which confirms
cilities. As a resultynazF Dist(N¢) decreases and the the results of our cost analysis.

pruning power of the BB method to prune nodesi# is ) o

enhanced. Therefore, the number of I/Os and running timé.4  Experiments on Zipfian Datasets

are reduced. SS is not affected due to its lack of pruning

capability and it does not access the sefofit accesses
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We vary the value of in the experiments conducted
on the Zipfian datasets and the results are shown in Fig-
ure 15. Like the Gaussian datasets, we notice that the
value ofa does not affect much of the algorithm perfor-
mance. We also notice that the resultant running time and
number of 1/Os are similar to those of the experiments

Potential Location Set Cardinality
(a) Running time

Potential Location Set Cardinality
(b) Number of 1/0s

Figure 13: The effect of potential location set cardinality



conducted on the Gaussian datasets. We further compatgheema, M. A., Lin, X., Zhang, W. & Zhang, Y. (2011),
these results with those of the experiments conducted on Influence Zone : Efficiently Processing Reverse k Near-
the uniform datasets with the same dataset cardinalities, est Neighbors Queries) ‘ICDE’.

and find that the differences among them are small, too. . ) )
Thus, we can conclude that the effect of different distribu-DU, Y., Zhang, D. & Xia, T. (2005), The optimal-location
tions on the proposed method is trivial. query.,in ‘SSTD'.

Gao, Y. Zheng, B., Chen, G. & Li, Q. (2009),
‘Optimal-location-selection query processing in spatial
databasesTKDE 21, 1162-1177.

Guttman, A. (1984), R-trees: A dynamic index structure
for spatial searchingin ‘SIGMOD’.

Hjaltason, G. R. & Samet, H. (1995), Ranking in spatial

6.5 Experiments on Real Datasets
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on Potential Influence# ‘the 37th Annual Conference
of the IEEE Industrial Electronics Society’.

Huang, J., Wen, Z., Qi, J., Zhang, R., Chen, J. & He, Z.
(2011), Top-k Most Influential Location Selectiom,
‘CIKM".

The experimental results on real datasets are shown ilorn, F. & Muthukrishnan, S. (2000), Influence sets based
Figure 16. The comparative performance of the methods On reverse nearest neighbor querigs.SIGMOD’.
is similar to that of experiments conducted on the syntheti in | |
datasets. The BB method still outperforms the SS method@'or.se'. K. L. (1996), Interest management in large-scale
significantly for both US and NA datasets. distributed simulations, Technical Report ICS-TR-96-
Overall, we see that the BB method outperforms the 21.

SS methods constantly because of the pruning techniquegoyratidis, K., Papadias, D. & Papadimitriou, S. (2005),

used to reduce the search space for the query answer. pedoid queries in larae spatial databasgs'SSTD’
When the dataset cardinalities become large, the advan- d ge sp = '

tage of the BB method becomes more significant. Thes®oussopoulos, N., Kelley, S. & Vincent, F. (1995), Near-
results agree with our cost analysis. est neighbor queried) ‘SIGMOD’'.

Dataset Group
(b) Number of 1/0s

Figure 16: Performance comparison on real datasets

RtreePortal (2011), ‘http://www.rtreeportal.org’.

Stanoi, |., Riedewald, M., Agrawal, D. & Abbadi, A. E.
We formulated the min-dist location selection query and (2001), Discovery of influence sets in frequently up-
conducted a comprehensive study on processing this dated databases, ‘VLDB'.

query. We first analyzed the basic properties of this quer)gao Y., Yiu, M. L. & Mamoulis, N. (2006), ‘Reverse

type and proposed a naive algorithm (SS) to process th \ : \
query. However, the SS algorithm is inefficient due to re- ’I‘&Sgeitzé\lge_'%gggr Search in Metric SpaceSKDE

peated scanning on datasets. Motivated by this, we ex-

plored geometric properties of spatial data objects, anQNong R.C-W.Ozsu. M. T.. Yu. P. S.. Fu. A. W-
proposed techniques to prune the search space. Thisre-~"% | ™ L."(2009,) ‘Efficient method for maxi-

sulted in a branch and bound algorithm (BB). We provided  i;in g hichromatic reverse nearest neighb@V/LDB
a detailed comparative cost analysis for the BB method 511551137 -

and performed extensive experiments to evaluate the em-
pirical performance of the method. The experimental reAnu, W., Yang, F., Chan, C. Y. & Tan, K.-L. (2008),
sults show that the BB method constantly outperforms the Continuous Reverse k-Nearest-Neighbor Monitoring,
SS method, and when the dataset cardinalities become in ‘The Ninth International Conference on Mobile Data
large, the advantage of the BB method becomes more sig- Management'.

7 Conclusions
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