
SoLA: Leveraging Soft Activation Sparsity and Low-Rank Decomposition for
Large Language Model Compression

Xinhao Huang 1, You-Liang Huang 1, Zeyi Wen*1, 2

1The Hong Kong University of Science and Technology (Guangzhou)
2The Hong Kong University of Science and Technology

{xhuang171, yhuang142}@connect.hkust-gz.edu.cn, wenzeyi@ust.hk

Abstract

Large language models (LLMs) have demonstrated impres-
sive capabilities across various tasks, but the billion-scale
parameters pose deployment challenges. Although existing
methods attempt to reduce the scale of LLMs, they require
either special hardware support or expensive post-training
to maintain model quality. To facilitate efficient and afford-
able model slimming, we propose a novel training-free com-
pression method for LLMs, named “SoLA”, which leverages
Soft activation sparsity and Low-rAnk decomposition. SoLA
can identify and retain a minority of components signifi-
cantly contributing to inference, while compressing the ma-
jority through low-rank decomposition, based on our analysis
of the activation pattern in the feed-forward network (FFN)
of modern LLMs. To alleviate the decomposition loss, SoLA
is equipped with an adaptive component-wise low-rank allo-
cation strategy to assign appropriate truncation positions for
different weight matrices. We conduct extensive experiments
on LLaMA-2-7B/13B/70B and Mistral-7B models across a
variety of benchmarks. SoLA exhibits remarkable improve-
ment in both language modeling and downstream task accu-
racy without post-training. For example, with a 30% com-
pression rate on the LLaMA-2-70B model, SoLA surpasses
the state-of-the-art method by reducing perplexity from 6.95
to 4.44 and enhancing downstream task accuracy by 10%.

Code — https://github.com/Ppaddington/SoLA

Introduction
In recent years, the capabilities of large language models
(LLMs) based on Transformers have been widely demon-
strated across diverse tasks, and their sizes tend to contin-
uously increase to improve performance according to the
scaling law (Kaplan et al. 2020). These LLMs with a large
number of parameters demand significant storage and com-
putation resources, posing obstacles to their deployment and
utilization. Researchers attempt to mitigate the cost of LLMs
by reducing model parameters with compression methods.
The predominant compression techniques include unstruc-
tured pruning, structured pruning, quantization, and low-
rank decomposition.

*Corresponding Author
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Unstructured pruning exploits the inherent sparsity of the
model to remove certain weights. However, several concerns
impede its usability, including unavailable activation spar-
sity due to modification of activation functions (e.g., replace
ReLU with SiLU) and the lack of hardware support on com-
modity devices (Liu et al. 2023; Sun et al. 2024). In com-
parison, structured pruning removes entire channels or other
structured components from LLMs, which leads to notable
precision degradation because of aggressive modification to
the model structure, requiring fine-tuning to recover perfor-
mance (Ma, Fang, and Wang 2023). Different from pruning,
quantization aims to reduce memory consumption through
storing model parameters in low-bit floating point numbers,
which can be incorporated into fine-tuning for better accu-
racy recovery (Frantar et al. 2023).

Compared with pruning and quantization methods, low-
rank decomposition compression techniques, such as Singu-
lar Value Decomposition (SVD), do not need special hard-
ware support or expensive retraining, by using lower-rank
matrices to approximate the weight matrix in LLMs. How-
ever, the existing approach exhibits significant performance
degradation due to high compression loss (Yuan et al. 2023).
This reduction in performance is exacerbated by ignoring
data distribution in inputs and outputs (Wang et al. 2024), as
well as missing the consideration for the differences among
model components (i.e., weight matrices of feed-forward
and attention module).

In this work, we propose a novel training-free compres-
sion method for LLMs, namely SoLA, which leverages soft
activation sparsity and low-rank decomposition. SoLA first
recognizes and retains a small part of neurons (e.g., 15%)
with high activation norms in the FFN, which contributes
to the majority of the model performance during inference.
Then, SoLA applies low-rank decomposition to compress
the weight matrices corresponding to the rest of the neu-
rons. To further boost the model quality after compression,
SoLA exploits an adaptive rank allocation strategy for as-
sessing the decomposition quality and determining the trun-
cation position for each type of weight matrix, since differ-
ent types of weight matrices exhibit varying levels of sensi-
tivity to compression (Wang et al. 2024).

We compare SoLA with the state-of-the-art pruning and
low-rank decomposition methods. To demonstrate SoLA’s
generability, we conduct evaluations across a variety of



benchmarks using different LLM families (LLaMA-2 and
Mistral) at three scales (7B, 13B, and 70B). The experimen-
tal results show that SoLA preserves the generation quality
and achieves remarkable downstream task accuracy at differ-
ent compression rate levels. For instance, in a 30% compres-
sion ratio scenario with LLaMA-2-70B, SoLA outperforms
existing state-of-the-art methods, achieving a perplexity re-
duction from 6.95 to 4.44 and a 10% improvement in down-
stream task accuracy.

Our contributions can be summarized as follows:
• We introduce SoLA, a training-free compression method

utilizing soft activation sparsity and low-rank decompo-
sition. We analyze the soft activation sparsity in the FFN
of modern LLMs and achieve fine-grained compression.

• We propose an adaptive component-wise low-rank al-
location strategy that considers the differences between
weight matrices and allocates appropriate truncation po-
sitions for different types of weight matrices, achiev-
ing enhanced model quality after compression, even with
high compression ratios.

• Extensive experiments show that SoLA achieves remark-
able performance in perplexity and widely-used bench-
marks, and outperforms the state-of-the-art method with-
out post-training.

Related Works
In this section, we review related compression techniques,
including network pruning, model quantization, and low-
rank decomposition, as essential strategies to mitigate the
burden imposed by large-scale models during inference.

