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Abstract

The k-fold cross-validation is commonly used to evaluate the
effectiveness of SVMs with the selected hyper-parameters. It
is known that the SVM k-fold cross-validation is expensive,
since it requires training k SVMs. However, little work has
explored reusing the h™ SVM for training the (h 4 1) SVM
for improving the efficiency of k-fold cross-validation. In this
paper, we propose three algorithms that reuse the A" SVM for
improving the efficiency of training the (h 4 1)™ SVM. Our
key idea is to efficiently identify the support vectors and to ac-
curately estimate their associated weights (also called alpha
values) of the next SVM by using the previous SVM. Our ex-
perimental results show that our algorithms are several times
faster than the k-fold cross-validation which does not make
use of the previously trained SVM. Moreover, our algorithms
produce the same results (hence same accuracy) as the k-fold
cross-validation which does not make use of the previously
trained SVM.

1 Introduction

In order to train an effective SVM classifier!, the hyper-
parameters (e.g. the penalty C) need to be selected care-
fully. The k-fold cross-validation is a commonly used pro-
cess to evaluate the effectiveness of SVMs with the selected
hyper-parameters. It is known that the SVM k-fold cross-
validation is expensive, since it requires training k& SVMs
with different subsets of the whole dataset. To improve
the efficiency of k-fold cross-validation?, some recent stud-
ies (Wen et al. 2014; Athanasopoulos et al. 2011) exploit
modern hardware (e.g. Graphic Processing Units). Chu et
al. (Chu et al. 2015) proposed to reuse the k linear SVM clas-
sifiers trained in the k-fold cross-validation with parameter
C for training the k linear SVM classifiers with parameter
(C 4+ A). However, little work has explored the possibility
of reusing the K" (where h € {1,2, ..., (k — 1)}) SVM for
improving the efficiency of training the (h+1)" SVM in the
k-fold cross-validation with parameter C.

*Jian Chen is the corresponding author.
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"For ease of presentation, we discuss binary classification, al-
though our approaches are applicable to multi-class classification
and regression.

*Without confusion, we omit “SVM” in SVM k-fold cross-
validation.

In this paper, we propose three algorithms that reuse the
h™ SVM for training the (h + 1) SVM in k-fold cross-
validation. The intuition behind our algorithms is that the
hyperplanes of the two SVMs are similar, since many train-
ing instances (e.g. more than 80% of the training instances
when k is 10) are the same in training the two SVMs. Note
that in this paper we are interested in k& > 2, since when
k = 2 the two SVMs share no training instance.

We present our ideas in the context of training SVMs
using Sequential Minimal Optimisation (SMO) (Platt and
others 1998), although our ideas are applicable to other
solvers (Osuna, Freund, and Girosi 1997; Joachims 1999).
In SMO, the hyperplane of the SVM is represented by a sub-
set of training instances together with their weights, namely
alpha values. The training instances with alpha values larger
than 0 are called support vectors. Finding the optimal hyper-
plane is effectively finding the alpha values for all the train-
ing instances. Without reusing the previous SVM, the alpha
values of all the training instances are initialised to 0. Our
key idea is to use the alpha values of the A SVM to initialise
the alpha values for the (h + 1) SVM. Initialising alpha
values using the previous SVM is called alpha seeding in
the literature of studying leave-one-out cross-validation (De-
Coste and Wagstaff 2000). At some risk of confusion to the
reader, we will use “alpha seeding” and “initialising alpha
values” interchangeably, depending on which interpretation
is more natural.

Reusing the A™ SVM for training the (h+ 1) SVM in k-
fold cross-validation has two key challenges. (i) The train-
ing dataset for the K™ SVM is different from that for the
(h + 1)" SVM, but the initial alpha values for the (h + 1)
SVM should be close to their optimal values; improper ini-
tialisation of alpha values leads to slower convergence than
that without reusing the h" SVM. (ii) The alpha value ini-
tialisation process should be very efficient; otherwise, the
time spent in the initialisation may be larger than the time
saved in the SVM training. This is perhaps the reason that
existing work either (i) reuses the A SVM trained with pa-
rameter C for training the A" SVM with parameter (C' + A)
where both SVMs have the identical training dataset (Chu et
al. 2015), or (ii) only studies alpha seeding in the leave-one-
out cross-validation (DeCoste and Wagstaff 2000; Lee et al.
2004) which is a special case of k-fold cross-validation.

