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Abstract

As the size of language models notably grows, fine-tuning
the models becomes more challenging: fine-tuning with first-
order optimizers (e.g., SGD and Adam) requires high mem-
ory consumption, while fine-tuning with a memory-efficient
zeroth-order optimizer (MeZO) has a significant accuracy
drop and slower convergence rate. In this work, we propose a
Low-order Hybrid Optimizer (LoHO) which merges zeroth-
order (ZO) and first-order (FO) optimizers for fine-tuning.
LoHO is empowered with inter-layer hybrid optimization and
intra-layer hybrid optimization, which boosts the accuracy of
MeZO while keeping memory usage within a budget. The
inter-layer hybrid optimization exploits the FO optimizer in
deep layers and the ZO optimizer in shallow ones, therefore
avoiding unnecessary gradient propagation to improve mem-
ory efficiency. The intra-layer hybrid optimization updates a
proportion of parameters in a layer by the ZO optimizer, and
the rest by the FO optimizer, taking advantage of gradient
sparsity for high efficiency implementation. Our experimen-
tal results across common datasets on different pre-trained
backbones (i.e., RoBERTa-large, OPT-13B and OPT-30B)
demonstrate that LoHO can significantly improve the pre-
dictive accuracy and convergence rate of MeZO, while con-
trolling the memory footprint during fine-tuning. Moreover,
LoHO can achieve comparable performance with first-order
fine-tuning using substantially fewer memory resources.

Introduction
Fine-tuning with first-order (FO) optimizers, such as
Adam (Kingma and Ba 2014) and AdamW (Loshchilov and
Hutter 2018), has been the standard paradigm to adapt pre-
trained language models (PLMs) to the specific downstream
tasks (Liu et al. 2019; Raffel et al. 2020; Zhang et al. 2023).
However, with the growth of the number of model param-
eters, the increasing memory requirement for fine-tuning
with these first-order optimizers becomes a bottleneck, as
the back-propagation process is memory-consuming due to
the storage of gradients, optimizer states, and activations.
For example, Malladi et al. (2024) demonstrate that full
fine-tuning an OPT-13B model with Adam requires approx-
imately 12 times the memory cost as the inference.
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In response to this challenge, several approaches have
been proposed. In-context learning (ICL) (Brown et al.
2020) makes an inference with only forward passes based on
the input prompts (i.e., labeled samples). However, the con-
text sizes of most PLMs are limited and the predictive accu-
racy of ICL is often much worse than fine-tuning (Brown
et al. 2020). Another type of method, namely parameter-
efficient fine-tuning (PEFT) (Houlsby et al. 2019; Li and
Liang 2021; Hu et al. 2022), only updates a small number
of model parameters while approaching similar predictive
accuracy of full fine-tuning methods, but it still needs to
store numerous activations (intermediate results of the for-
ward pass) as the trainable parameters are dispersed across
the entire model. To address these problems, MeZO (Mal-
ladi et al. 2024) proposes a memory-efficient zeroth-order
(ZO) optimizer to estimate the gradients based on finite dif-
ferences of function values with just two forward passes,
thus saving a significant amount of memory. Despite its ben-
efits in memory efficiency, MeZO suffers from a significant
accuracy degradation compared with full fine-tuning using
first-order optimizers on various tasks and needs substan-
tially more training steps to converge (Malladi et al. 2024).

We observe that MeZO only requires the same memory as
inference, and the free/unused memory is wasted when the
GPUs are solely occupied to maximize the computation ef-
ficiency during fine-tuning. For example, we find that when
using an A800 GPU to fine-tune OPT-13B with MeZO, it
exhibits over 10GB of free memory. It would be beneficial
to use this free memory to mitigate MeZO’s accuracy drop
and convergence issues. To this end, we propose Low-order
Hybrid Optimizer (LoHO), which exploits the memory ef-
ficiency of ZO optimizers and the optimization quality of
FO.1 LoHO is equipped with two hybrid optimization strate-
gies, i.e., inter-layer hybrid optimization and intra-layer hy-
brid optimization. The inter-layer hybrid optimization em-
ploys an FO optimizer for fine-tuning a PLM’s several lay-
ers, while a ZO optimizer updates its rest layers, avoiding
unnecessary gradient propagation with the suitable setting
of the FO layers. Different from inter-layer hybrid optimiza-
tion, intra-layer hybrid optimization selects some parame-

1In this paper, we classify zeroth-order optimizers and first-
order optimizers as low-order optimizers to distinguish them from
high-order optimizers, i.e., second-order optimizers.