Network Pruning and Quantization Methods
Network pruning includes non-structured pruning and struc-
tured pruning based on the paradigm of network parameter
reduction. Recent studies on unstructured pruning have con-
centrated on the sparsity of the LLM weight matrices, prun-
ing the model by eliminating certain weights. Dejavu (Liu
et al. 2023) omits the computation of weight matrices cor-
responding to the ReLU zero activation value. SparseGPT,
proposed by Frantar and Alistarh (2023), decomposes the
pruning problem to a set of extremely large-scale instances
of sparse regression. Wanda (Sun et al. 2024) computes
weight importance metric utilizing weights and activations
to induce sparsity in pretrained LLMs. Dong et al. (2024)
employ genetic programming to identify optimized sym-
bolic pruning metrics suitable for LLMs. However, the cur-
rent mainstream models no longer employ ReLU, and thus
cannot leverage the sparsity of zero activations. Moreover,
the present hardware ecosystem does not adequately support
unstructured pruning (Sun et al. 2024).

In structured pruning methods, Ma, Fang, and Wang
(2023) evaluate the importance of each structure through a
first-order Taylor expansion and prunes the structures with
the lowest scores. LLM Surgeon (van der Ouderaa et al.
2024) achieves pruning of LLMs by extending the second-
order Hessian approximation method of the Kronecker fac-
torized Fisher information matrix. FLAP (An et al. 2024)
designs a fluctuation pruning metric and then introduces a

bias term to recover the output feature map. Ashkboos et al.
(2024) utilize a transformation matrix Q to remove rows
and columns of the weight matrix but requires additional
adapters to handle the reduced dimensions. Some meth-
ods (Men et al. 2024; Gromov et al. 2024) directly remove
layers in the model that have similar inputs and outputs, but
this can result in significant performance degradation, espe-
cially when the prune ratio exceeds 20%.

Quantization methods achieve memory consumption re-
duction through storing model parameters in low-bit floating
point numbers. Gptq (Frantar et al. 2023) uses inverse Hes-
sian information to weight quantization. Qlora, as presented
by (Dettmers et al. 2023), fine-tunes low-rank adapters by
backpropagating gradients through a frozen 4-bit quantized
network. But for better accuracy recovery, quantization tech-
niques tend to need a subsequent fine-tuning process.

Low-Rank Decomposition
In the low-rank decomposition approach, the weight matrix
is replaced by the product of two smaller matrices. One cat-
egory of methods decomposes the weight matrix using SVD
or its variants. Hsu et al. (2022) utilizes Fisher informa-
tion to measure the importance of parameters, but the high
computational cost is incurred due to gradient computation.
ASVD (Yuan et al. 2023) uses a diagonal matrix to repre-
sent the influence of input channels on weights, eliminating
the need for gradient computation. SVD-LLM (Wang et al.
2024) establishes a direct relationship between singular val-
ues and compression loss, choosing the truncation of singu-
lar values with minimal compression loss. Liu et al. (2024)
notice the imbalance of activation norms in BERT, and lever-
age this feature in model decomposition. However, it ignores
module differences and data distribution in inputs and out-
puts, which could cause drastic performance degradation in
modern LLMs (Yuan et al. 2023).

Another category of methods performs decomposition in
the feature space. Yu and Wu (2023) propose Atomic Fea-
ture Mimicking (AFM), which uses PCA decomposition to
decompose the output vector (i.e., the product of weights
and inputs of the fully connected layer). LORD also em-
ploys AFM for low-rank decomposition, which is applied
in monolingual code generation. Building upon Yu and Wu
(2023), Bolaco (Ji et al. 2024) utilizes Bayesian optimiza-
tion to search for an appropriate truncation position. To at-
tain optimal performance, these feature-based methods need
to precisely estimate feature distribution in extremely high
dimensional feature space, which is difficult for tens of bil-
lions of scale LLMs.

Preliminaries
In this section, we briefly explain the computation process
of the feed-forward network and then present the concept
of ‘neuron’ used in this paper. In the end, we introduce the
foundation of low-rank decomposition.

Feed-Forward Network: To facilitate subsequent
demonstrations, we formalize the computation process of
a two-layer feed-forward network (FFN) in Transformers.
Given the hidden dimension d and the intermediate dimen-



Trunction

Strategy

U

Calibration Data

Wα Wβ
Wβ

Activation 

Patternlayer 0

layer l

layer n

Original Model

…σ1 σ2 σ3
Compressed Model

layer 0

layer l

layer n

…
…

…
… SVD

Weight Matrix Slicing Σ VLow-Rank Decomposition

argmax𝑟
σ𝑖=0
𝑟 (𝜎𝑖

2)

σ(𝜎2)

Figure 1: Framework of the proposed SoLA. We initially recognize the soft activation sparsity within the feed-forward network.
Leveraging this property, we introduce a fine-grained model decomposition technique to preserve model quality. Furthermore,
to alleviate the compression error of SVD, we develop an adaptive component-wise truncation strategy to allocate appropriate
truncation positions for different types of weight matrices.

sion dff , the sequential computation of two linear layers
FFN can be formalized as:

h = σ(XW in) (1)

out = hW out (2)
where X ∈ Rd represents the input, σ denotes the activation
function, e.g., SiLU and GeLU. The intermediate state is de-
noted by h ∈ Rdff , out ∈ Rd, and the weight matrices are
defined as W in ∈ Rd×dff and W out ∈ Rdff×d. We omit
bias terms for convenience.