Our key contributions in this paper are the proposal of



three algorithms (where we progressively refine one algo-
rithm after the other) for reusing the alpha values of the A™
SVM for the (h + 1) SVM. (i) Our first algorithm aims
to initialise the alpha values to their optimal values for the
(h + 1) SVM by exploiting the optimality condition of the
SVM training. (ii) To efficiently compute the initial alpha
values, our second algorithm only estimates the alpha values
for the newly added instances, based on the assumption that
all the shared instances between the A™ and the (h + 1)®
SVMs tend to have the same alpha values. (iii) To further
improve the efficiency of initialising alpha values, our third
algorithm exploits the fact that a training instance in the h"
SVM can be potentially replaced by a training instance in
the (h+1)™ SVM. Our experimental results show that when
k = 10, our algorithms are several times faster than the k-
fold cross-validation in LibSVM; when k& = 100, our algo-
rithm dramatically outperforms LibSVM (32 times faster in
the Madelon dataset). Moreover, our algorithms produce the
same results (hence same accuracy) as LibSVM.

The remainder of this paper is organised as follows. We
describe preliminaries in Section 2. Then, we elaborate our
three algorithms in Section 3, and report our experimental
study in Section 4. In Section 5 and 6, we review the related
literature, and conclude this paper.

2 Preliminaries

Here, we give some details of SVMs, and discuss the rela-
tionship of two rounds of k-fold cross-validation.

Support Vector Machines

An instance x; is attached with an integer y; € {+1,—1} as
its label. A positive (negative) instance is an instance with
the label of +1 (—1). Given a set X’ of n training instances,
the goal of the SVM training is to find a hyperplane that sep-
arates the positive and the negative training instances in X’
with the maximum margin and meanwhile, with the mini-
mum misclassification error on the training instances.

To enable handily mapping training instances to other data
spaces by kernel functions, finding the hyperplane can be
expressed in a dual form (Bennett and Bredensteiner 2000)

as the following quadratic programming problem (Nocedal
and Wright 2006).

n 1 T
argglax ;al — 2a Qo
n (H
subjectto 0 < a; < C,Vi € {1,...,n}; Zyiozi =0
i=1

where a« € R"™ is also called a weight vector, and «; de-
notes the weight of x;; Q denotes an n x n matrix [Q; ;]
and Q; ; = v;y; K (2;, x;), and K (x;, ;) is a kernel value
computed from a kernel function (e.g. Gaussian kernel,
K(z;, ;) = exp{—7||®; — x;||*}). Then, the goal of the
SVM training is to find the optimal a. If «; is greater than
0, x; is called a support vector.

In this paper, we present our ideas in the context of using
SMO to solve Problem (1), although our key ideas are ap-
plicable to other solvers (Osuna, Freund, and Girosi 1997;
Joachims 1999). The training process and the derivation of

(a) k subsets

Figure 1: k-fold cross-validation

the optimality condition are unimportant for understanding
our algorithms, and hence are not discussed here. Next, we
present the optimality condition for the SVM training which
will be exploited in our proposed algorithms in Section 3.

The optimality condition for the SVM training In SMO,
a training instance x; is associated with an optimality indi-
cator f; which is defined as follows.

fi=vi Y a;Qi; —ui (@)
j=1
The optimality condition of the SVM training is the Karush-
Kuhn-Tucker (KKT) (Kuhn 2014) condition. When the op-
timality condition is met, we have the optimality indicators
satisfying the following constraint.

min{ f;|¢ € I, U I} > max{fi|i € [; U In} 3)
where
Iy = {i|l@; € X,0 < a; < C},
I, ={ilz; € X,yi =+1,a;, =0} U
{ile; € X,y = —1,0, = C}, 4)
I ={ilg;, e X,y =+4+1,a, =C} U
{i|@; € X,yi = —1,0; = 0}.

As observed by Keerthi et al. (Keerthi et al. 2001), Con-
straint (3) is equivalent to the following constraints.

fi>bfori € I,; fi=bfori e I,; fi<bforiéel 5)

where b is the bias of the hyperplane. Our algorithms pro-
posed in Section 3 exploit Constraint (5).