ters in a layer to be updated by the FO optimizer, while the
rest are updated by the ZO optimizer. Furthermore, LoHO
makes use of the gradient sparsity due to the mixture of
FO and ZO to achieve more efficient fine-tuning, by stor-
ing the trainable parameters and their gradients in a sparse
format. To enhance the convergence in fine-tuning, we cus-
tomize the learning rates of both optimizers in LoHO, based
on the Frobenius norm of gradients estimated by the ZO op-
timizer and that computed by the FO optimizer, thus keeping
the progress of the two optimizers in a similar pace. A nice
property of LoHO is that it enables practitioners to control
the GPU memory usage (to the fullest extent if needed) by
setting the number of layers or ratio of parameters to be han-
dled by the FO optimizer and ZO optimizer.

To summarize, our key contributions are as follows.
• We propose a low-order hybrid optimizer (called LoHO)

which integrates a zeroth-order optimizer with a first-
order optimizer for fine-tuning language models. LoHO
is equipped with inter-layer hybrid optimization and
intra-layer hybrid optimization, which maximize the
memory usage within a given budget while improving
the model quality of the MeZO method.

• To further optimize LoHO, we design a customization
strategy of the learning rate for FO and ZO optimizers,
based on the Frobenius norm of gradients, thus achieving
better generalization.

• Our experiments across common datasets on three pre-
trained backbones (i.e., RoBERTa-large, OPT-13B, and
OPT-30B) show the effectiveness of LoHO on pre-
dictive accuracy and convergence rate compared with
MeZO. Furthermore, LoHO achieves comparable perfor-
mance with first-order based full fine-tuning, enjoying
less memory consumption (e.g., reducing the GPU re-
sources from 4 GPUs to a single GPU).

Methodology
In this section, we introduce the technical details of the
proposed Low-order Hybrid Optimizer (LoHO), which con-
tains two hybrid optimization strategies, as shown in Fig-
ure 1. The left part of Figure 1 shows the inter-layer hy-
brid optimization and the right part shows the intra-layer hy-
brid optimization. For completeness, we first introduce the
MeZO (Malladi et al. 2024) method and then elaborate on
the details of our methods.

The MeZO Solution
A traditional ZO gradient estimator known as Simultaneous
Perturbation Stochastic Approximation (SPSA) (Spall and
J.C 2002), and the corresponding SGD algorithm, ZO-SGD
are the basic ZO technique used in MeZO (Malladi et al.
2024). Suppose D = {(xi, yi)}i∈∥D∥ is a labeled dataset
and B ∈ D is a minibatch of data. We denote the loss on the
minibatch as L(θ;B), where θ ∈ Rd denotes the parameters
of a PLM and d is the number of the model parameters. Then
the gradient estimate of Simultaneous Perturbation Stochas-
tic Approximation (SPSA) is defined as follows:

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z ≈ zzT∇L(θ;B), (1)
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Figure 1: Low-order Hybrid Optimizer (LoHO).

where z ∈ Rd which is sampled from a Gaussian distribu-
tion, i.e, z ∼ N (0, Id), and ϵ is the perturbation scale. SPSA
only needs two forward passes of the model to estimate the
gradients. Parameter perturbation of the model is performed
before each forward pass, and both of the forward passes aim
to compute a loss value. Then the gradients are estimated
based on the difference between the two loss values.

Based on the SPSA, the zeroth-order SGD (ZO-SGD) op-
timizer updates the parameters as θt+1 = θt − η∇̂L(θ;Bt),
where η is the learning rate, and Bt is the minibatch at
the t-th iteration. However, the memory requirement for
the vanilla ZO-SGD algorithm is twice as the inference be-
cause it necessitates the storage of z ∈ Rd, whose size is
the same as the model parameters. To address this issue,
MeZO (Malladi et al. 2024) proposes a memory-efficient
implementation for ZO-SGD based on the in-place opera-
tion, which only requires the same memory footprint as in-
ference. Specifically, MeZO stores the seed of the random
number generator used for sampling z, and resamples the
same random noise z with the seed when z is needed. Be-
sides, MeZO modifies the parameters in place when per-
forming model perturbation and parameter updating.