Neuron: In the context of the FFN, the term ‘neuron’ de-
notes an element of the intermediate state. Specifically, the
i-th neuron corresponds to the i-th element of the intermedi-
ate state h. For a given weight matrix W , the notation Wi,:

denotes the i-th row, representing the weights leading to the
i-th neuron, while W:,i indicates the i-th column, represent-
ing the weights emanating from the i-th neuron. In Equa-
tions (1) and (2), the i-th column of the input weight matrix
W in and the i-th row of the output weight matrix W out cor-
responding to the i-th neuron.

Low-Rank Decomposition: Given a weight matrix W ∈
Rm×n, we can apply Singular Value Decomposition (SVD)
to decompose W into:

W = UΣV (3)

where U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n is a rectan-
gular diagonal matrix whose diagonal elements are singular
values arranged in descending order.

The matrix W can be approximated by the largest k sin-
gular values (k < n), and then:

W ≈ AB (4)

where A = (Uk

√
Σk), B = (

√
ΣkV

T
k ), Uk ∈ Rm×k and

V T
k ∈ Rk×n are the rank-k approximation matrices, and√
Σk ∈ Rk×k is a diagonal matrix by the square-roots of

the corresponding top-k singular values in Σ.
When employing SVD to decompose the weight matrix of

LLMs into approximate matrices, opting for a smaller value

of k results in a significant accuracy drop, whereas a larger
k increases the model size. The reconstruction loss can be
formulated as follows:

L = ∥W −W ′∥F (5)

where Equation (4) can be applied to W ′ to approximate W .
This low-rank approximation reduces the number of param-
eters from m× n to (m+ n)× k.

Methodology
As shown in Figure 1, we first recognize and analyze pat-
terns of activation norms in the FFN of modern LLMs.
Then, based on the analysis and the properties, we introduce
a fine-grained model decomposition method that leverages
both activation awareness and soft activation sparsity to re-
tain the model quality. To further mitigate reconstruction er-
ror brought by model decomposition, we devise an adaptive
component-wise low-rank allocation strategy to determine
the desired truncation position of each component.

Soft Activation Sparsity in Modern LLMs
Activation sparsity exists in neural networks with ReLU as
its activation function, where the proportion of non-zero val-
ues in the outputs of ReLU activation functions is remark-
ably low. It also exists in many earlier LLMs that adopt
ReLU as its activation in the FFN, such as OPT (Zhang et al.
2022) and GPT (Patel et al. 2023). Activation sparsity has
been extensively studied to improve inference quality and ef-
ficiency (Liu et al. 2023; Zheng et al. 2024). However, as for
modern LLMs, we can no longer exploit this feature since
soft activation functions, e.g., SiLU and GeLU, are widely
used to replace ReLU, where neurons still remain activated
when inputs are below zero.

To identify if there is any activation pattern in modern
LLMs that is similar to activation sparsity, we examine the
distribution of activation norms in LLaMA-2-7B/13B (Tou-
vron et al. 2023) on WikiText2 (Merity et al. 2016) and
C4 (Raffel et al. 2020). As depicted in Figure 2, activation



0 2500 5000 7500 10000
Number of Neurons

0

2

4

6

Ac
tiv

at
io

n 
No

rm
Llama-2-7B - WikiText

0 5000 10000
Number of Neurons

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tiv

at
io

n 
No

rm

Llama-2-13B - WikiText

0 2500 5000 7500 10000
Number of Neurons

0

2

4

6

8

Ac
tiv

at
io

n 
No

rm

Llama-2-7B - C4

0 5000 10000
Number of Neurons

0

1

2

3

4

Ac
tiv

at
io

n 
No

rm

Llama-2-13B - C4

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n

Figure 2: Accumulation of ∥XW∥2F and distribution of
∥XW∥F across neurons in different layers of LLaMA-2-
7B and LLaMA-2-13B on WikiText2 and c4 datasets, sorted
from largest to smallest, highlighting the soft activation spar-
sity phenomenon.

norms of a certain group of neurons occupy most of the total
and the rest are nearly round to 0. It indicates that long-tail
distribution exists in the activation norms of the FFN. Intu-
itively, the importance of different neurons can be denoted
by their corresponding activation magnitude. To verify the
presumption, we thus investigate how much neurons con-
tribute to the model performance by eliminating the high-
est or lowest neurons. The model performance is evaluated
through computing perplexity on WikiText2.

We summarize the evaluation results in Table 1. It shows
neurons that have the highest activation norms contribute
the most to the model performance, and removing them can
severely deteriorate model performance. As for their coun-
terpart, removing them does not bring such significant per-
formance degradation as much as removing the highest ones.
Therefore, we conclude that soft activation sparsity exists in
the FFN of modern LLMs, where activation norms of a cer-
tain small group of neurons occupy most of the total, and
removing the corresponding neurons can lead drastic per-
formance drop.

LLaMA-
2-13B original PN MN

1% 10% 30% 50%
perplexity (↓) 4.57 9665.4 4.83 6.58 17.03

Table 1: Impact of neuron pruning on LLaMA-2-13B model
perplexity, highlighting the sensitivity to the loss of high-
norm “Prime Neurons” (PN) and the resilience following the
removal of low-norm “Marginal Neurons” (MN).

Soft Activation Sparsity Driven Decomposition
To capture data distribution of inputs and outputs, model de-
composition in our proposed method generally follows in-

structions described by Wang et al. (2024). Initially, we pre-
pare calibration data and collect input X of each layer, then
perform Cholesky decomposition on XXT to get the scal-
ing matrix S. In the end, WS−1 is being decomposed with
SVD: WS−1 = UΣV . Additionally, motivated by the ex-
istence of soft activation sparsity in modern LLMs, we im-
prove the model decomposition quality by refining the FFN
decomposition with exploitation of soft activation sparsity.