Relationship between the 1™ round and the
(h + 1)™ round in k-fold cross-validation

The k-fold cross-validation evenly divides the dataset into &
subsets. One subset is used as the test set 7, while the rest
(k—1) subsets together form the training set X'. Suppose we
have trained the A" SVM (in the A" round) using the 1% to
(h— 1) and (h + 1)™ to k™ subsets as the training set, and
the h™ subset serves as the testing set (cf. Figure 1b). Now
we want to train the (h+1)™ SVM. Then, the 1% to (h— 1)
subsets and the (h + 2)™ to k™ subsets are shared between
the two rounds of the training. To convert the training set
used in the A™ round to the training set for the (h + 1)®
round, we just need to remove the (h + 1) subset from and
add the h™ subset to the training set used in the A" round.
Hereafter, we call the A™ and (h + 1)™ SVMs the previous
SVM and the next SVM, respectively.



For ease of presentation, we denote the shared subsets—
(k — 2) subsets in total—by S, denote the unshared subset
in the training of the previous round by R, and denote the
subset for testing in the previous round by 7. Let us con-
tinue to use the example shown in Figure 1, S consists of
the 1% to (h — 1)*" subsets and the (h + 2)™ to k™ subsets;
R is the (h + 1)™ subset; T is the A™ subset. To convert the
training set X used in the 2" round to the training set X’ for
the (h + 1) round, we just need to remove R from X and
add T to X,ie. X' = TUX\R =T US. We denote three
sets of indices as follows corresponding to R, 7 and S by
I, I and Is, respectively.

Ir = {z|a}z S R},IT = {z|ac1 S T},Is = {z|a}z S S} (6)

Two rounds of the k-fold cross-validation often have
many training instances in common, i.e. large S. E.g. when
k is 10, % (or ~ 90%) of instances in X and X’ are the in-
stances of S. Next, we study three algorithms for reusing
the previous SVM to train the next SVM.

3 Reusing the previous SVM in £-fold
cross-validation

We present three algorithms that reuse the previous SVM for
training the next SVM, where we progressively refine one
algorithm after the other. (i) Our first algorithm aims to ini-
tialise the alpha values ' to their optimal values for the next
SVM, based on the alpha values o of the previous SVM. We
call the first algorithm Adjusting Alpha Towards Optimum
(ATO). (ii) To efficiently initialise o', our second algorithm
keeps the alpha values of the instances in S unchanged (i.e.
o, = ag for s € Ig), and estimates «; for t € Ir. This
algorithm effectively performs alpha value initialisation via
replacing R by 7 under constraints of Problem (1), and
hence we call the algorithm Multiple Instance Replacement
(MIR). (iii) Similar to MIR, our third algorithm also keeps
the alpha values of the instances in S unchanged; different
from MIR, the algorithm replaces the instances in R by the
instances in 7 one at a time, which dramatically reduces the
time for initialising «’. We call the third algorithm Single
Instance Replacement (SIR). Next, we elaborate these three
algorithms.

Adjusting Alpha Towards Optimum (ATO)

ATO aims to initialise the alpha values to their optimal val-
ues. It employs the technique for online SVM training,
designed by Karasuyama and Takeuchi (Karasuyama and
Takeuchi 2009), for the k-fold cross-validation. In the on-
line SVM training, a subset R of outdated training instances
is removed from the training set X', i.e. X’ = X'\ R; a subset
T of newly arrived training instances is added to the training
set, i.e. X' = X’ U T. The previous SVM trained using X
is adjusted by removing and adding subsets of instances to
obtain the next SVM.

In the ATO algorithm, we first construct a new training
dataset X’ where X' = § = X \ R. Then, we gradually
increase alpha values of the instances in 7 (i.e. increase o}
for t € I1), denoted by a’T, to (near) their optimal values;

meanwhile, we gradually decrease the alpha values of the
instances in R (i.e. decrease av,. forr € Iz), denoted by o,
to 0. Once the alpha value of an instance in 7 satisfies the
optimal condition (i.e. Constraint (5)), we move the instance
from 7 to the training set X”/; similarly once the alpha value
of an instance in R equals to 0 (becoming a non-support
vector), we remove the instance from R. ATO terminates
the alpha value initialisation when R is empty.

Updating the alpha values Next, we present details of in-
creasing o and decreasing a. We denote the step size
for an increment on o and decrement on o’ by 7. From
constraints of Problem (1), all the alpha values must be in
[0,C]. Hence, for t € I the increment of o, denoted by
Aca, cannot exceed (C' — af); for r € Ig the decrement
of ., denoted by A/, cannot exceed a.. We denote the
change of all the alpha values of the instances in 7 by Ao’
and the change of all the alpha values of the instances in 7%
by Aa’,. Then, we can compute Aa’s- and Aa’, as fol-
lows.