Our Proposed LoHO Solution
Although MeZO offers benefits in memory efficiency, it has
significant accuracy degradation compared with full fine-
tuning with SGD or Adam. Moreover, it often exhibits
“wasted” memory when the GPU is solely used for the fine-
tuning task. In response, we propose a low-order hybrid op-
timizer (LoHO) to improve the performance of MeZO while
keeping the memory usage within a budget, by integrating
a ZO optimizer and a FO optimizer. There are two kinds of
solutions for combining the ZO optimizer and the FO op-
timizer, i.e., the inter-layer solution and the intra-layer so-
lution. The inter-layer solution has three variants: (1) Z+F
which uses the ZO optimizer to train the shallow layers and
the FO optimizer to train the deep layers; (2) F+Z which
uses the FO optimizer to train the shallow layers and the ZO
optimizer to train the deep layers; (3) F+Z+F which uses the
FO optimizer to train the first several layers and the last sev-



eral layers, while using the ZO optimizer to train the mid-
dle layers. In comparison, the intra-layer solution updates
some parameters in a layer with the ZO optimizer, and the
rest are updated by the FO optimizer. Although these four
solutions theoretically can be used for hybrid optimization,
we explore the performance of inter-layer solution with Z+F
and intra-layer solution in this paper considering the mem-
ory efficiency problem. Next, we present the details of where
the peak memory footprint comes from during fine-tuning to
explain why choosing these two solutions.

The memory consumption mainly comes from three parts:
model parameters, gradients (may include the optimizer
states if using Adam), and activations. We take a multi-layer
perception (MLP) network as an example:

hN = MLPN (MLPN−1(...(MLP2(MLP1(h0)))...)), (2)

where h0 is the input, and N is the number of the MLP lay-
ers. The output of the i-th layer is hi = MLPi(hi−1) =
σ(Wihi−1), where σ is the activation function, and Wi is
the weight matrix with the bias term omitted here for sim-
plicity. If we denote the output of the i-th layer before per-
forming the activation function as xi = Wihi−1, then in a
back-propagation step with a loss function L, the gradient of
Wi is computed using the chain rule as follows.

∂L
∂Wi

=
∂L
∂hi

(
∏N

j=i+1

∂hj

∂xj

∂xj

∂hj−1
)
∂hi

∂xi

∂xi

∂Wi

=
∂L
∂hi

(
∏N

j=i+1
∆σjWj)∆σihi−1,

(3)

where ∆σ is the derivative of σ. Based on this, activations
{xj}Nj=i are cached in order to compute the gradient of Wi

even when {Wj}j>i are frozen.

Inter-layer Hybrid Optimization Upon analyzing the
peak memory consumption during fine-tuning, it is evident
that the positioning of the FO-optimized layers significantly
impacts the overall memory footprint. The Z+F solution,
which uses the ZO optimizer for the shallow layers and the
FO optimizer for the deep layers, can reduce more mem-
ory consumption compared with F+Z and F+Z+F solutions,
since they require caching more activations. Therefore, we
adopt this solution, as shown in the left part of Figure 1. In
this solution, the gradients computation of the ZO and FO
optimizer are independent. For the deep layers that are op-
timized by the FO optimizer, we perform back-propagation
to obtain their gradients. For the shallow layers that are opti-
mized by the ZO optimizer, we perform two forward passes
to estimate their gradients. Then we update the parameters
for the shallow layers and the deep layers separately. In this
paper, we integrate the recently proposed MeZO (Malladi
et al. 2024) with FO optimizers such as SGD and Adam to
demonstrate the effectiveness of inter-layer hybrid optimiza-
tion, although our method can work with other zeroth-order
optimizers (e.g. ZO-AdaMU (Jiang et al. 2024)).

Intra-layer Hybrid Optimization In addition to the inter-
layer hybrid optimization, we explore another strategy, i.e.,
intra-layer hybrid optimization, as shown in the right part
in Figure 1. A question raised here is how to determine the
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Figure 2: Gradient Frobenius norm comparison during fine-
tuning between SGD optimizer and MeZO optimizer.

parameter subset in a layer to be updated by the FO opti-
mizer. Although various strategies can be explored, we find
that random selection can achieve promising performance.
Specifically, for each weight matrix in a layer, we randomly
select a ratio of parameters to be updated by the FO op-
timizer, and the ZO optimizer updates the remainder. Al-
though this intra-layer hybrid optimization is simple, its ef-
ficient implementation is nontrivial. If we use the general
implementation of training neural networks, we inherently
necessitate the computation of gradients for the non-FO pa-
rameters as the gradient of each weight matrix is computed
as shown in Equation (3). Such implementation results in
degradation in memory efficiency, making the memory re-
quirement similar to that of full fine-tuning.