To refine the FFN decomposition, the neurons are first
sorted according to their activation norms in descendent or-
der and then grouped into two clusters. Those that tend to
produce higher activation norms are coined as “prime neu-
rons” (PN), and the rest are coined as “marginal neurons”
(MN). The grouping criterion is controlled by a hyperparam-
eter γ, i.e., the ratio of PN. We can utilize the accumulated
squared L2 Norm to identify γ. For instance, in LLaMA-
2-13B, the top 15% of neurons occupy 95% of the total.
Then γ can be set to 0.15. The computing of the FFN can
be rewritten as Equation (6).

FFN(X) = σ(XW in)×W out

= σ(XW in
α )W out

α + σ(XW in
β )W out

β

(6)

where Wα denotes the subset of the weight matrix corre-
sponding to PN, Wβ denotes the rest of MN, and X is the
input.

As removing important neurons could lead to drastic per-
formance degradation, we thus retain these neurons and only
decompose the less important ones, i.e., Wβ . Moreover, to
capture data distribution in inputs and outputs, we partition
the scaling matrix S into Sα and Sβ according to the parti-
tion of neurons, and then employ SVD to decompose Wβ ,
i.e., UβΣβVβ = WβS

−1
β . Thus, the computing of the less

important neurons can be formulated as follows.

σ(XW in
β )W out

β = σ(XU in
β Σin

β V in
β )Uout

β Σout
β V out

β (7)

The attention module also exhibits sparse property (Liu
et al. 2023; An et al. 2024). But it tends not to use the ac-
tivation function to induce nonlinear transformations. Con-
sequently, we employ low-rank decomposition to compress
the entire set of weight matrices within the attention module.

Component-wise Truncation Position
Extensive studies (Ji et al. 2024) have demonstrated that
there are inherent differences among components. Compo-
nents of different types thus have different sensitivities to de-
composition. Therefore, it is necessary for component-wise
truncation position selection rather than simply adopting a
uniform truncation position setting.

Theorem 1 Given an input X , a weight matrix W and its
singular value decomposition results from UΣV T = W .
Let S be the Cholesky decomposition of XXT . The com-
pression loss of truncating the smallest singular values is
L2 = ∥

∑r
i=m+1 σiuiv

T
i S

−1X∥2F=
∑r

i=m+1(σi)
2 and

such truncating leads to the lowest loss.

To this end, we devise an adaptive component-wise al-
location strategy to handle the task of truncation position



Methods Ratio Average MMLU BoolQ PIQA WinoGrande HellaSwag ARC-e ARC-c OBQA
LLaMA-2-7B 0% 0.6410 0.457 0.7777 0.7905 0.6938 0.7592 0.7449 0.4625 0.442
LLM-Pruner

20%

0.5512 0.262 0.6376 0.7595 0.6338 0.6783 0.6431 0.3993 0.396
FLAP 0.5318 0.319 0.5394 0.7454 0.6298 0.6474 0.6128 0.3643 0.396
SliceGPT 0.4184 0.263 0.3792 0.6126 0.5983 0.4428 0.4609 0.2841 0.306
Bolaco 0.5733 0.343 0.7201 0.7509 0.6561 0.6433 0.6819 0.3748 0.416
SVD-LLM 0.4673 0.268 0.5468 0.6513 0.6243 0.5173 0.4722 0.2782 0.380
SoLA (Ours) 0.5692 0.341 0.7505 0.7465 0.6646 0.6392 0.6561 0.3737 0.382
LLM-Pruner

30%

0.4767 0.246 0.5324 0.7225 0.5454 0.5696 0.5109 0.3166 0.370
FLAP 0.4893 0.267 0.5220 0.7029 0.6006 0.5658 0.5518 0.3225 0.382
SliceGPT 0.3757 0.259 0.3783 0.5555 0.5446 0.3517 0.3906 0.2457 0.280
Bolaco 0.5138 0.280 0.7008 0.7184 0.5917 0.5361 0.5871 0.3077 0.388
SVD-LLM 0.4252 0.255 0.5180 0.6001 0.5825 0.4185 0.4331 0.2543 0.340
SoLA (Ours) 0.5157 0.277 0.6673 0.6997 0.6283 0.5711 0.5913 0.3268 0.364
LLaMA-2-13B 0% 0.6756 0.554 0.8055 0.8041 0.7253 0.7941 0.7739 0.4915 0.456
LLM-Pruner

20%

0.5639 0.228 0.6297 0.7797 0.6077 0.7126 0.6709 0.4428 0.440
FLAP 0.5818 0.412 0.6642 0.7557 0.6725 0.6919 0.6591 0.3908 0.408
SliceGPT 0.4488 0.310 0.3786 0.6224 0.6354 0.4730 0.4659 0.3191 0.386
Bolaco 0.6138 0.434 0.7649 0.7683 0.6590 0.6996 0.7093 0.4272 0.448
SVD-LLM 0.5574 0.346 0.7217 0.716 0.6843 0.5991 0.6212 0.3669 0.404
SoLA (Ours) 0.6142 0.461 0.7951 0.7557 0.6977 0.6735 0.6915 0.407 0.432
LLM-Pruner

30%

0.5090 0.229 0.6211 0.7318 0.5793 0.6089 0.5471 0.3404 0.414
FLAP 0.5429 0.332 0.6437 0.7242 0.6393 0.6244 0.6145 0.3729 0.392
SliceGPT 0.3954 0.271 0.3783 0.5675 0.5770 0.3827 0.4087 0.2619 0.316
Bolaco 0.5608 0.343 0.7504 0.7246 0.6446 0.5773 0.6560 0.3919 0.398
SVD-LLM 0.4854 0.286 0.6401 0.6556 0.6393 0.4800 0.5059 0.3003 0.376
SoLA (Ours) 0.5756 0.394 0.7713 0.7263 0.6740 0.6138 0.6557 0.3677 0.402
LLaMA-2-70B 0% 0.7294 0.688 0.8388 0.8275 0.7782 0.838 0.8072 0.5717 0.486
FLAP