Aoy =n(C1 - o), Aar =-—nag @)
where 1 is a vector with all the dimensions of 1. When
we add Ao’ to o and Aoy to o'y, constraints of Prob-
lem (1) must be satisfied. However, after adjusting o and
o, the constraint >, ; ;. r, ¥i; = 0 is often vio-
lated, so we need to adjust the alpha values of the training
instances in X’ (recall that at this stage X’ = S). We pro-
pose to adjust the alpha values of the training instances in
X' which are also in M where x; € M giveni € I,,,. In
summary, after increasing o and decreasing o, we ad-
just oy So when adjusting oy, a; and ) (, we have the
following equation according to constraints of Problem (1).

>yt + Y yeAai+ Y yildal =0 ®)

telr relg i€1m,

M often has a large number of instances, and there are many
possible ways to adjust o’y ,. Here, we propose to use the
adjustment on oy , that ensures all the training instances in
M satisfy the optimality condition (i.e. Constraint (5)). Ac-
cording to Constraint (5), we have Vi € I, and f; = b.
Combining f; = b and the definition of f; (cf. Equation (2)),
we have the following equation for each ¢ € I,,,.

vi( D QiiAal+ Y QirAar+ > QijAa)) =0 (9)

telr relgr JE€EIm

Note that y; can be omitted in the above equation. We can
rewrite Equation (8) and Equation (9) using the matrix nota-
tion for all the training instances in M.

T T / T
s yr | |[Aar YM | Aol — 0
|:QM,7' QM,R:| |:Aa;2:| * |:QM,M:| o

We substitute Ao’ and A, using Equation (7); the above
equation can be rewritten as follows.

Ady = —nd (10)

T —1 T T /

_ | ym Y7 yr | |C1—ar
where ® |:QM,M:| |:QM,T QM,R] { oy } If
the inverse of the matrix in Equation (10) does not exist,
we find the pseudo inverse (Greville 1960)

Computing step size 7: Given an 7, we can use Equa-
tions (7) and (10) to adjust &y, &’ and ;. The changes



of the alpha values lead to the change of all the optimality
indicators f. We denote the change to f by A f which can
be computed by the following equation derived from Equa-
tion (2).

YOAf =n[-Qx P+Qx (C1— ar)— QX,ROL;Z] an
where © is the hadamard product (i.e. element-wise prod-
uct (Schott 2005)).

If the step size 7 is too large, more optimality indicators
tend to violate Constraint (5). Here, we use Equation (11)
to compute the step size n by letting the updated f; (where
1 € I, U 1)) just violate Constraint (5), i.e. f; + Af; = b for
i€, Ul

Updating f After updating o', we update f using Equa-
tions (2) and (11). Then, we update the sets I,,,, I,, and I
according to Constraint (5).

The process of computing 7 and updating o’ and f are
repeated until R is empty.

Termination When R is empty, the SVM may not be opti-
mal, because the set 7 may not be empty. The alpha values
obtained from the above process serve as the initial alpha
values for the next SVM. To obtain the optimal SVM, we use
SMO to adjust the initial alpha values until optimal condi-
tion is met. The pseudo-code of the full algorithm is shown
in Algorithm 1 in Wen et al. (2016).

Multiple Instance Replacement (MIR)

A limitation of ATO is that it requires adjusting all the al-
pha values for an unbounded number of times (i.e. until R
is empty). Hence, the cost of initialising the alpha values
may be very high. In what follows, we propose the Multi-
ple Instance Replacement (MIR) algorithm that only needs
to adjust o/ once. The alpha values of the shared instances
between the two rounds stay unchanged (i.e. as = as),
the intuition is that many support vectors tend to stay un-
changed. The key idea of MIR is to replace R by T at once.

We obtain the alpha values of the instances in S and R
from the previous SVM, and those alpha values satisfy the
following constraint.

> ysast+ D> yron =0 (12)

s€ls relr

In the next round of SVM k-fold cross-validation, R is
removed and 7 is added. When reusing alpha values, we
should guarantee that the above constraint holds. To im-
prove the efficiency of initialising alpha values, we do not
change alpha values in first term of Constraint (12), i.e.
ZSEI S YsUs.

To satisfy the above constraint after replacing R by 7T, we
only need to ensure >, yray = D, yray. Next, we
present an approach to compute o’r-.