To tackle this challenge, we employ a sparse training tech-
nique based on a sparse operations library (Nikdan, Tabesh,
and Alistarh 2024), where the trainable parameters of the
FO optimizer and their gradients are stored in a sparse
format. Specifically, in the forward step, for a dense pre-
trained weight Wi, we add it with a trainable sparse ma-
trix ∆i where the non-zero values indicate the FO train-
able parameters of Wi. Then the output O is obtained by
O = X(Wi+∆i), where X is the input. For the correspond-
ing backward step, according to the chain rule, the gradients
of X and ∆i are ∂L

∂X = ∂L
∂O(Wi+∆i

)t and ∂L
∂∆i

= Xt ∂L
∂O

respectively. Note that ∂L
∂∆i

is still sparse by using the Sam-
pled Dense-Dense Matrix Multiplication (SDDMM) kernel.
It multiplies two dense matrices where only the required el-
ements of the output are computed. The gradient estimation
for the ZO optimizer is similar to that in the inter-layer hy-
brid optimization. However, in the intra-layer hybrid opti-
mization, we only estimate the gradients of the parameters
that belong to the ZO optimizer. Through this implemen-
tation, we can control memory consumption by setting the
proper ratio of parameters belonging to the FO optimizer.

Customized Learning Rates for Hybrid Optimization
In LoHO, we can use the same learning rate for the FO opti-
mizer and ZO optimizer. However, we find that the Frobe-
nius norm of the gradients obtained by the ZO optimizer
(e.g., MeZO) and the FO optimizer (e.g., SGD) are sig-
nificantly different, as shown in Figure 2. We transform
the whole model parameters into a vector and calculate
the Frobenius norm of its gradient G ∈ Rd as ∥G∥F =



√∑d
i=1 |Gi|2, where ∥∥F denotes the Frobenius norm. The

Frobenius norm of the gradients of MeZO is significantly
larger than that of SGD due to two main reasons. First, the
absolute magnitudes of the gradients in SGD often decrease
from the deep layers to the shallow layers, because most of
the absolute gradient values are smaller than one, and per-
forming the multiplication of the chain rule shown in Equa-
tion (3) makes the absolute gradient values smaller. In con-
trast, the calculation of the gradients of each layer in MeZO
is independent, and thus the absolute magnitudes of the gra-
dients in different layers maintain the same scales. Second,
there is a perturbation scale ϵ in the gradient estimation func-
tion (cf. Equation 1) which is commonly set to a value much
smaller than one (e.g., 0.01 or 0.001) (Malladi et al. 2024),
making the estimated gradient norm relatively larger than
that in back-propagation. Therefore, we need to set differ-
ent learning rates for the FO optimizer and the ZO optimizer
to balance the parameter update amplitude of the two kinds
of optimizers. Furthermore, as the FO optimizer often con-
verges faster than the ZO optimizer, we can speed up the
convergence rate in the hybrid optimization if we set the
learning rates suitably. Consequently, the slow convergence
problem of MeZO can be alleviated. In practice, the learning
rate of the ZO optimizer can be configured to be several or-
ders of magnitude lower than that of the FO optimizer. This
customized learning rate setting can be utilized in both inter-
layer hybrid optimization and intra-layer optimization.

Experiments
Datasets and Baselines
Datasets Following the settings as the work of Malladi
et al. (2024), we chose RoBERTa-large (Liu et al. 2019),
OPT-13B and OPT-30B (Zhang et al. 2023) as the pre-
trained backbones to conduct the experiments. Most of the
datasets we selected exhibit performance gaps exceeding
4% between MeZO and full fine-tuning with Adam. Thus,
for the RoBERTa-large experiments, we used the follow-
ing datasets: SST-2 (Socher et al. 2013), RTE (Cer et al.
2017), MNLI (Williams, Nangia, and Bowman 2018) and
SNLI (Bowman et al. 2015). We followed the settings of
Malladi et al. (2024), which used 512 examples per class for
both training and validation. Similarly, for the OPT experi-
ments, we used the following datasets, including RTE (Cer
et al. 2017), BoolQ (Clark et al. 2019), CB (De Marneffe, Si-
mons, and Tonhauser 2019), MultiRC (Khashabi et al. 2018)
and WIC (Pilehvar and Camacho-Collados 2018). We ran-
domly sampled 1,000 examples for training, 500 examples
for validation, and 1,000 examples for testing, which is the
same as MeZO (Malladi et al. 2024).

Baselines The baselines in our experiments include:

• Zero-shot: it directly performs inference based on a sin-
gle prompt without fine-tuning.

• ICL (In context learning): it performs inference with
prompts based on several labeled samples as input.

• MeZO (Malladi et al. 2024): it updates all the model pa-
rameters with the memory-efficient ZO-SGD optimizer.

Table 1: Experiments on the RoBERTa-large model. † indi-
cates results reported in MeZO (Malladi et al. 2024). Mem-
ory budget: a single RTX 4090 GPU with 24GB memory.