20%

0.5003 0.259 0.6226 0.7231 0.6409 0.5594 0.5105 0.3191 0.368
SliceGPT 0.5572 0.483 0.4394 0.6801 0.7214 0.5716 0.6864 0.4394 0.436
SVD-LLM 0.6275 0.521 0.7453 0.7448 0.7261 0.6841 0.7193 0.4693 0.410
SoLA (Ours) 0.6892 0.624 0.7483 0.7911 0.7656 0.7751 0.7963 0.5452 0.468
FLAP

30%

0.4962 0.264 0.6526 0.6959 0.6480 0.5561 0.4891 0.3055 0.358
SliceGPT 0.4635 0.326 0.3783 0.6235 0.6701 0.4491 0.5404 0.3285 0.392
SVD-LLM 0.6091 0.445 0.6869 0.6948 0.6914 0.5992 0.6974 0.4488 0.410
SoLA (Ours) 0.6625 0.570 0.7251 0.7791 0.7561 0.7197 0.7757 0.5222 0.452

Table 2: Downstream task accuracy of the compressed LLaMA-2-7B/13B/70B models. Bold denotes the best result at the same
compression ratio, while underline indicates the second best result.

determination. Our method is based on the closed-form so-
lution of the reconstruction error given by Theorem 1 (Wang
et al. 2024). We define the performance score of compressed
layers as Equation (8) below.

f(r) =

∑r
i=0 σ

2
i∑

σ2
(8)

where σ denotes singular values of WS−1 and r is the trun-
cation position.

Concerning a memory budget (i.e., compression rate), we
can formulate the following optimization problem:

argmax
r

∑
f(rc)

s.t.
∑

g(rc) ≤ B
(9)

where rc denotes the truncation position of component c,

g(rc) denotes the memory occupation of component c under
its truncation position rc, and B is the memory budget.

This optimization problem is an integer programming
problem and performing an exhaustive search in an enor-
mous solution space is infeasible. Therefore, We employ an
adaptive heuristic greedy search algorithm, which dynami-
cally selects the desired truncation position for each com-
ponent as directed by the performance function, thereby ob-
taining a sub-optimal solution within an acceptable search-
ing time. To leverage NVIDIA hardware acceleration, the r
is set to multiples of 16 (Yu and Wu 2023).

Experiments

Here, we investigate our proposed SoLA across various
benchmarks using different LLM series at three scales. Fur-
thermore, we present in-depth studies of SoLA.



Experimental Settings
We evaluate SoLA over different series and scales of LLMs:
LLaMA-2 7B, 13B, and 70B, as well as Mistral-7B-v0.1.
The language modeling capability is evaluated on the Wiki-
Text2 (Merity et al. 2016) test set. We use Language Model
Evaluation Harness (Gao et al. 2021) to assess zero-shot
common sense reasoning performance. Moreover, the 5-shot
Massive Multitask Language Understanding (MMLU) ac-
curacy (Hendrycks et al. 2020) is used for the evaluation.
We compare SoLA with the state-of-the-art structured prun-
ing and low-rank decomposition methods discussed in re-
lated works, including LLM-Pruner, FLAP, SliceGPT, Bo-
laco, and SVD-LLM.

Overall Performance
We evaluate the performance of compressed models by each
compression method at different compression ratios ranging
from 20% to 50%. The perplexity scores for language mod-
eling are shown in Figure 3 and Table 3, the zero-shot com-
mon sense reasoning results and the 5-shot MMLU accuracy
of LLaMA-2 series are in Table 2. The results of Mistral-7B
are listed in Appendix A Table 1. LLM-Pruner and Bolaco
are currently not suitable for the GQA architecture such as
LLaMA-2-70B and Mistral-7B.

Language Modeling As shown in Figure 3, SoLA per-
forms remarkable perplexity. As the compression ratio in-
creases, perplexity grows slowly, indicating a better capabil-
ity to maintain model generation capability. In contrast, the
quality of baseline methods such as LLM-Pruner sharply de-
clines as the compression ratio increases, particularly when
the pruning ratio exceeds 40%, requiring fine-tuning to
achieve acceptable performance. SoLA narrows the perfor-
mance gap between the compressed model and the original
model in almost all configurations, and only FLAP slightly
surpasses SoLA at LLaMA-2-13B compression rate above
40%, demonstrating the strong competitiveness of SoLA.

Downstream Tasks Performance For zero-shot and five-
shot downstream scenarios, excluding the 20% compression
ratio in LLaMA-2-7B, SoLA consistently demonstrates su-
perior performance over all baseline methods, achieving a
3% to 10% improvement in average accuracy compared to
baseline methods.

In-Depth Analysis
We present extensive studies on two fundamental compo-
nents of SoLA: soft activation sparsity driven decomposi-
tion and component-wise truncation position. Furthermore,
we evaluate the robustness of SoLA to calibration samples.
We pose the following research questions: Q1: What is the
significance of “Prime Neurons” in balancing the trade-off
between accuracy and efficiency in compressed LLMs, and
how should the ratio of “Prime Neurons” be determined?
Q2: What effect does the adaptive component-wise rank
allocation strategy have? Q3: How does the sensitivity of
SoLA vary with the type and number of the calibration
dataset?