According to Equation (2), we can rewrite f; before re-
placing R by 7 as follows.

fi=wi( Z arQir + Z asQis — 1) (13)
relg sels
After replacing R by T, f; can be computed as follows.
fi=u() alQin+ Y ahQis— 1) (14)

telT s€lg

where o/, = ay, i.e. the alpha values in S stay unchanged.
We can compute the change of f;, denoted by A f;, by sub-
tracting Equation (13) from Equation (14). Then, we have
the following equation.

Afi = yi[z Qi — Z arQir] (15)

telr relg

To meet the constraint y;a; = 0 after replacing R by T,
we have the following equation.

D ysast+ D> yrar =D ysdit+ Y i

s€ls relr s€ls telr

As o, = ag, we rewrite the above equation as follows.

Doyrar =Y wah (16)

relg telr

We write Equations (15) and (16) together as follows.

yGAf‘i‘QX,RaR o Qx 1|
At B

Similar to the way we compute A f; in the ATO algorithm,
given i in I, U I; we compute A f; by letting f; + Af; = b
(cf. Constraint (5)). Given i in I,,, we set A f; = 0 since we
try to avoid f; violating Constraint (5). Once we have A f,
the only unknown in Equation (17) is o/-.

Finding an approximate solution for o/~ The linear sys-
tem shown in Equation (17) may have no solution. This is
because s may also need to be adjusted, but is not consid-
ered in Equation (17). Here, we propose to find the approx-
imate solution o for Equation (17) by using linear least
squares (Lawson and Hanson 1974) and we have the follow-
ing equation.

Qx T} r {y OAf+ QX,RQR:| _ {QX 7—:| T |:QX 7—:| ’
{ yr Y% o R yr |7

Then we can compute o using the following equation.

afy =
Qrr|” |:QX T:| -1 [QX T]T {y@ Af+ QX,RO‘R]
({yﬂ i) vk - ax

(18)

If the inverse of the matrix in above equation does not exist,
we find the pseudo inverse similar to ATO.

Adjusting o~ Due to the approximation, the constraints
0<a, <Cand Zreln Yp Oty = ZtEIT yyy may not hold.
Therefore, we need to adjust o to satisfy the constraints,
and we perform the following steps.

o Ifa; <0,weseta; =0;ifa; > C, weseta) =C.

o If ZtEIT Yoy > .ZTEIR yron  (if .ZtEIT yeay <

reln yra), we uniformly decrease (increase) all the

yeag until 35, yrag = 37 o1 Yroy, subjected to the
constraint 0 < o < C.

After the above adjusting, o} satisfies the constraints 0 <
ap < Candd p yrar = >, cp yecy. Then, we use
SMO with o’ (where o = asUa’) as the initial alpha val-
ues for training an optimal SVM. The pseudo-code of whole
algorithm is shown in Algorithm 2 in Wen et al. (2016).



Single Instance Replacement (SIR)

Both ATO and MIR have the following major limitation: the
computation for o> is expensive (e.g. require computing
the inverse of a matrix). The goal of the ATO and MIR is to
minimise the number of instances that violate the optimal-
ity condition. In the algorithm we propose here, we try to
minimise A f; with a hope that the small change to f; will
not violate the optimality condition. This slight change of
the goal leads to a much cheaper computation cost on com-
puting o-. Our key idea is to replace the instance in R one
after another with a similar instance in 7. Since we replace
one instance in R by an instance in 7 each time, we call
this algorithm Single Instance Replacement (SIR). Next, we
present the details of the SIR algorithm.

According to Equation (2), we can rewrite f; of the previ-
ous SVM as follows.

fi=w( Y

J€IsUIR\{p}

a; Qi+ 0pQip — 1) 19

where p € Ir. We replace the training instance x, by x,
where ¢ € I7, and then the value of f; after replacing x,, by
x4 is as follows.

fi=ul Y

JEIsUIR\{p}

Qi+ agQig — 1) (20)

where o, = «,,. By subtracting Equation (19) from Equa-
tion (20), the change of f;, denoted by Af;, can be com-

puted by Af; = y;0,(Qiq — Qip). Recall that Q; ; =
yiy; K (x;, ;). We can write A f; as follows.

Af; = ap(yqK(:Ei7il:q) — ypK(wi7$p)) 21

Recall also that in SIR we want to replace x,, by an instance,
denoted by x4, that minimises A f;. When o, = 0, A f; has
no change after replacing x, by x,. In what follows, we
focus on the case that o, > 0.