Dataset SST-2 RTE MNLI SNLI Average
Zero-shot† 79.0 51.4 48.8 50.2 57.4
MeZO† 93.30.7 78.62.0 78.30.5 83.01.0 83.3
MeZO-Adam† 93.30.6 79.21.2 79.60.4 85.30.8 84.4
LoHO-SGDinter 94.60.5 79.81.8 80.61.9 85.80.6 85.2
LoHO-Adaminter 95.00.6 81.11.1 83.20.4 87.60.9 86.7
LoHO-Adamintra 94.90.5 80.40.7 82.20.9 87.60.4 86.3

• MeZO-Adam (Malladi et al. 2024): it updates all the
model parameters with a variant of MeZO which uses
Adam optimizer instead of SGD. As the naive imple-
mentation of MeZO-Adam requires additional memory
to store the gradient momentum estimates, Malladi et al.
(2024) only investigate its performance on the RoBERTa-
large experiments. We followed their setting in this work.

Our methods include (i) LoHO-SGDinter and LoHO-
Adaminter, which are inter-layer hybrid optimization meth-
ods using SGD and Adam as the FO optimizer respectively,
and (ii) LoHO-Adamintra, which is an intra-layer hybrid op-
timization method using Adam as the FO optimizer.

Experimental Setup
A natural question raised in inter-layer hybrid optimization
is how to set the number of FO-optimized layers. Although
one can perform experiments to find out the best setting of
the number of FO-optimized layers, in this work, our main
experiments investigate the performance with the maximum
number of FO-optimized layers that can be used in a sin-
gle GPU. There are two reasons for this setting. On the one
hand, using more FO layers is more promising for achieving
better performance. On the other hand, we can best utilize
the GPU memory as much as possible, since the free/unused
memory is wasted when the GPUs are solely used for the
specific task to maximize the computation efficiency. Other
settings about the number of FO layers are explored in the
analysis experiments. Another question is how to set the
ratio of parameters to be updated by the FO optimizer in
each layer. To make a fair comparison between inter-layer
and intra-layer optimization, the only difference between
LoHO-Adaminter and LoHO-Adamintra is that a ratio of
parameters of the FO layers in LoHO-Adamintra is opti-
mized by the ZO optimizer. For more details about the set-
tings, please refer to the Appendix A. Our code is available
at https://github.com/Chan-1996/LoHO.

Main Results
Results on RoBERTa-large The performance compari-
son between different methods on RoBERTa-large is shown
in Table 1. First, we can see that the performance of LoHO-
SGDinter and LoHO-Adaminter substantially outperform
MeZO and MeZO-Adam by 1.9% and 2.3% on average ac-
curacy respectively, and LoHO-Adamintra also outperforms
MeZO-Adam by 1.9% on average accuracy, showing the po-
tential of making more efficient use of memory. Notably,



Table 2: Experiments on the OPT-13B model. Memory bud-
get: a single A800 GPU with 80GB memory.

Dataset RTE CB BoolQ WIC MultiRC Average
Zero-shot† 59.6 46.4 59.0 55.0 46.9 53.4
ICL† 62.1 57.1 66.9 50.5 53.1 57.9
MeZO† 66.1 67.9 67.6 61.1 60.1 64.6
LoHO-SGDinter 76.2 71.4 67.8 63.6 58.6 67.5
LoHO-Adaminter 77.6 69.6 64.7 65.4 67.2 68.9
LoHO-Adamintra 75.5 71.4 64.0 65.4 66.5 68.6

Table 3: Experiments on the OPT-30B model. Memory bud-
get: a single A800 GPU with 80GB memory.

Dataset RTE BoolQ WIC Average
Zero-shot† 52.0 39.1 50.2 47.1
ICL† 66.8 66.2 51.3 61.4
MeZO† 66.4 67.2 56.3 63.3
LoHO-SGDinter 68.0 68.1 61.0 65.7
LoHO-Adaminter 72.6 67.2 60.7 66.8
LoHO-Adamintra 71.5 65.8 62.7 66.7

the performance difference between MeZO-Adam (resp.
MeZO) and LoHO-Adaminter (resp. LoHO-SGDinter) is
statistically significant with a p-value=1.1e-2 (resp. 1.6e-
2) < 0.05 by a two-tailed t-test. Second, LoHO-Adaminter

outperforms LoHO-SGDinter, indicating that using the mo-
mentum information can improve the quality of the esti-
mated gradients. Finally, LoHO-Adamintra achieves com-
parable performance with LoHO-Adaminter while involv-
ing less trainable parameters for the FO optimizer.