Method Ratio LLaMA-2 Mistral

7B 13B 70B 7B
Dense 0% 5.11 4.57 3.12 4.92

LLM-Pruner

20%

10.55 9.67 - -
FLAP 6.76 5.90 8.76 7.11

SliceGPT 9.70 8.21 5.76 8.23
Bolaco 7.31 6.34 - -

SVD-LLM 8.07 6.18 5.96 7.26
SoLA (Ours) 6.52 5.61 4.06 6.06
LLM-Pruner

30%

18.25 17.59 - -
FLAP 8.91 7.08 10.80 13.10

SliceGPT 15.42 12.68 8.09 14.69
Bolaco 12.19 8.83 - -

SVD-LLM 11.40 7.93 6.95 12.32
SoLA (Ours) 7.81 6.31 4.44 7.38

Table 3: WikiText2 validation perplexity of pruning methods
for LLaMA-2 model series and Mistral-7B-v0.1.

20 30 40 50
Compression Ratio (%)

10

20

30

40

Pe
rp

le
xi

ty

LLMPrun.
FLAP
SliceGPT
Bolaco
SVD-LLM
SoLA (Ours)

Figure 3: Perplexity of WikiText2 among different methods
on LLaMA-2-13B.

Impact of Prime Neurons We first validate the impor-
tance of “Prime Neurons” (PN), setting the portion of PN
to 0%. Furthermore, we explore the impact of the portion of
PN. We define four ratios for PN: 5%, 15%, 30%, and 50%,
and then compare the perplexity at the same pruning ratio
(20% and 30%). Experiments are conducted on LLaMA-2-
13B and detailed results are shown in Figure 4.

It can be observed that maintaining only 5% of PN, can
lead to a significant improvement in perplexity (5.8 vs. 6.5
under 20% compression ratio). This finding validates the
conclusion drawn in earlier: a small proportion of large out-
put norm neurons in the FFN significantly contribute to per-
formance, while the remaining neurons can be compressed.
The 15% configuration serves as the default configuration in
the experimental section.

Contribution of Adaptive Rank Allocation The uni-
form rank allocation method assigns low-rank dimensions
to all components based on the target compression rate, e.g.,
gate/up/down projections in the FFN use the same rank
r = target rate× (m×n)/(m+n). In contrast, our adap-



20 30
Compression Ratio (%)

0
1
2
3
4
5
6
7
8

Pe
rp

le
xi

ty
0% 5% 15% 30% 50%

Figure 4: The impact of “Prime Neurons” ratios on LLaMA-
2-13B perplexity under 20% and 30% compression ratios.

Model Ratio Perplexity (↓) Avg. Acc. (↑)

Unif. Adap. Unif. Adap.

LLaMA-2-7B
20%

8.07 7.18 0.467 0.541
LLaMA-2-13B 6.18 6.52 0.557 0.564

Mistral-7B 7.26 6.68 0.528 0.578

LLaMA-2-7B
30%

11.40 9.32 0.425 0.492
LLaMA-2-13B 7.93 7.02 0.485 0.541

Mistral-7B 12.32 10.09 0.432 0.491

Table 4: Comparison of perplexity and average accuracy of
downstream tasks between uniform and adaptive strategy.

tive component-wise rank allocation strategy considers the
compression sensitivity of each component. Table 4 demon-
strates that our adaptive strategy improves perplexity by 8%-
18% and downstream task average accuracy up to 14%.

Robustness to Calibration Dataset Finally, we examine
the effect of calibration data, which captures activation pat-
terns and influences low-rank decomposition. The analysis
is conducted by varying the quantity and category of cal-
ibration data. Figure 5 illustrates the perplexity scores on
the WikiText2 test dataset resulting from the compression of
LLaMA-13B. The variations in performance due to differ-
ent quantities do not exceed 10% and perplexity degradation
caused by types of calibration data is also limited, indicating
SoLA is robust to the calibration data.

Inference Efficiency
Each LLaMA-2 block contains a feed-forward module with
gate/up/down operation and an attention module with
q/k/v/o operation. We choose a sequence length of 2048,
replicating the size of the matrix-matrix multiplications in
three different-sized LLaMA-2 models. We take the median
runtime over 103 attempts on RTX4090. Table 5 shows the
total time taken in ms and the corresponding speedup, each
matrix multiplication cost is shown in Appendix A Table 2.
At a 20% pruning ratio, SoLA accelerates the matrix mul-

16 32 64 128 256
Number of data (x4096 tokens)

0

2

4

6

8

10

12

Pe
rp

le
xi

ty

9.6

7.0

9.6

6.6

9.2

6.5

9.1

6.4

8.9

6.3

C4 WikiText

Figure 5: Perplexity of LLaMA-2-13B under 30% compres-
sion ratio using calibration data with different numbers (32,
64, 128, 256) and types (WikiText2 and C4).

Ratio Total Time of Operation (speedup)
7B 13B 70B

0% 20.04 31.64 96.58
20% 16.39 (1.22×) 21.92 (1.44×) 65.76 (1.47×)
30% 13.04 (1.54×) 17.87 (1.77×) 57.04 (1.69×)

Table 5: Operation cost of LLaMA-2 Series.

tiplication speed by 1.4×, at a 30% pruning ratio, it accel-
erates the matrix multiplication speed by 1.7×. The accel-
eration is achieved by replacing large weight matrices with
decomposed smaller matrices and leverages existing hard-
ware capabilities (i.e., dense kernels).

Limitations and Future Work
Our proposed approach can be easily integrated with ex-
isting methods for measuring layer significance (Yin et al.
2024), achieving layer-wise compression; (ii) our work
holds the potential to be integrated into inference frame-
works to facilitate acceleration of end-to-end inference time.