We propose to replace x,, by x, if , is the “most similar”
instance to x,, among all the instances in 7. The instance
x4 is called the most similar to the instance @, among all
the instances in 7, when the following two conditions are
satisfied.

e x, and x4 have the same label, i.e. y, = y,.
o K(xp,xq) > K(xp, ;) forallz, € T.

Note that in the second condition, we use the fact that the
kernel function approximates the similarity between two in-
stances (Balcan, Blum, and Srebro 2008). If we can find the
most similar instance to each instance in R, the constraint
Doserg YsQs T Do yrey = 0 will be satisfied after the
replacing R by 7. Wﬁereas, if we cannot find any instance
in 7 that has the same label as x,, we randomly pick an
instance from 7 to replace ,. When the above situation
happens, the constraint > ; ysa + > ey yray = 0is
violated. Hence, we need to adjust o/T to make the con-
straint hold. We use the same approach as MIR to adjusting
a’r. The pseudo code for SIR is given in Algorithm 3 in
Wen et al. (2016).

4 Experimental studies

We empirically evaluate our proposed algorithms using five
datasets from the LibSVM website (Chang and Lin 2011).
All our proposed algorithms were implemented in C++. The
experiments were conducted on a desktop computer running
Linux with a 6-core E5-2620 CPU and 128GB main mem-
ory. Following the common settings, we used the Gaus-
sian kernel function and by default k is set to 10. The
hyper-parameters for each dataset are identical to the ex-
isting studies (Catanzaro, Sundaram, and Keutzer 2008;
Smirnov, Sprinkhuizen-Kuyper, and Nalbantov 2004; Wu
and Li 2006). Table 2 gives more details about the datasets.
We study the k-fold cross-validation under the setting of bi-
nary classification.

Next, we first show the overall efficiency of our algo-
rithms compared with LibSVM. Then, we study the effect
of varying k from 3 to 100 in the k-fold cross-validation.

Overall efficiency on different datasets

We measured the total elapsed time of each algorithm to test
their efficiency. The total elapsed time consists of the al-
pha initialisation time and the time for the rest of the 10-fold
cross-validation. The result is shown in Table 1. To make the
table to fit in the page, we do not provide the total elapsed
time of ATO, MIR and SIR for each dataset. But the to-
tal elapsed time can be easily computed by adding the time
for alpha initialisation and the time for the rest. Note that
the time for “the rest” (e.g. the fourth column of Table 1) in-
cludes the time for partitioning dataset into 10 subsets, train-
ing (the most significant part) and classification.

As we can see from the table, the total elapsed time of
MIR and SIR is much smaller than LibSVM. In the Madelon
dataset, MIR and SIR are about 2 times and 4 times faster
than LibSVM, respectively. In comparison, ATO does not
show obvious advantages over MIR and SIR, and is even
slower than LibSVM on the Adult dataset due to spending
too much time on alpha value initialisation. Another ob-
servation from the table is SIR spent the smallest amount
of time on the alpha initialisation among our three algo-
rithms, while SIR has the similar “effectiveness” as MIR on
reusing the alpha values. The effectiveness on reusing the
alpha values is reflected by the total number of training itera-
tions during the 10-fold cross-validation. More specifically,
according to the ninth to twelfth columns of Table 1, Lib-
SVM often requires more training iterations than MIR and
SIR; SIR and MIR have similar number of iterations, and in
some datasets (e.g. Adult and MNIST) SIR needs fewer it-
erations, although SIR saves much time in the initialisation.
More importantly, the improvement on the efficiency does

Table 2: Datasets and kernel parameters

Dataset | Cardinality | Dimension C v
Adult 32,561 123 100 0.5
Heart 270 13 2182 0.2

Madelon 2,000 500 1 0.7071

MNIST 60,000 780 10 0.125

Webdata 49,749 300 64 7.8125




Table 1: Efficiency comparison (k = 10)

elapsed time (sec) number of iterations
dataset . ATO MIR SIR .
libsvm 1nit. the rest 1nit. the rest | init. | the rest libsvm ATO MIR SIR

adult 6,783 3,824 5,738 2,034 3,717 57 3,705 | 397,565 | 361,914 | 318,169 | 3.2x10°

heart 0.36 0.016 0.19 0.058 0.083 | 0.003 0.24 6,988 4,882 1,443 3,968
madel. 54.5 2.0 24.6 12.8 1.2 13.5 9,000 5,408 1,800 1,800

mnist | 1.7x10° | 35,410 | 69,435 | 30,897 | 38,696 | 1,416 | 36,406 | 1.3x10% | 575,250 | 280,820 | 2.6x10°
webda. | 24,689 | 11,166 | 9,394 6,172 7,574 133 11,901 | 783,208 | 245,385 | 230,357 | 3.6x10°