Results on OPT-13B and OPT-30B The experimental re-
sults of different methods on OPT-13B and OPT-30B are
shown in Table 2 and Table 3 respectively. Our proposed
LoHO-SGDinter and LoHO-Adaminter outperform MeZO
by 2.9% and 4.3% in average accuracy respectively on OPT-
13B. Besides, our methods consistently outperform MeZO
on the OPT-30B model. However, the predictive accuracies
of our methods on OPT-30B are lower than that on OPT-
13B, due to the fewer FO layers used in the OPT-30B model
as we set the memory budget to a single GPU. In summary,
our methods are effective both for medium-sized language
models and large language models compared with MeZO,
and LoHO-Adaminter achieve the best performance among
different variants of the proposed LoHO.

Ablation Study
We performed the ablation study and presented the results
on two representative datasets, i.e., the MNLI dataset and
RTE dataset using RoBERTa-large as the backbone.

Inter-layer hybrid optimization The ablation baseline
for the proposed inter-layer hybrid optimization include: FT-
PT-SGD which freezes the layers optimized by MeZO in
LoHO-SGDinter method and only updates the rest of the
layers using SGD optimizer; FT-PT-Adam which freezes
the layers optimized by MeZO in LoHO-Adaminter method
and only updates the rest layers using Adam optimizer;
LoHO-SGDinter−elr and LoHO-Adaminter−elr which uses
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Figure 3: Ablation study of hybrid optimization.

the equal learning rate for the ZO optimizer and FO opti-
mizer. From Figure 3 (a), we can observe that methods based
on hybrid optimization outperform their corresponding vari-
ant based on a single optimizer. This is reasonable as in hy-
brid optimization, the searching space of the model is larger
and it is more promising to approach the global optimal dur-
ing the training process. Another finding is that due to the
noticeable difference in the gradient norm obtained by the
ZO and the FO optimizer, the experimental results of LoHO-
SGDinte−elr and LoHO-Adaminter−elr are unsatisfactory.
In summary, the ablation study further indicates the effec-
tiveness of the proposed method in this work.

Intra-layer hybrid optimization In LoHO, we used ran-
dom selection to obtain a subset of parameters to be updated
by the FO optimizer. Here, we investigate other strategies
to select the FO-optimized parameters, including absolute-
min and absolute-max. Concretely, the absolute-min (resp.
absolute-max) strategy leverages a ratio of parameters with
minimal (resp. maximal) absolute values to be updated
by the FO optimizer. As shown from Figure 3 (b), the
three strategies achieve comparable performance on both the
MNLI and RTE datasets. Therefore, we adopt the random
selection strategy, instead of other heuristic strategies.

Analysis on Different Settings for LoHO
Effect of the Number of FO Layers We study the effect
of different settings of FO layers in the inter-layer hybrid
optimization. In particular, we investigate utilizing differ-
ent numbers of FO layers and different positions of FO lay-
ers for LoHO-Adaminter on the MNLI dataset (i.e., LoHO-
Adaminter last n and LoHO-Adaminter first n). As shown
in Figure 4 (a), when the FO layers are the deep layers, the
model accuracy consistently improves on the MNLI dataset
as the number of FO layers increases, which is sensible.
However, placing FO layers in shallow layers significantly
reduces predictive accuracy compared to using the FO opti-
mizer for deep layers in most cases. One possible reason is
that the deep layers have a greater impact than the shallow
layers for this task. We leave this in future work to investi-
gate the importance and effect of each layer in the PLM.

Effect of the Ratio of FO-optimized Parameters We
also study the effect of the ratio of FO-optimized parame-
ters in the proposed intra-layer hybrid optimization. As pre-
sented in Figure 4 (b), we performed this analysis on the
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Figure 4: Effect of FO layers and the ratio of FO parameters.

Table 4: Memory usage comparison. The max sequence
lengths of RTE and MultiRC datasets are 288 and 746 re-
spectively. bz denotes batch size.