Conclusion
In this work, we propose SoLA, a novel training-free com-
pression method leveraging Soft activation sparsity and
Low-rAnk decomposition. SoLA is built on our analysis of
the activation pattern in the feed-forward network of mod-
ern LLMs and achieves fine-grained low-rank compression,
which preserves a minority of significant components and
compresses the majority through Singular Value Decom-
position (SVD). To alleviate the decomposition loss, we
propose an adaptive component-wise low-rank allocation
strategy by formulating it as an integer programming prob-
lem. Through the allocation of appropriate ranks to different
types of weight matrices, our strategy enhances model qual-
ity after compression. Our comprehensive experiments con-
ducted on the LLaMA-2 series and Mistral reveal that SoLA,
without post-training, outperforms current state-of-the-art
methods in language modeling and downstream tasks.



Acknowledgments
This work is supported by the Guangzhou Industrial In-
formation and Intelligent Key Laboratory Project (No.
2024A03J0628), the Guangzhou Science and Technol-
ogy Development Projects (No. 2023A03J0143 and No.
2024A04J4458), and the NSFC Project (No. 62306256).

References
An, Y.; Zhao, X.; Yu, T.; Tang, M.; and Wang, J. 2024.
Fluctuation-Based Adaptive Structured Pruning for Large
Language Models. In AAAI, 10865–10873. AAAI Press.
Ashkboos, S.; Croci, M. L.; Nascimento, M. G. D.; Hoefler,
T.; and Hensman, J. 2024. SliceGPT: Compress Large Lan-
guage Models by Deleting Rows and Columns. In ICLR.
Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
In NeurIPS.
Dong, P.; Li, L.; Tang, Z.; Liu, X.; Pan, X.; Wang, Q.; and
Chu, X. 2024. Pruner-Zero: Evolving Symbolic Pruning
Metric from scratch for Large Language Models. In ICML.
Frantar, E.; and Alistarh, D. 2023. SparseGPT: Massive Lan-
guage Models Can be Accurately Pruned in One-Shot. In
ICML, volume 202 of Proceedings of Machine Learning Re-
search, 10323–10337. PMLR.
Frantar, E.; Ashkboos, S.; Hoefler, T.; and Alistarh, D. 2023.
GPTQ: Accurate Post-Training Quantization for Generative
Pre-trained Transformers. In ICLR.
Gao, L.; Tow, J.; Biderman, S.; Black, S.; DiPofi, A.; Fos-
ter, C.; Golding, L.; Hsu, J.; McDonell, K.; Muennighoff,
N.; et al. 2021. A framework for few-shot language model
evaluation. Version v0. 0.1. Sept, 10: 8–9.
Gromov, A.; Tirumala, K.; Shapourian, H.; Glorioso, P.; and
Roberts, D. A. 2024. The Unreasonable Ineffectiveness of
the Deeper Layers. CoRR, abs/2403.17887.
Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika,
M.; Song, D.; and Steinhardt, J. 2020. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300.
Hsu, Y.; Hua, T.; Chang, S.; Lou, Q.; Shen, Y.; and Jin, H.
2022. Language model compression with weighted low-
rank factorization. In ICLR.
Ji, Y.; Xiang, Y.; Li, J.; Chen, W.; Liu, Z.; Chen, K.; and
Zhang, M. 2024. Feature-based Low-Rank Compression of
Large Language Models via Bayesian Optimization. In ACL.
Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling Laws for Neural Language Mod-
els. CoRR, abs/2001.08361.
Liu, Z.; Song, Q.; Xiao, Q. C.; Selvaraj, S. K.; Mazumder,
R.; Gupta, A.; and Hu, X. 2024. FFSplit: Split Feed-Forward
Network For Optimizing Accuracy-Efficiency Trade-off in
Language Model Inference. CoRR, abs/2401.04044.
Liu, Z.; Wang, J.; Dao, T.; Zhou, T.; Yuan, B.; Song, Z.;
Shrivastava, A.; Zhang, C.; Tian, Y.; Ré, C.; and Chen, B.
2023. Deja Vu: Contextual Sparsity for Efficient LLMs at

Inference Time. In ICML, volume 202 of Proceedings of
Machine Learning Research, 22137–22176. PMLR.
Ma, X.; Fang, G.; and Wang, X. 2023. LLM-Pruner: On the
Structural Pruning of Large Language Models. In NeurIPS.
Men, X.; Xu, M.; Zhang, Q.; Wang, B.; Lin, H.; Lu, Y.;
Han, X.; and Chen, W. 2024. ShortGPT: Layers in Large
Language Models are More Redundant Than You Expect.
CoRR, abs/2403.03853.
Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R.
2016. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.
Patel, A.; Li, B.; Rasooli, M. S.; Constant, N.; Raffel, C.; and
Callison-Burch, C. 2023. Bidirectional Language Models
Are Also Few-shot Learners. In ICLR. OpenReview.net.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., 21: 140:1–140:67.
Sun, M.; Liu, Z.; Bair, A.; and Kolter, J. Z. 2024. A Simple
and Effective Pruning Approach for Large Language Mod-
els. In ICLR.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; Bikel, D.; Blecher, L.; Canton-Ferrer, C.; Chen, M.; Cu-
curull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu, W.; Fuller,
B.; Gao, C.; Goswami, V.; Goyal, N.; Hartshorn, A.; Hos-
seini, S.; Hou, R.; Inan, H.; and et al. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. CoRR,
abs/2307.09288.
van der Ouderaa, T. F. A.; Nagel, M.; van Baalen, M.; Asano,
Y. M.; and Blankevoort, T. 2024. The LLM Surgeon. In
ICLR.
Wang, X.; Zheng, Y.; Wan, Z.; and Zhang, M. 2024.
SVD-LLM: Truncation-aware Singular Value Decomposi-
tion for Large Language Model Compression. CoRR,
abs/2403.07378.
Yin, L.; Wu, Y.; Zhang, Z.; Hsieh, C.; Wang, Y.; Jia, Y.;
Pechenizkiy, M.; Liang, Y.; Wang, Z.; and Liu, S. 2024. Out-
lier Weighed Layerwise Sparsity (OWL): A Missing Secret
Sauce for Pruning LLMs to High Sparsity. In ICML.
Yu, H.; and Wu, J. 2023. Compressing Transformers: Fea-
tures Are Low-Rank, but Weights Are Not! In AAAI, 11007–
11015. AAAI Press.
Yuan, Z.; Shang, Y.; Song, Y.; Wu, Q.; Yan, Y.; and Sun,
G. 2023. ASVD: Activation-aware Singular Value Decom-
position for Compressing Large Language Models. CoRR,
abs/2312.05821.
Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M. T.; Li, X.; Lin, X. V.; Mi-
haylov, T.; Ott, M.; Shleifer, S.; Shuster, K.; Simig, D.;
Koura, P. S.; Sridhar, A.; Wang, T.; and Zettlemoyer, L.
2022. OPT: Open Pre-trained Transformer Language Mod-
els. CoRR, abs/2205.01068.
Zheng, H.; Bai, X.; Chen, B.; Lai, F.; and Prakash, A. 2024.
Learn To Be Efficient: Build Structured Sparsity in Large
Language Models. https://arxiv.org/abs/2402.06126v2.