Table 3: Effect of k on total elapsed time (sec)

Dataset . k=3 - k = 100
libsvm SIR libsvm SIR
Adult 733 683 41,288 33,877
Heart 0.09 0.08 3.39 1.17
Madelon 8.8 7.8 620 19.5
MNIST | 29,692 | 22,296 | 2,508,684 | 61,016
Webdata | 3,941 2,342 190,817 31,918

not sacrifice the accuracy. Due to the space limitation, we
omit providing the accuracy comparison here. More details
about accuracy can be found in Wen et al. (2016).

Effect of varying k&

We varied k from 3 to 100 to study the effect of the value of
k. Note that the elapsed time for £ = 10 can be calculated
from Table 1. Moreover, because conducting this set of ex-
periments is very time consuming especially when k£ = 100,
we only compare SIR (the best among the our three algo-
rithms according to results in Table 1) with LibSVM.

Table 3 shows the results. As LibSVM was very slow
when £ = 100 on the MNIST dataset, we only ran the first
30 rounds to estimate the total time. As we can see from
the table, SIR consistently outperforms LibSVM. When k =
100, SIR is about 32 times faster than LibSVM in the Made-
lon dataset. The experimental result for the leave-one-out
(i.e. k equals to the dataset size) cross-validation is similar
to k = 100, and is available in Figure 2 in Wen et al. (2016).

5 Related work

We categorise the related studies into two groups: on alpha
seeding, and on online SVM training.

Related work on alpha seeding

DeCoste and Wagstaff (2000) first introduced the reuse of al-
pha values in the SVM leave-one-out cross-validation. Their
method (i.e. AVG discussed in Supplementary Material) has
two main steps: (i) train an SVM with the whole dataset;
(i) remove an instance from the SVM and distribute the as-
sociated alpha value uniformly among all the support vec-
tors. Lee et al. (Lee et al. 2004) proposed a technique (i.e.
TOP discussed in Supplementary Material) to improve the
above method. Instead of uniformly distributing alpha value
among all the support vectors, the method distributes the al-
pha value to the instance with the largest kernel value.

Existing studies called “Warm Start” (Kao et al. 2004;
Chu et al. 2015) apply alpha seeding in selecting the parame-
ter C' for linear SVMs. Concretely, o obtained from training
the h'" linear SVM with C is used for training the A" linear
SVM with (C' + A) in the two k-fold cross-validation pro-
cesses by simply setting o’ = ra where r is a ratio com-
puted from C' and A. In those studies, no alpha seeding
technique is used when training the k¥ SVMs with parame-
ter C. Our work aims to reuse the 2" SVM for training the
(h+1)"™ SVM for k-fold cross-validation with parameter C.

Related work on online SVM training

Gauwenberghs and Poggio (2001) introduced an algo-
rithm for training SVM online where the algorithm han-
dles adding or removing one training instance. Karasuyama
and Takeuchi (2009) extended the above algorithm to the
cases where multiple instances need to be added or removed.
Their key idea is to gradually reduce the alpha values of
the outdated instances to 0, and meanwhile, to gradually in-
crease the alpha values of the new instances. Due to the effi-
ciency concern, the algorithm produces approximate SVMs.
We aim to train SVMs which meet the optimality condition.

6 Conclusion

To improve the efficiency of the k-fold cross-validation, we
have proposed three algorithms that reuse the previously
trained SVM to initialise the next SVM, such that the train-
ing process for the next SVM reaches the optimal condition
faster. We have conducted extensive experiments to vali-
date the effectiveness and efficiency of our proposed algo-
rithms. Our experimental results have shown that the best
algorithm among the three is SIR. When £ = 10, SIR is sev-
eral times faster than the k-fold cross-validation in LibSVM
which does not make use of the previously trained SVM;
when £ = 100, SIR dramatically outperforms LibSVM (32
times faster than LibSVM in the Madelon dataset). More-
over, our algorithms produce same results (hence same ac-
curacy) as the k-fold cross-validation in LibSVM does.
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