Model Method Memory (GB) GPU #FO layers
MeZO 4.4 RTX 4090 0

RoBERTa MeZO-Adam 9.3 RTX 4090 0
(RTE) LoHO-SGDinter 20.0 RTX 4090 12
(bz=64) LoHO-Adaminter 20.5 RTX 4090 12

LoHO-Adamintra 19.4 RTX 4090 12
OPT-13B MeZO 71.0 A800 0
(MultiRC) LoHO-SGDinter 76.9 A800 2
(bz=16) LoHO-Adaminter 78.9 A800 2

LoHO-Adamintra 76.6 A800 2
OPT-30B MeZO 65.1 A800 0
(RTE) LoHO-Adaminter 78.9 A800 4
(bz=8) LoHO-Adamintra 73.5 A800 4

MNLI dataset to demonstrate the model quality across var-
ious ratios of FO-optimized parameters in each FO layer.
With the ratio of FO-optimized parameters increasing, the
model performance improves consistently. Moreover, using
60% of FO-optimized parameters can achieve comparable
performance with that of using 100% FO-optimized param-
eters, which is akin to inter-layer hybrid optimization. How-
ever, improving the ratio of FO-optimized parameters also
requires more memory consumption. Therefore, it is a trade-
off between memory requirement and model performance.

Analysis on Memory Usage
Here, we show the memory profiling of fine-tuning using
different backbones in Table 4. Specifically, we selected the
RTE and MultiRC datasets to perform the memory profil-
ing. The number of the FO layers depends on the sequence
length of the specific dataset. For example, for the OPT-
30B model, the maximum number of FO layers is four us-
ing a single A800 GPU. Following Malladi et al. (2024), we
used Nvidia’s nvidia-smi command to monitor the peak GPU
memory usage. From the results, we can see that although
requiring additional memory compared with MeZO, our hy-
brid optimization method still can be fine-tuned in a single
GPU. The experimental results and the memory profiling re-
sults demonstrate that trading off between performance and
memory is effective.

Analysis on Convergence Rate
In this section, we demonstrate the convergence rate com-
parison between MeZO and our hybrid optimizer (here we

(a) MNLI (b) RTE

(c) MNLI (d) RTE

(e) MNLI (f) RTE

Figure 5: Convergence rate comparison on RoBERTa-large.

use inter-layer hybrid optimization). For a fair compari-
son, we compare MeZO with LoHO-SGDinter since both
of them use SGD optimizer. We show this comparison from
two perspectives (loss vs. training step and loss vs. training
time) on two datasets in Figure 5 (more results can be found
in Appendix B). It can be observed that the convergence rate
of LoHO-SGDinter is noticeably faster than that of MeZO
on these two datasets. Although LoHO-SGDinter needs to
perform three forward passes and a backward pass in a
training step, while MeZO only needs to perform two for-
ward passes, LoHO-SGDinter can reduce substantial train-
ing steps compared with MeZO. As a result, the overall
training time of LoHO-SGDinter is shorter than that of
MeZO. This comparison demonstrates that LoHO-SGDinter

has its advantages in terms of accuracy and time efficiency.
We also compare the convergence rate between LoHO-
SGDinter and LoHO-Adaminter, as shown in the lower part
of Figure 5. The convergence rate of LoHO-Adaminter is
faster than that of LoHO-SGDinter, which meets our expec-
tations as Adam also converges faster than SGD.

Comparison with First-order Fine-tuning
Here, we compare LoHO with full fine-tuning using first-
order optimizers. We present the performance comparison
and memory usage in Table 5 and Table 6 respectively. Full
FT (SGD) and Full FT (Adam) are full fine-tuning meth-
ods using the SGD optimizer and the Adam optimizer re-
spectively. LoHO achieves comparable performance with



Table 5: Performance comparison between LoHO and fine-
tuning with first-order optimizers on RoBERTa-large.

Dataset SST-2 RTE MNLI SNLI Average
Full FT (SGD) 95.1 81.1 80.5 85.5 85.6
Full FT (Adam) 94.9 83.0 83.6 87.2 87.2
LoHO-SGDinter 94.6 79.8 80.6 85.8 85.2
LoHO-Adaminter 95.0 81.1 83.2 87.6 86.7

Table 6: Memory usage comparison.

Model Method Mem.(GB) GPU #FO layers
RoBERTa Full FT (SGD) 43.1 A800 24
(RTE) Full FT (Adam) 45.8 A800 24
(bz=64) LoHO-SGDinter 20.0 RTX 4090 12

LoHO-Adaminter 20.5 RTX 4090 12
OPT-13B Full FT (Adam) (bz=1) 316.0 4 × A800 40
(MultiRC) LoHO-Adaminter(bz=16) 78.9 1 × A800 2

Full FT (Adam), with over 50% less memory usage on
RoBERTa-large. On OPT-13B, it needs four A800 GPUs to
run Full FT (Adam) with a batch size of one, while LoHO
can be run with a single A800 GPU and a batch size of
16. Besides, LoHO can achieve comparable predictive ac-
curacy or even outperform Full FT (Adam) on some tasks
with OPT-13B backbone. For example, on the RTE dataset
whose sequence length is shorter than 300 (so we can use
more FO layers in an A800 GPU), LoHO achieves 77.6%
while Full FT (Adam) achieves 70.8% in accuracy. How-
ever, on datasets with longer sequence lengths, such as Mul-
tiRC, the accuracy of LoHO and Full FT (Adam) is 67.2%
and 71.1%, respectively, as we can only use two FO lay-
ers within the memory budget. Nevertheless, if improving
the memory budget, LoHO can approach the performance of
Full FT (Adam) on datasets with longer sequence lengths.