A Additional Experiments
Compression on Mistral-7B
We evaluate the zero-shot common sense reasoning performance and 5-shot Massive Multitask Language Understanding
(MMLU) accuracy. Table 6 presents the detailed results of Mistral-7B using different compression methods.

Methods Ratio Average MMLU BoolQ PIQA WinoGrande HellaSwag ARC-e ARC-c OBQA
Mistral-7B 0% 0.701 0.625 0.8398 0.8205 0.7395 0.8102 0.7955 0.5392 0.44
FLAP

20%

0.500 0.259 0.6226 0.7231 0.6409 0.5594 0.5105 0.3191 0.368
SliceGPT 0.427 0.286 0.3786 0.6066 0.5943 0.4510 0.4815 0.3003 0.320
SVD-LLM 0.578 0.418 0.6829 0.7339 0.6843 0.6175 0.7134 0.4053 0.366
SoLA (Ours) 0.581 0.442 0.6609 0.7367 0.6875 0.6332 0.6999 0.3976 0.392
FLAP

30%

0.496 0.264 0.6526 0.6959 0.6480 0.5561 0.4891 0.3055 0.358
SliceGPT 0.358 0.25 0.3783 0.5441 0.5162 0.3254 0.3502 0.2295 0.268
SVD-LLM 0.491 0.282 0.6462 0.6491 0.6417 0.4736 0.5825 0.3072 0.342
SoLA (Ours) 0.517 0.338 0.6257 0.6839 0.6448 0.5300 0.6090 0.3276 0.376

Table 6: Downstream task accuracy of the compressed Mistral-7B models. Bold denotes the best result at the same compression
ratio, while underline indicates the second best result.

Inference Efficiency of Components
We chose a sequence length of 2048, replicating the size of the matrix-matrix multiplications in LLaMA-2 series. We take the
median runtime over 103 attempts on RTX4090. The following table shows the time taken in ms to run matrix multiplication
of each component in the model.

Model
Compression

Ratio
Operations(ms)

Gate Up Down Q K O Total (speedup)

LLaMA-2-7B
Dense 4.94 4.79 5.09 1.75 1.74 1.74 20.04
20% 2.92 3.52 6.66 0.87 0.69 1.74 16.39 (1.22×)
30% 2.92 3.00 4.48 0.69 0.69 1.27 13.04 (1.54×)

LLaMA-2-13B
Dense 7.14 7.12 8.11 3.07 3.09 3.12 31.64
20% 5.61 5.08 5.44 1.34 1.34 3.12 21.92 (1.44×)
30% 5.19 4.53 4.77 0.93 0.68 1.77 17.87 (1.77×)

LLaMA-2-70B
Dense 23.89 23.85 26.69 7.33 7.36 7.47 96.58
20% 12.74 16.00 18.99 3.20 7.36 7.47 65.76 (1.47×)
30% 11.45 13.70 18.99 1.45 7.36 4.08 57.04 (1.69×)

Table 7: Results of timing the matrix multiplications in each component of LLaMA-2 series.

B Implementation Details
Following calibration setups in previous works, our calibration setup involved randomly selecting 256 samples from the training
sets of WikiText2 and C4 as calibration data, with each sample having a sequence length of 4,096.

Prior work (Ji, Xiang, and Li et al. 2024) has demonstrated that compressing the weight matrix of the v projection in the
attention module leads to significant performance degradation, hence we exclude the v projection from compression. In the
case of LLaMA-2-7B and LLaMA-2-13B, the o projection remains uncompressed at a rate of 20%. For LLaMA-2-70B and
Mistral-7B models utilizing group query attention, both the k and v projections are not subjected to compression.

The initial and terminal layers play an important role in maintaining model performance, which is why some methods do not
compress these layers. For example, LLM-Pruner leaves the first four and the final layers unaltered. Similarly, our method also
avoids modifying the first and last two layers.

Due to the introduction of an additional Q matrix, the actual number of parameters in the SliceGPT model is greater than
the pruned number of parameters set. To ensure a fair comparison, our compression ratio refers to the memory size of the
compressed model divided by the memory size of the original model. The FLAP should modify its masking implementation
when it is used in GQA architecture models.