Related Work
Here, we discuss the existing work on zeroth-order and first-
order optimization and hybrid optimizers.

Zeroth-order Optimization
ZO optimization has been extensively studied in the realm of
convex and strongly convex objectives (Jamieson, Nowak,
and Recht 2012; Agarwal et al. 2012; Raginsky and Rakhlin
2011). As a kind of backpropagation-free optimization
method, ZO optimization approximates gradients based on
finite differences. It has long been studied and achieved re-
markable success in solving various machine learning prob-
lems, such as adversarial attack and defense (Tu et al. 2019;
Ilyas et al. 2018; Shu et al. 2022; Zhao et al. 2019), auto-
mated machine learning (Gu et al. 2021; Wang et al. 2022),
policy search in reinforcement learning (Vemula, Sun, and
Bagnell 2019), visual prompting for transfer learning (Tsai,
Chen, and Ho 2020) and so on.

Recently, Malladi et al. (2024) propose a memory-
efficient zeroth-order optimizer (MeZO) that adapts the clas-
sical ZO-SGD method to operate in place, making large
language model fine-tuning as efficient as inference. De-
spite its memory efficiency, MeZO still exhibits a signifi-
cant performance drop in terms of predictive accuracy and

slower convergence speed compared to full fine-tuning on
various tasks. Several techniques have been developed to
address these problems, including Sparse MeZO (Liu et al.
2024) which leverages gradient sparsity to improve both
predictive accuracy and convergence speed of MeZO, ZO-
AdaMU (Jiang et al. 2024) which adapts the simulated per-
turbation with momentum in the stochastic approximation
to improve convergence stability and rate in ZO-SGD, and
HiZOO (Zhao et al. 2024) which leverages the diagonal Hes-
sian to enhance the convergence and predictive accuracy of
MeZO. Although efforts have been invested to improve the
MeZO, there is still a performance gap between these meth-
ods and first-order based methods on complex tasks.

First-order Optimization
There are many classical first-order optimization methods,
such as SGD, Momentum, Adagrad (Duchi, Hazan, and
Singer 2011) and ADADELTA (Zeiler 2012), which are fun-
damental in many research areas such as computer vision
and natural language processing. However, with the emer-
gence of large-scale models, the effectiveness of such con-
ventional first-order optimization methods has been chal-
lenged. This is because their convergence rate needs to be
improved to accelerate the training of large-scale models.
Adam (Kingma and Ba 2014) has emerged and become a
dominant optimizer for training and fine-tuning large-scale
models due to its fast convergence speed. To alleviate the
over-fitting problem, AdamW (Loshchilov and Hutter 2018)
proposes to add a weight decay coefficient in Adam. To ac-
celerate the training of large-scale models with large batch
sizes, LAMB (You et al. 2019) proposes to employ the prin-
cipled inter-layer adaptation strategy.

Hybrid Optimization
Hybrid optimization has not been extensively studied. Lan-
dro, Gallo, and La Grassa (2020) combine SGD and Adam
by using constant weights to balance the contributions of
gradient estimates from each optimizer. Similar to the stan-
dard fine-tuning with FO optimizers, this method requires
significant memory. Ansaripour et al. (2022) propose hy-
brid optimization at the model level under the decentralized
optimization setting in a distributed system (some agents are
optimized by ZO; others are optimized by FO), which is sig-
nificantly different from ours. The hybrid optimization pro-
posed in our work is layer level (i.e., inter-layer strategy) or
weight level (i.e., intra-layer strategy).

Conclusion
In this work, we have proposed a Low-order Hybrid
Optimizer (LoHO) for language model fine-tuning. In
LoHO, we have proposed two hybrid optimization strategies
namely inter-layer hybrid optimization and intra-layer hy-
brid optimization. The two proposed strategies are designed
to maximize memory usage to the fullest extent, by consid-
ering the gradient back-propagation and leveraging the gra-
dient sparsity respectively. We have experimentally demon-
strated the effectiveness of LoHO both in predictive accu-
racy and convergence rate on various datasets and different
pre-trained backbones within a memory budget.
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